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In multiplex networks with a large number of layers, the nodes can have different activities, indicating the total
number of layers in which the nodes are present. Here we model multiplex networks with heterogeneous activity
of the nodes and we study their robustness properties. We introduce a percolation model where nodes need to
belong to the giant component only on the layers where they are active (i.e., their degree on that layer is larger
than zero). We show that when there are enough nodes active only in one layer, the multiplex becomes more
resilient and the transition becomes continuous. We find that multiplex networks with a power-law distribution
of node activities are more fragile if the distribution of activity is broader. We also show that while positive
correlations between node activity and degree can enhance the robustness of the system, the phase transition may
become discontinuous, making the system highly unpredictable.
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I. INTRODUCTION

Multilayer networks [1–3] are formed by several interacting
networks. They describe a large variety of complex systems.
Examples are found in social [4], technological, communi-
cation, transportation systems [5–7], but also in biological
networks of the cell, or in the brain [8–10]. In the last 15 years a
lot of attention has been devoted to understanding the interplay
between structure and dynamics in single networks [11,12]. In
recent years, it has become clear that most of the networks
are not isolated and that for understanding the function of
complex systems as different as complex infrastructures or the
brain it is important to investigate the role of their multilayer
structures [1,2]. In particular, ample debate has been devoted to
characterize the robustness of multilayer networks [9,13–29].
It has been shown that, in the presence of interdependencies,
the robustness of a multilayer network can be significantly
affected. Multilayer networks can be much more vulnerable to
random damage with respect to considering only their single
layers taken in isolation [13–15].

In the presence of interdependencies, the notion of a
mutually connected component has been introduced, meaning
that each pair of nodes in the mutually connected component
must be connected by a path on each and every layer,
internal to this component. This definition is motivated by
the fact that in these interdependent systems a node is not
functional if any of its interdependent nodes in the other
layers is not functional. Therefore, the largest (giant) mutually
connected component (MCGC) describes the robustness of the
system. This component has a discontinuous phase transition
as a function of the initial random damage inflicted to
the nodes of the network, and close to this transition the
system is affected by dramatic cascades of failure events.
This transition can be studied on multilayer networks of
different natures, including multiplex networks [13–16] and
networks of networks [19–23]. Networks of networks are
formed by different interacting networks, as the molecular
networks in the cell, in which every node is a different type of
biological molecule. Multiplex networks [6,7,30–35], instead,
are multilayer networks in which the same set of nodes interact

through different networks. Examples of multiplex networks
are social networks, in which individual are connected by
different types of social ties, transportation networks, like
airport networks in which each airport is connected to other
airports though connections of different airline companies,
or collaboration networks in which scientists collaborate on
different topics and eventually cite each other. Several works
have focused on modeling multilayer networks [31–35]. In
particular a very useful approach employs statistical ensembles
which are able to generate a large variety of multiplex
network topologies with a desired level of structural correlation
[31,33,34]. In networks of networks as well as in multiplex
networks the possible correlations existent in this structure
can strongly affect their robustness properties [1,9,10,17].

An interesting result has recently shown that multiplex
networks are characterized by the fact that not all the nodes
are connected in every layer. In fact, many networks have
been shown [7] to have heterogeneous activity of the nodes.
The activity of a node is given by the number of layers in
which the node is at least connected to another node. The
activity of the nodes has been found to be broadly distributed
in a variety of multiplex network data sets [7]. Moreover, the
activity of the nodes has been seen to correlate in average
with the degree of single node in given layers, meaning that
on average nodes that are present in many layers have also
typically a high degree in the single layers in which they are
active [7]. The heterogeneous distribution of activities of the
nodes and its relation with the mean degree in single layers is
frequently observed in real-world multiplex networks and may
encode relevant information [7]. Besides, multiplex networks
with heterogeneous activities can be useful theoretical tools
to address other problems like modular structures in single
networks [36].

Here we characterize multiplex networks ensembles with
heterogeneous activities of the nodes and we investigate their
robustness properties, assuming mutual interdependencies
among each layer. This ensemble of multiplex networks
with heterogeneous activity of the nodes can be used to
model realistic multiplex network structures, on top of which
dynamical processes may occur. Moreover, an ensemble of
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multiplex networks with heterogeneous activities of the nodes
can be used to estimate the role that correlation has on their
robustness properties. Here we find that heterogeneous activity
of the nodes can decrease the robustness of networks in the
presence of interdependencies. Nevertheless the correlation
between the activity of the nodes and their degree within single
layers has the opposite effect and can improve the robustness
of multiplex networks.

II. MULTIPLEX NETWORK ENSEMBLE WITH
HETEROGENEOUS ACTIVITY OF THE NODES

A multiplex network of N nodes i = 1,2, . . . ,N and M

layers α = 1,2, . . . ,M is completely specified when the M

adjacency matrices of elements aα
ij = 1 if node i is linked to

node j in layer α, and otherwise aα
ij = 0 are given. Every node

of the multiplex network is labeled as (i,α), indicating that is
the ith node in layer α. The replica nodes of the node (i,α) are
defined as all the nodes labeled as (i,α′) in layers α′ �= α [22].
Interestingly, it has been observed from data [7], that in many
networks not all the nodes are active (i.e., are connected to at
least another node) in each layer. Let us define the activity Bi

of a node i as the number of layers where node i has a nonzero
degree. The activities of the nodes are broadly distributed [7]
and they can be fitted by a power-law P (B) � B−δ with δ ∈
[1.5,3.0]. This implies that for some multiplex networks the
bipartite network between nodes and layers described by the
activity adjacency matrix can be either dense δ � 2 or sparse
δ > 2 but the typical number of layers in which a node is
active is always subject to unbound fluctuations. In order to
characterize fully the activities of the nodes in each layer,
from the M adjacency matrices aα it is possible to construct
a N × M activity matrix b of elements bi,α (Fig. 1). This
matrix can be viewed as an adjacency matrix between nodes
and layers indicating if node i is active in layer α (bi,α = 1) or
not (bi,α = 0).

The activity Bi of a node i can be therefore expressed in
terms of the matrix b as in the following:

Bi =
M∑

α=1

bi,α. (1)

FIG. 1. Sketch of a multilayer network with node activity: nodes
are not active in every layer (left), so the system can be represented by
a bipartite graph associating each node to the layers where it appears
(right).

The layer activity Nα has been defined in [1,7] and is given by
the number of nodes active in layer α, i.e.,

Nα =
N∑

i=1

bi,α. (2)

It is therefore possible to construct an ensemble of multiplex
networks with heterogeneous activity of the nodes in the
subsequent manner: first we construct the network between
layers and nodes described by the adjacency matrix bi,α

indicating if node i is active in layer α, then we can construct
in each layer a network between the active nodes of the
layer with a degree distribution P α(k). In the case in which
P α(k = 0) = 0, we have that a node is active in a given layer
if it is connected at least to another node in the same layer, i.e.,

bi,α = 1 − δ0,kα
i

= 1 − δ0,
∑N

j=1 aα
i,j

, (3)

where δx,y indicates the Kronecker δ.
In order to construct the activity matrix bi,α we can consider

a microcanonical ensemble in which the activities of the
nodes Bi and the layer activities Nα are fixed. This ensemble,
called also the configuration model of a bipartite network, can
be constructed by maximizing the entropy S of the activity
networks given by

S = −
∑

b

P (b)lnP (b), (4)

where P (b) is the probability of a given activity network in the
ensemble under the constraints that the node activity and layer
activity are kept constant. In this ensemble the probability of
a matrix b is given by

P (b) = 1

Z

N∏
i=1

δ

(
M∑

α=1

bi,α,Bi

)
M∏

α=1

δ

(
N∑

i=1

bi,α,Nα

)
, (5)

where Z is the normalization constant also called the partition
function of the ensemble. In this ensemble the probability pi,α

that a node i is active in layer α is expressed in terms of the
Lagrangian multipliers λi , ωα , i.e.,

piα = e−λi−ωα

1 + e−λi−ωα
. (6)

The Lagrangian multipliers are fixed by the conditions∑
i

pi,α = Nα,

∑
α

pi,α = Bi. (7)

Finally the entropy [37–39] S of the ensemble of activity
networks is given by

S = S − �, (8)

where S and � are given by

S = −
∑
iα

[pi,α ln pi,α + (1 − pi,α) ln(1 − pi,α)],

� = −
∑

i

ln

[
1

Bi!
B

Bi

i e−Bi

]
−

∑
α

ln

[
1

Nα!
NNα

α e−Nα

]
.
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We assume here that bipartite networks between nodes
and layers, characterized by the adjacency matrix bi,α , is
uncorrelated, i.e., we assume that the activities Bi of the nodes
are not correlated with the sizes of active nodes Nα on the layers
where the nodes are active. In this hypothesis the probabilities
pi,α are proportional to the product of Bi and Nα which are the
degrees of the mentioned bipartite network, and the following
condition on the maximal activity of the nodes Bmax and the
maximal layer activity Nmax must be satisfied, i.e.,

BmaxNmax∑
i Bi

� 1. (9)

This condition is the condition that in a bipartite network
corresponds to the one imposing a structural cutoff on
single uncorrelated networks (networks without degree-degree
correlations) [40]. In this case we have the simple expression

pi,α = BiNα∑
β Nβ

, (10)

with
∑

β Nβ = ∑
i Bi = 〈N〉M = 〈B〉N .

As we said, this argument regards lack of correlation
between activities and number of active nodes on the layer.
In Sec. IV, we will examine a different type of correlation,
namely the one between activities and the degree distribution
on the layer.

Once the activity network is constructed, in order to
construct the multiplex network, we assign to each active
node of layer α a degree within the layer. If the activity of
the nodes are uncorrelated with the degree in each layer the
degrees ki,α of the nodes i in layer α are drawn form the
degree distribution P α(k) and the networks of each layer α are
generated by the configuration model with degree distribution
P α(k). In other words, the probability of the multiplex network
degree sequences k = {ki,α}i=1,2...,N ;α=1,2,...,M is given by

P ({k}|b) =
∏
i,α

[
P α(kα

i )bi,α + δ(kα
i ,0)(1 − bi,α)

]
. (11)

Instead, if there is a correlation between the degree of the nodes
within a layer and the activity of the nodes, then we need to
draw the degree of the nodes in each layer from a probability
PBi

(ki) which is a function of their activity Bi .

III. MUTUALLY CONNECTED COMPONENT IN A
MULTIPLEX NETWORK WITH GIVEN DISTRIBUTION OF

ACTIVITIES OF THE NODES

We consider the mutually connected giant component
(MCGC) in a multiplex network with given distribution of
activities of the nodes, described by the ensemble of multiplex
networks introduced in Sec. II.

The layers are interdependent, meaning that each node
active in a given layer α is interdependent on its replica nodes
in all the layers β where the node is active. In particular we
will assume that a node (i,α) active in layer α belongs to the
mutually connected giant component if (i) at least one neighbor
(j,α) of node (i,α) belongs to the mutually connected giant
component, and (ii) in each layer β �= α where the node i

is active, at least one neighbor (j,β) belongs to the mutually
connected giant component.

On a locally treelike multiplex network, this can be easily
encoded in a message passing algorithm determining if a
node (i,α) belongs to the mutually connected giant component
[1,15,29,41]. The indicator function Siα indicates if a nodes
(i,α) belongs (Siα = 1) or not (Siα = 0) to the mutually
connected giant component. This indicator is determined by a
set of “messages” σα

i→j that each node (i,α) active in a layer α

sends to the neighboring nodes (j,α) in the same layer. Each
message σα

i→j indicates if the node (i,α) belongs (σα
i→j = 1)

or not (σα
i→j = 0) to the mutually connected component when

the link to the node (j,α) is removed.
Here our goal is to characterize the size of the mutually

connected giant component as a function of the probability
1 − p that random nodes are damaged in the network. In order
to characterize the damage initially inflicted to the network we
indicate with si = 0,1 if a node has been damaged (si = 0) or
not (si = 1) in the multiplex network. Given the definition of
the mutually connected component, the message σα

i→j from a
node (i,α) to a node (j,α) both active in layer α is therefore
given by

σα
i→j = si

[
1 −

∏
	′∈∂α(i)\j

(1 − σα
	′→i)

]

×
∏
β

β �= α

[
1 − bi,β

∏
	∈∂β (i)

(1 − σ
β

	→i)

]
, (12)

where ∂α(i) indicates the nodes 	 that are neighbors of node i

in layer α and the expression ∂α(i) \ j indicates all the sets of
all the nodes belonging to ∂α(i) except node j . Therefore the
message σα

i→j is equal to 1, if the node has not been damaged
(si = 1), if at least a message coming from a neighbor node
(	′,α) different from (j,α) is positive (first factor in the square
brackets), and if in all the layers β where node i is active
(bi,β = 1), there is at least one neighbor (	,β) of node (i,β)
sending a positive message to node (i,β) (product over β).
Finally, the indicator function that node i active in layer α is
in the MCGC is given by

Siα = si

[
1 −

∏
	′∈∂α(i)

(1 − σα
	′→i)

]

×
∏
β

β �= α

[
1 − bi,β

∏
	∈∂β (i)

(1 − σ
β

	→i)

]
. (13)

This indicator function equals 1 if the node (i,α) has not
been damaged (si = 1), if at least a message coming from
a neighbor node (	′,α) of layer α is positive, and if in all the
layers β where node i is active (bi,β = 1), there is at least
one neighbor (	,β) of node (i,β) sending a positive message
to node (i,β). In this section we only consider uncorrelated
activity networks in order to allow for a theoretical treatment
of the percolation properties of the multiplex networks with
heterogeneous activity of the nodes. Moreover we assume that
the number of nodes Nα is large in every network α of the
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multiplex network. Given that from Eq. (10) we have

pi,α = BiNα

〈B〉N � 1, (14)

we have

1 � Nα � 〈B〉N
Bi

, (15)

where the condition Nα 
 1 is required to study the percola-
tion transition of the MCGC. Since the value of the activity of
the nodes Bi � M we find the condition

〈B〉N
M


 1. (16)

This means that, for example, for finite 〈B〉 the number of
layers is much smaller than the total number of nodes.

In order to characterize how the size of the mutually
connected giant component depends on the distribution of
activities P (B), here we consider the ensemble of multiplex
networks with given activities of the nodes described in Sec. II,
where we assume additionally that the damage occurs on a
node i with probability 1 − p, i.e.,

P ({si}) =
N∏

i=1

psi (1 − p)1−si . (17)

Let us observe now that the probability that a node i active in
layer α has activity Bi = B is given by

P (Bi = B|bi,α = 1) = P (Bi = B,bi,α = 1)

P (bi,α = 1)

= P (B)
BNα

〈B〉N
[∑

B

P (B)
BNα

〈B〉N
]−1

= P (B)B

〈B〉 , (18)

where we have assumed that pi,α is given by Eq. (10).
Assuming that all the layers have the same activity Nα =
N ∀β, and the same degree distribution P (k), by averaging the
messages given by Eq. (12) over the ensemble of multiplex
networks with given activities of the nodes, we get the
probability σα = 〈σα

i→j 〉 that by following a link in layer α we
reach a node in the mutually connected component, obtaining
σα = σ and

σ = p
∑
B

BP (B)

〈B〉 [1 − G1(1 − σ )][1 − G0(1 − σ )]B−1,

(19)

where the generating functions G0(x) and G1(x) are given by

G0(x) =
∑

k

P (k)xk,

G1(x) =
∑

k

k

〈k〉P (k)xk−1, (20)

which can be derived as in the following. First we define σα

as

σ = σα = 〈
σα

i→j

〉 =
∑
B

P (Bi = B|bi,α = 1)
〈
σα

i→j

〉∣∣
Bi=B,bi,α=1

,

where 〈. . .〉 indicates the average over the network, in the large
network limit. Using Eq. (12) we have

σ = p[1 − G1(1 − σ )]
∑
B

P (Bi = B|bi,α = 1)

×
〈∏
β �=α

[
1 − bi,β

∏
	∈∂β (i)

(1 − σ
β

	→i)

]〉∣∣∣∣
Bi=B,bi,α=1

(21)

= p[1 − G1(1 − σ )]
∑
B

P (B)B

〈B〉 [1 − G0(1 − σ )]B−1,

getting Eq. (19) in the treelike local approximation.
Using a similar derivation, under similar assumptions, the

fraction Sα = 〈Siα〉 = S of the N nodes that are in the mutually
connected component in layer α is given by

S = p
∑
B

BP (B)

〈B〉 [1 − G0(1 − σ )][1 − G0(1 − σ )]B−1.

(22)

These equations can be studied in detail as a function of
the degree distribution in each layer, and the node activities
distribution P (B). In particular, Eq. (19) can be expressed as

σ = p[1 − G1(1 − σ )]K[1 − G0(1 − σ )], (23)

where we have indicated by K(x) the following generating
function:

K(x) =
∑
B

B

〈B〉P (B)xB−1. (24)

Similarly Sα = S can be written as

S = p[1 − G0(1 − σ )]K[1 − G0(1 − σ )]. (25)

Let us consider now Poisson networks identical on each layer:
P (k) = e−cck/k!. Then we have G0(z) = G1(z) = e−c(1−z)

and the equation for σ becomes h(x) = 0 where

h(x) = x − p̃(1 − e−x)K(1 − e−x), (26)

and x = cσ , p̃ = cp. A discontinuous transition occurs only
if h(x) has maximum, so we need to impose the condition
h(x) = h′(x) = 0, where

h′(x) = 1 − p̃e−x[K(1 − e−x) + (1 − e−x)K ′(1 − e−x)],

where the function K ′(x) is given by

K ′(x) =
∑
B

B(B − 1)

〈B〉 P (B)xB−2. (27)

Using this equation to isolate p̃, and substituting into h(x) = 0,
we get for x �= 0

K ′(1 − e−x)

K(1 − e−x)
= ex

x
− 1

1 − e−x
. (28)

As a general remark, we expect in this model that the nature
of the percolation phase transition will be dependent on the
fraction of replica nodes with activity B = 1. In fact these
nodes do not have any interdependency on replica nodes in
other layers. Therefore a high density of nodes with activity
B = 1 favors the continuous phase transition. In the extreme
case in which all the nodes have activity B = 1, Eq. (26) is in
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δ
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FIG. 2. Phase diagram of a multiplex network formed by Poisson
layers in the case of a power-law activity distribution with exponent
δ. The solid line indicates the continuous phase transition obtained
for Bmin = 1, and the dashed line indicates the discontinuous phase
transition obtained for Bmin = 2.

fact reduced to the equation determining the giant component
of a single network. In fact, the generating function K(x)
defined in the last equation of (24) is equal to 1 if all the nodes
have activity B = 1. When the not all the nodes have activity
B = 1, the nontrivial functional form of K(x) is determined by
the nodes that have activity B > 1. Therefore we expect that if
the density of such nodes is sufficiently high the transition
is continuous while otherwise, we expect a discontinuous
phase transition. This expected phenomenon can be related
with a similar effect generated by the partial interdependence
in multiplex networks where all the nodes are active in any
layers [15,16].

In the following we provide evidence for this observations
by considering two different distributions of activities P (B):
a scale-free activity distribution and a Poisson activity distri-
bution.

A. Scale-free P(B) distribution

Let us consider a power-law activity distribution P (B) =
B−δ/

∑∞
B=Bmin

B−δ with B � Bmin. In this case, the function
h(x) is given by Eq. (26) where

K(x) =
∑∞

B=Bmin
B1−δxB−1∑∞

B=Bmin
B1−δ

. (29)

The position of the discontinuous transition can be calculated
by solving h(x�) = h′(x�) = 0, with x� > 0. The discontinuity
of the transition is due to the finite value of the solution at
x� > 0, as one can see that S > 0 from Eq. (25), where G0(z) is
a simple exponential. The position of the continuous transition
can be instead calculated by solving h(0) = h′(0) = 0. While
the tricritical point, if it exists, can be found by setting
h(0) = h′(0) = h′′(0) = 0. [Note that given the functional
form of h(x), given by Eq. (26), the condition h(0) = 0 is
always satisfied.]

Figure 2 illustrates the phase diagram calculated for Bmin =
2 and Bmin = 1. For Bmin = 1 we have a continuous phase
transition for δ > 2. For Bmin = 2 we find a discontinuous

2 3 4 5
0

2

4

6

8

10

δ

x c

FIG. 3. Jump in xc = cσc = cSc, where Sc is the size of the
MCGC at the discontinuous transition for a multiplex network formed
by Poisson layers with mean degree c, in the case of a power-law
activity distribution with exponent δ and Bmin = 2.

phase transition line across all the values of δ > 2. The jump
in the size of the MCGC xc = cσc = cSc at the discontinuous
transition for Bmin = 2 (shown in Fig. 3) diverges as δ

approaches the value 2 (while at the continuous transition
there is no jump). Both transition lines for Bmin = 1 and
Bmin = 2 diverge as δ approaches the value 2, indicating that
as δ decreases the multiplex network becomes more fragile. As
δ decreases, the fraction of nodes with large activity (activity
hubs) becomes important. These nodes, to be in the mutually
connected giant component, must be connected in each layer,
and if they are damaged they affect the connectivity of multiple
layers. Therefore they are at the same time more fragile than
nodes with smaller activity and are able to affect the multiplex
connectivity across more layers. As a result, as δ decreases,
random damage affects more and more layers and the multiplex
network becomes less robust.

B. Poisson P(B) distribution

For activities that are Poisson distributed P (B) =
μBe−μ/B!, we have

h(x) = x − p̃(1 − e−x) exp[−μ(e−x)]. (30)

By setting h(x�) = h′(x�) = 0, we can find a line of discon-
tinuous transitions that ends at a critical point defined by
h(0) = h′(0) = h′′(0) = 0 characterized by

p̃ = p̃T = √
e � 1.648, μ = μT = 1

2
= 0.5. (31)

In the multiplex network, when μ < μT the percolation
transition is continuous. Instead for μ > μT the percolation
transition is discontinuous. In Fig. 4 we show the phase
diagram. At μ = 0, the continuous phase transition is at
p̃ = pc = 1 as expected for independent layers. As the
level of interdependence becomes increasingly significant, the
continuous transition becomes discontinuous (for μ > μT ).
This can also be seen from the size of the discontinuous jump
xc = cσc = cSc, that approaches zero at the tricritical point
μT and is shown in Fig. 5.
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0 1 2
0

1

2

3

4

5

μ

cp
c

FIG. 4. Phase diagram of a multiplex network formed by Poisson
layers with identical mean degree c and with a Poisson activity
distribution with mean μ. The blue solid line is a line of continuous
phase transitions between a percolating and a nonpercolating phase,
the red dashed line represents instead the line of discontinuous phase
transitions.

IV. CORRELATIONS BETWEEN THE ACTIVITIES AND
THE DEGREES OF THE NODES

In this section, we consider the role of correlations between
the activities of the nodes and their degrees in the layer in
which they are active. The higher the activity of a node, the
more fragile the node is, but the higher the degree of the node
within the layer the more robust it is. Therefore, here we want
to characterize the effect that the correlations between the
activity and the degrees of each node have on the robustness
properties of the entire multiplex network. We start from the
message passing Eqs. (12) and (13). We assign to each node
i an activity Bi from a P (B) distribution. Then, we assume
that the matrix of activities is given by b with probability P (b)
given by Eq. (5) with pi,α given by Eq. (10). Finally, we need

0 1 2 3 4 5
0

1

2

3

4

5

μ

x c

FIG. 5. The jump in xc = cSc where Sc is the size of the mutually
connected giant component at the discontinuous transition point,
is shown for a multiplex network formed by Poisson layers with
identical mean degree c and with a Poisson activity distribution with
mean μ.

to extend Eq. (11) for the degree sequence to the correlated
case. As node degrees on each layer are correlated with node
activities, the probability P ({k}|b,B) that a multiplex network
has degree sequences {k}i,α , given the activity matrix b and
the activity sequence {Bi}i=1,2...,N , is

P ({k}|b,B) =
∏
i,α

[
PBi (k

α
i )bi,α + δ(kα

i ,0)(1 − bi,α)
]
. (32)

In particular, we assume for simplicity that

PBi
(k) = 1

k!
c(B)ke−c(B) (33)

and we take

c(B) = c0B
a, (34)

where c0,a are two parameters determining the correlations
between the degrees of the node and its activity. The particular
choice of the functional form of PBi

(k) in Eqs. (33) and (34)
is dictated by the intention to model positive correlations
between the activity of the degree of the layers that have been
observed in real dataset [7]. Real multiplex network analysis
is nevertheless not sufficient to suggest the exact form of the
correlations observed. Therefore this ensemble of correlated
multiplex networks with heterogeneous activity of the nodes
has been chosen in such way to describe positive correlations
between activities and degree in single layers, while keeping
the model sufficiently simple to allow a number of analytical
calculations.

Averaging the message passing equation over this ensemble
and assuming Nα = N , ∀α, and B � M , we have only one
average message determined by the equation

S = σ = p
∑
B

B

〈B〉P (B)(1 − e−c(B)σ )B−1(1 − e−c(B)σ ).

(35)

Setting p̃ = c0p, the equation for x = c0σ reads

h(x) = 0 (36)

with

h(x) = x − p̃
∑
B

B

〈B〉P (B)(1 − e−Bax)B−1(1 − e−Bax).

This equation can be studied as a function of a, p̃, and the
parameters determining the P (B) distribution. In order to find
the discontinuous phase transition, we set h(x�) = 0, h′(x�) =
0. The line of these discontinuous phase transitions eventually
stops at a critical point xc, that can be calculated by setting

h(xc) = h′(xc) = h′′(xc) = 0. (37)

The continuous phase transition can be found, instead, by
imposing h(0) = h′(0) = 0.

Let us now consider a power-law distribution of activities
P (B) ∝ B−δ for B ∈ [Bmin,100] and correlated degrees in
every layer according to the degree distribution given by
Eq. (33). In Figs. 6 and 7 we show the percolation transitions
as a function of the parameter a for Bmin = 1 and Bmin = 2,
respectively. As a general remark, for Bmin = 2, the transition
appears to be always discontinuous, while for Bmin = 1 we
have both continuous and discontinuous transitions, with a
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2 3 4
0

1

2

3

4

δ

c 0
p

FIG. 6. Phase diagram of a multiplex network in the case of an
activity distribution P (B) ∝ B−δ for B ∈ [1,100] and degree within
each layer correlated with the activity of the node according to
Eqs. (33) and (34). From top to bottom, the dashed lines indicate
discontinuous phase transitions for a = 0.2 and for a = 0.6. Such
lines delimit a line of continuous transitions that do not depend on a.
The discontinuous lines end into a critical point. The plot shows that
the stronger the correlations between the activity of the nodes and
their degree within each layer, the larger the percolating phase is, but
at the same time the transition becomes discontinuous.

region of coexistence between two percolating phases, and a
critical point at the end of the line of discontinuous transitions.

First, let us observe the case of Bmin = 1 (Fig. 6). We do not
plot the line a = 0 as it reduces to the noncorrelated case shown
in Fig. 2, where the phase transition is always continuous.
For a > 0, instead, it emerges a line of discontinuous phase
transitions ending in a critical point, which is determined by
Eqs. (37). The line of continuous phase transitions encounters
the line of discontinuous transitions at a critical end point

2 3 4 5
0

1

2

3

4

δ

c 0
p

FIG. 7. Phase diagram of a multiplex network in the case of an
activity distribution P (B) ∝ B−δ for B ∈ [2,100] and degree within
each layer correlated with the activity of the node according to
Eqs. (33) and (34). From top to bottom, the dashed lines indicate
discontinuous phase transitions for a = 0, a = 0.2, a = 1, and
a = 1.5, respectively. Differently from the previous case, we do not
have continuous transitions.

0.0 0.5 1.0 1.5 2.0
�0.005

0.000

0.005

0.010

0.015

0.020

x

h�
x�

FIG. 8. Solutions of Eq. (37) at the critical point for Bmin = 1 and
a = 0.2.

determined by the simultaneous occurrence of two minima
of function h(x) [Eq. (37)]. Figure 8 shows the solution of
Eq. (37) at the critical point. This phase diagram, therefore,
is characterized by the presence of two percolating phases,
separated by a short line of discontinuous transitions (Fig. 6).
This coexistence region shifts towards larger values of δ as a

increases, but the critical point never joins the continuous line
at a tricritical point at finite a. Figure 9 shows that xc → 0,
without joining the continuous solution at x = 0, for a → ∞.

In the case Bmin = 2 (Fig. 7), we observe a discontinuous
phase transition for all values of a. This qualitative difference
is due to the peculiar role of the nodes which are active
on a single layer (B = 1). In our model, this type of node
does not need support from the other layers (as they appear
only in one of them), and therefore they drive a classical
continuous percolation transition. In both cases, as a increases,
the percolating threshold becomes smaller, as the intensity of
the correlations between the activities of the nodes and the
degree of the nodes within each layer increases. Therefore
the multiplex network is more robust because it can still
have a mutually connected component even if the damage
is significant. On the other hand, though, the phase transition

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

a

x c

FIG. 9. Position of critical points for a multiplex network in the
case of an activity distribution P (B) ∝ B−δ for B ∈ [1,100] and
degree on each layer correlated with the activity of the node according
to Eqs. (33) and (34).
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becomes discontinuous, and therefore the collapse becomes
more unpredictable.

V. CONCLUSIONS

In this paper, we have characterized the robustness prop-
erties of multiplex networks in a model that encapsulates
heterogeneous activities of the nodes, i.e., the possibility that
each node is present only on a small fraction of layers in
a multiplex, as seen in real world cases [7]. In this model,
we employ a notion of mutual percolation where nodes must
belong to a mutually connected component only on the layers
where they are active and develop an analytical approach to
calculate the size of the mutually connected giant component
as a function of node damage and other parameters. We show
that multiplex networks with very broad activity distributions
are more fragile than networks with more homogeneous
distribution of activities.

We also investigate the role of correlations between the
activities of the nodes and their degrees. We show that these
correlations generally improve the stability of the percolating
phase, and the multiplex network has a smaller percolation
threshold, so the multiplex network becomes more robust.
However, correlations also change the order of the phase tran-
sition that becomes discontinuous. This provides an example of
how correlations can typically reduce the fragility of multiplex
networks, but at the same time they can make the system more
unpredictable, as the transition becomes discontinuous.
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