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We investigate the influence that adding a new coupling has on the linear stability of the synchronous state in
coupled-oscillator networks. Using a simple model, we show that, depending on its location, the new coupling
can lead to enhanced or reduced stability. We extend these results to electric power grids where a new line can lead
to four different scenarios corresponding to enhanced or reduced grid stability as well as increased or decreased
power flows. Our analysis shows that the Braess paradox may occur in any complex coupled system, where the
synchronous state may be weakened and sometimes even destroyed by additional couplings.
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I. INTRODUCTION

Collective synchrony is an omnipresent phenomenon in
systems of coupled oscillators [1,2]. It arises when the coupling
between individual oscillators becomes strong enough that
it overcomes the tendency of oscillators to swing at their
natural frequencies. Simplified models such as the Kuramoto
model [1,3] allow to describe a plethora of nonlinear phe-
nomena involving collective synchrony in Josephson junction
arrays [4], biological systems [5,6], crowd dynamics [7],
coupled neural networks [8], chemical reactions [9], and
electric power grids [10–13], to name but a few. Quite
naturally, one expects that adding couplings between initially
uncoupled pairs of oscillators generically favors synchrony.
This is, however, not always the case; Nishikawa and Mot-
ter provided analytical conditions for systems of coupled
oscillators to be synchronizable over a larger parameter
range [14]. References [15,16] found numerically that adding
a new coupling in an initially synchronous system sometimes
destroys synchrony. This unexpected scenario is the electrical
analog of the Braess paradox, first discussed in the context
of traffic networks [17,18], where building new roads some-
times increases traffic congestion. Similar counterintuitive
observations were reported for simple mechanical systems
and uncontrolled electric circuits [19,20]. One purpose of
the present paper is to present a more systematic analytical
treatment of the Braess paradox in coupled-oscillator systems.
While our focus is on electric power grids, our theory also
applies to other oscillator networks described by similar
models.

The operational state of ac power grids requires synchrony
of thousands of rotating machines of widely varying sizes, mil-
lions of electric and electronic devices and components, over
several voltage levels intercoupled by frequency-preserving
transformers [21]. Nowadays, power grids are maintained
in a synchronous state at their rated frequency (50 or
60 Hz) by active control of power generators. An imbalance
between production and consumption results in a variation
of the operating frequency but not necessarily in the loss of
synchrony. The latter may arise if frequency variations exceed
safety margins that require disconnecting parts of the network.
The standard operational protocol is crucially challenged by
the current rise of weakly controllable renewable energy
sources. Maintaining the operational state and guaranteeing the
safe distribution of power under these changing circumstances

requires power grid upgrades, in particular the addition of
new transmission lines. This is, however, both costly and
not always well accepted socially. It is therefore crucial to
upgrade grids efficiently, adding as few lines as possible to
ensure a more stable and safer grid operation. Understanding
the Braess paradox in electric power systems is therefore key
to optimizing the grid of tomorrow.

Improvement in grid operation after a line addition can
be quantified, for instance, by (i) the new power flows on
initially strongly loaded lines (this measure of power rerouting
is related to line outage distribution factors used in electrical
engineering [22]), (ii) the linear stability as measured by the
Lyapunov spectrum [12,23–26] of the upgraded grid, and
(iii) the size of the basin of attraction of the synchronous
state in the associated parameter space [27]. Further criteria
include N-1 feasibility and voltage stability [21]. In this work
we investigate the impact of line addition on grid operation
along points (i) and (ii) in a purely reactive power grid.
We illustrate analytically on a simple chain network how
the perturbative addition of a line, which modifies the grid
topology by creating a loop, affects the power load of the
electrical connections and the linear stability. We classify the
impact of the new line into one of four different scenarios,
depending on whether linear stability is improved or not and
whether strongly loaded power lines are relieved or not. Out of
these four possible scenarios, three are different manifestations
of the electrical Braess paradox, where (i) already strongly
loaded lines become even more strongly loaded, (ii) network
stability is reduced, or (iii) both. We furthermore show how
these three scenarios for the Braess paradox also occur in
a complex network with the topology of the British electric
transmission grid. Our analytical calculation contributes to the
understanding of the Braess paradox in electrical systems. We
conjecture that the paradox is generic and may occur in any
system of coupled oscillators with reduced connectivity.

II. THE CHAIN MODEL

We consider an ac electric power system in the form of a
chain connecting N + 1 nodes (see Fig. 1). A unique generator
(labeled i = 0) is located at one end of the branch, while the
remaining N nodes (labeled i = 1, . . . ,N) are all loads. A
necessary condition for the system to be in steady state is that
the total injected power at the generator is equal to the total
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FIG. 1. The chain model. A single generator (square) injects
a power P0 > 0 which is consumed by N loads (circles), each
consuming a power of Pi < 0 in arbitrary units. The lines have
capacity Ki+1,i � P0 − ∑i

l=1 |Pl |, except the newly added line
(dotted), which has capacity δ.

power consumed by the loads. For a power injection P0 > 0
at the generator and Pi < 0 at the loads, in arbitrary units, this
amounts to

∑N
i=0 Pi = 0.

As is the case for high voltage transmission grids, the line
admittance is dominated by the susceptance (its imaginary
part). Accordingly, we neglect Ohmic effects and assume that
each node has a constant internal voltage magnitude |Vi |.
Under these approximations the active power flow equations
read [15,21,28–31]

0 = Pi +
∑
j∼i

Ki,j sin(θj − θi) i ∈ {0,1, . . . ,N} , (1)

where j ∼ i indicates that the sum over j spans the nodes
connected to the ith node, Ki,j = Kj,i = Bi,j |Vi ||Vj | denotes
the maximum power capacity of line 〈i,j 〉 having susceptance
Bi,j , and θi is the voltage angle (with respect to the current)
at node i. Since P �

i = P0 − ∑i
l=1 |Pl| units of power are

transmitted from node i to i + 1, the line capacities must
satisfy Ki+1,i � P �

i for Eq. (1) to have a solution. Solving
Eq. (1) for the angles yields

θi+1,i ≡ θi+1 − θi = − arcsin[P �
i /Ki+1,i]

i ∈ {0,1, . . . ,N − 1}, (2)

so that θi+1,i ∈ [−π/2,0].
We next add to this topology a line of capacity δ between the

generator and the dth load, d ∈ {1, . . . ,N}. When δ � Ki+1,i

for all i, the perturbed solution {θ̃i} remains close to the
unperturbed one, i.e., θ̃i+1,i ≈ θi+1,i + εi+1,i , with |εi+1,i | �
1. Solving for εi+1,i , one obtains explicitly the first order
correction to the unperturbed power flow solution as

εi+1,i =
{

− δ
Ki+1,i

sin θd,0

cos θi+1,i
0 � i � d − 1 ,

0 i � d .
(3)

Clearly, εi+1,i = 0 for i � d since the power flowing through
the lines connecting nodes i and i + 1 for i � d is left
unchanged. Since the above result is valid to first order in δ/K ,
all angle differences entering Eq. (3) are differences of the
unperturbed angles {θi}. In particular, the difference between
the voltage angles of the nodes which are connected by the new
line is θd,0 = ∑d−1

i=0 (θi+1 − θi) = −∑d−1
i=0 arcsin [P �

i /Ki+1,i].
Below we investigate how the power flowing through the lines
changes when adding the new line.

III. IMPACT OF LINE ADDITION ON POWER FLOWS

To leading order in δ/K , the power flowing through the
additional line is Pd,0 = δ sin θd,0 [32]. The sign of Pd,0, and
thus the direction of the power flow, changes as a function

of d. The power flowing through the 〈0,1〉 line between the
generator and the first node goes from P1,0 = K0,1 sin θ1,0 =
−P0 to P̃1,0 = K1,0 sin θ̃1,0 ≈ −P0 − δ sin θd,0 once the new
line is added. As long as sin θd,0 � 0, the new line lowers the
load on all the lines 〈i,i + 1〉 for i = 0, . . . ,d − 1. However,
when sin θd,0 � 0, we face the counterintuitive situation where
the new line transmits power back from node d to the generator,
thereby increasing the load on all the lines between the
generator and node d in the original network. This is an electric
manifestation of the Braess paradox [17,18], and its occurrence
is due to the nonlinear nature of the power flow equation (1).
In the case of our simple model, which of these two scenarios
takes place depends only on the value of θd,0.

IV. LINEAR STABILITY

The solutions of the power flow equation (1) describe the
operating stationary state of the power grid at a given time.
Upon changing conditions, such as variations of the power
injected and consumed, the angles’ dynamics in this transient
stability problem is governed by the swing equations [13,21]

Ii θ̈i + Diθ̇i = Pi +
∑
j∼i

Ki,j sin(θj − θi) , (4)

which describe the power balance at nodes with rotating
machines as generators or loads. Without inertia Ii ≡ 0, Eq. (4)
reduces to a Kuramoto-like model [1,3,33], with reduced
connectivity. Linear stability in the Kuramoto and similar
models with reduced connectivity has been investigated in
Refs. [30,34–36], which derived bounds on the exponential
rate of return to the stationary state.

For Ii 	= 0, linearizing Eq. (4) around a stationary solution
�(t) = θ + δθ (t) yields the eigenvalue equation

Mδθ = �[�diag(I) + diag(D)]δθ , (5)

where � ∈ C are the Lyapunov exponents of the dynamics
governed by Eq. (4), and diag(I) and diag(D) are diagonal
matrices, such that diag(I)ii = Ii and diag(D)ii = Di . Finally,
M is the stability matrix defined by Mij = Ki,j cos θj,i if
i and j are connected, Mii = −∑

l∼i Mi,l , and is zero
otherwise [12,23]. The stationary solution is linearly stable
if the largest nonzero Lyapunov exponent is negative and is
unstable otherwise. We next show that the system is stable if
M is negative semidefinite and that the loss of stability occurs
when the largest nonzero eigenvalue of M becomes positive.
This justifies our use of the spectrum of M as a measure of
stability, keeping in mind that time scales, e.g., for restoring
synchrony, may depend on Ii and Di .

In the case of homogeneous inertia Ii ≡ I and damping co-
efficients Di ≡ D, Eq. (5) is diagonalized by the eigenvectors
of M , and the Lyapunov exponents are simply given by

�±
a = −β

2
± 1

2

√
β2 + 4λaI−1 , (6)

where β = D/I and λa is one of the eigenvalues of the stability
matrix M . In the inhomogeneous case, projecting Eq. (5) onto
δθ gives

0 = �2a + �b − c , (7)
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where we introduced the shorthand notation for the overlaps
a = δθdiag(I)δθ , b = δθdiag(D)δθ , and c = δθMδθ , with
coefficients a,b � 0 since inertia and damping coefficients
are positive quantities (i.e., Di,Ii � 0 ∀ i). The Lyapunov
exponents then take the form

�± = 1

2a
(−b ±

√
b2 + 4ac). (8)

In both Eqs. (6) and (8), Re[�−] is always negative, and
stability depends on the sign of Re[�+].

In the homogenous case, Eq. (6) makes it clear that linear
stability is determined uniquely by the spectrum of M: Re[�+

a ]
and λa become positive simultaneously. Since M is real and
symmetric, all λa are real. Thus, the necessary condition for
the system to be stable is that all λa are negative. Furthermore,
Re[�+

a ] is negative and decreasing as λa decreases in the
interval 0 > λa > −Iβ2/4, while Re[�+

a ] saturates at −β/2
when λa is decreased further. Thus, not too far from loss of
stability, the spectrum of M is as good a measure of the increase
or decrease of stability as the true Lyapunov spectrum.

We extend the approach of Ref. [26], which deals with
inhomogeneous damping but identical inertia, to the case of
inhomogeneous inertia and damping. When M is negative
semidefinite, the coefficient c in Eq. (8) is negative. Thus,
given that a � 0, Re[�+] is negative, and the solution is
linearly stable. Furthermore, the cancellation of the Lyapunov
exponent occurs only when c vanishes. For this to take place,
δθ must be proportional to one of the eigenvectors of M

associated with a zero eigenvalue. This shows that a stationary
solution of the dynamic system (4) is linearly stable as long
as M is negative semidefinite and the loss of stability occurs
when the largest nonzero eigenvalue of M vanishes.

We therefore take from now on the spectrum of M as a
measure for increased (λa decreases) or decreased stability
(λa increases). Because inertia does not influence the stationary
state, taking this latter criterion allows us to make more general
statements regarding stability; however, one needs to keep in
mind that Ii and Di may, in principle, affect stability in a
nontrivial way. We defer investigations of this issue to future
work.

Having discussed the role of the spectrum of the stability
matrix on the Lyapunov exponents, we next investigate how

stability is affected as a line is added to an initially stable
network.

V. LINEAR STABILITY FOR THE CHAIN MODEL

In the case of the chain model prior to line addition, M is a
(N + 1) × (N + 1) tridiagonal, symmetric matrix.

M = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1,0 −C1,0 0 . . . 0

−C1,0 C1,0 + C2,1 −C2,1 0
...

0
. . .

. . .
. . . 0

... 0
. . .

. . . −CN,N−1

0 . . . 0 −CN,N−1 CN,N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(9)
where Cj,i ≡ Kj,i cos θj,i . Since θi+1,i ∈ [−π/2,0], M is diag-
onally dominant [37] with only negative diagonal elements and
positive subdiagonal elements. It thus belongs to the family of
Jacobi matrices [38]; in particular M has distinct eigenvalues.
By Gershgorin circle theorem [39], it is negative semidefinite.
Furthermore, u(1) = (1, . . . ,1) is the eigenvector associated
with the eigenvalue which vanishes by rotational invariance.
We order the eigenvalues of M as λ1 = 0 > λ2 > · · · > λN+1.
The seminegativity of the stability matrix indicates that the
power flow solution of the original network topology is stable
against small perturbations. Since the largest eigenvalue λ1

vanishes, stability is determined by λ2. Next, we therefore
calculate the leading order correction to λ2 resulting from the
line addition.

The stability matrix M̃ after the new line has been added has
a very similar structure to M except that, first, the angles enter-
ing in M̃ are θ̃i and, second, the new line modifies the following
matrix elements: M̃1,1 = −C̃1,0 − C̃d,0, M̃d+1,1 = M̃1,d+1 =
C̃d,0 and M̃d+1,d+1 = −C̃d−1,d − C̃d+1,d − C̃d,0, where C̃j,i ≡
Kij cos θ̃j,i and Kd,0 = K0,d = δ. Using Eq. (3), we express
M̃ as M̃ = M + 
M + O[(δ/K)2], where 
M is the leading
order correction to the stability matrix,


M = δ sin θd,0

(

M(d+1)×(d+1) 0(d+1)×(N−d)

0(N−d)×(d+1) 0(N−d)×(N−d)

)
, (10)

with 
M defined as

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−CTd,0 − T1,0 T1,0 0 . . . CTd,0

T1,0 −T1,0 − T2,1 T2,1 0
...

0
. . .

. . .
. . . 0

... 0
. . .

. . . Td,d−1

CTd,0 . . . 0 Td,d−1 −CTd,0 − Td,d−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

where we introduced the notations Ti+1,i ≡ tan θi+1,i and
CTd,0 ≡ cot θd,0.

Let u(2) ∈ RN+1 be defined by Mu(2) = λ2u(2). Then, the
leading order correction to λ2 is given by 
λ2 = u(2)�
Mu(2).
If the sign of 
λ2 is negative (positive), then, to first order
in δ, the stability of the power flow solution is enhanced

(reduced). Below we discuss how sgn(
λ2) changes as a
function of the position d of the additional connection. To
achieve this, we distinguish the two cases tan θd,0 � 0 and
tan θd,0 � 0.

When tan θd,0 � 0, the matrix 
M is diagonal domi-
nant [37] (since θi+1,i ∈ [−π/2,0], we have tan θi+1,i � 0)
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with a strictly positive diagonal. Hence, 
M (10) is either
semipositive or seminegative definite depending exclusively
on the sign of sin θd,0. In both cases the sign of 
λ2 =
u(2)�
Mu(2) is well defined regardless of u(2), and we have


λ2 � 0 for θd,0 ∈ [π/2,π ] ⇒ reduced stability,

(12)

λ2 � 0 for θd,0 ∈ [−π/2,0] ⇒ enhanced stability.

When tan θd,0 � 0, 
M is no longer diagonal dominant,
and it is not possible to determine the sign of 
λ2 as directly
as before. Instead, we use u(2) = (u(2)

0 , . . . ,u
(2)
N ) to compute

u(2)�
Mu(2) explicitly,


λ2 = −δ cos θd,0

[(
u

(2)
0 − u

(2)
d

)2

+ tan θd,0

d−1∑
i=0

(
u

(2)
i − u

(2)
i+1

)2
tan θi+1,i

]
. (13)

The one dimensional nature of the model allows us to express
the difference u

(2)
0 − u

(2)
d as the telescopic sum

∑d−1
i=0 (u(2)

i −
u

(2)
i+1) = u

(2)
0 − u

(2)
d . Using this identity, we rewrite the term

(u(2)
0 − u

(2)
d )2 entering Eq. (13) as[

d−1∑
i=0

(
u

(2)
i − u

(2)
i+1

)]2

=
d−1∑
i=0

(
u

(2)
i − u

(2)
i+1

)2

+ 2
d−1∑
i=0

∑
j>i

(
u

(2)
i − u

(2)
i+1

)(
u

(2)
j − u

(2)
j+1

)
. (14)

Substituting Eq. (14) in Eq. (13) finally yields


λ2 = −δ cos θd,0

⎡
⎣2

d−1∑
i=0

∑
j>i

(
u

(2)
i − u

(2)
i+1

)(
u

(2)
j − u

(2)
j+1

)

+ tan θd,0

d−1∑
i=0

(
u

(2)
i − u

(2)
i+1

)2
(tan θi+1,i + cot θd,0)

]
.

(15)

Because M is a Jacobi matrix, it can be shown (see
Appendix A) that the components of its eigenvector u(2) are
monotonously ordered. Thus, (u(2)

i − u
(2)
i+1)(u(2)

j − u
(2)
j+1) � 0,

and the first term in Eq. (15) is positive. Furthermore, for
tan θd,0 � 0, it is possible to establish a sufficient condition
on θd,0 according to which the sign of 
λ2 is known. Since
all θi+1,i belong to [−π/2,0] and given the monotonicity
of the tangent function over this interval, if (tan θmin +
cot θd,0) � 0, where θmin = mini∈{0,...,d−1}θi+1,i , then we also
have (tan θi+1,i + cot θd,0) � 0 for i ∈ {0,1, . . . ,d − 1}. When
this is the case, we conclude that 
λ2 ∝ − cos θd,0. Thus, when
tan θd,0 � 0, the sign of 
λ2 is directly given by −sgn(cos θd,0)
if tan θd,0 � − cot θmin. Inspecting Eq. (2), one sees that θmin is
realized on the most loaded line prior to the network upgrade,
that is, on the line having the largest ratio of transmitted

FIG. 2. Impact of perturbative line addition on the linear stability
of the power flow solution (green region, enhanced stability; yellow
region, reduced stability) and on the load of the transmission lines
(top quadrants, increased load; bottom quadrants, decreased loads) as
a function of the value of θd,0.

power over available capacity. Let 〈q + 1,q〉 denote the line
minimizing mini∈{0,...,d−1}θi+1,i (i.e., the line where P �

i /Ki+1,i

is maximal); then the condition tan θd,0 � − cot θmin can be
rewritten as

tan θd,0 �
√

K2
q+1,q − P �

q
2
/
P �

q . (16)

This defines a critical angle α ≡
arctan[

√
K2

q+1,q − P �
q

2/P �
q ] ∈ [0,π/2], such that


λ2 � 0 for θd,0 ∈ [0,α] ⇒ enhanced stability,

(17)

λ2 � 0 for θd,0 ∈ [−π, − π + α] ⇒ reduced stability.

The size of the region [α,π/2]
⋃

[−π + α, − π/2], where
the evolution of the stability remains undetermined, vanishes
as P �

q /Kq+1,q when P �
q /Kq+1,q → 0 since in this limit α ≈

π/2 − P �
q /Kq+1,q .

These results are summarized in Fig. 2. When the angle
difference between the newly connected nodes satisfies θd,0 ∈
[−π/2,0], the additional line reduces the load on the most
loaded line in the loop (i.e., line 〈q + 1,q〉), and the stability
of the power flow solution is enhanced. This is what one
generally expects of line addition. Line addition can, however,
worsen the operating conditions of the network, and our theory
highlights three different Braess scenarios for how this may
happen: by increasing the load, by reducing |λ2|, or both. The
worst case scenario occurs when θd,0 ∈ [π/2,π ]. Then, the ad-
ditional line increases the power load on the most loaded line,
and the stability of the new solution is decreased. Paradoxical
situations occur when θd,0 ∈ [0,α] (θd,0 ∈ [−π, − π + α]) as
the load on the most loaded line increases (decreases) while the
linear stability is enhanced (decreased). These three outcomes
are three different manifestations of Braess’s paradox in
electric power transmission. We note that the chain model
results also apply to the case of line addition in radial (treelike)
networks as long as the new line connects two nodes on the
same branch.

VI. EXTENSION TO COMPLEX NETWORKS

To show how the mechanisms described above can lead to
the loss of synchrony in more complex networks, we consider
the electric power transmission grid discussed in Refs. [15,16].
It has the same topology as the UK transmission network, and
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FIG. 3. Left: UK transmission grid, 10 generators with power
P = 11 (squares), 110 loads with P = −1 (circles), and uniform
line capacity K ≡ 13. Power flows are represented by arrows, and
their magnitude is color coded. The dashed lines (a)–(c) represent
three different line additions considered, and the solid line denotes
the network partition into northern and southern zones. Right: Plot
of the difference in power flows between the solutions after and before
the addition of line (a) of capacity δ = 1.5. Arrow heads are drawn
only for power flow differences larger than 0.01.

we take the same distribution of loads, generators, and line
capacities as in Ref. [15]. The general structure of the grid
is that of a northern importing zone connected to a southern
exporting zone via only two lines which are almost at full
capacity (see Fig. 3, left panel). It is obviously desirable to
relieve these lines by adding another south-north transmission
line.

The situation is in a way similar to our simple model, where
the south plays the role of the generator and the north that of
the loads. This is, however, only an analogy since the elongated
UK grid is a meshed network and not a one dimensional model
as considered above. In the case of a generic network, Eq. (15)
becomes


λ2 = δ sin θα,β

⎡
⎣∑

〈i,j〉
fij

(
u

(2)
i − u

(2)
j

)2

− (
u(2)

α − u
(2)
β

)2
cot θα,β

⎤
⎦ , (18)

with fi,j = Ki,j sin θi,j

∑
l�2 (u(l)

i − u
(l)
j )(u(l)

α − u
(l)
β )λ−1

l and
where α and β are the nodes connected by the new line, 〈i,j 〉
indicates the sum over all pairs of connected neighbors in
the original network, and u(l) is the lth eigenvector of the
stability matrix (see Appendix B). After the upgrade, the
power flowing through the line connecting nodes i and j

becomes Pi,j = Ki,j sin θi,j + δ sin θα,βfi,j cot θi,j . Following
our work, a similar expression for the change in power flows
resulting from the variation of the capacity of one line was
used in Ref. [40] to investigate the effect of line failures.

In what follows we present examples of additions of new
lines between the north and the south. Each illustrates the real-
ization of one of the electric Braess paradoxes discussed above.

(a)

(b)

(c)

FIG. 4. Lyapunov exponent (dashed) and power flowing through
the lines connecting the north and south areas as a function of the
capacity of the additional line δ. Each of the panels refers to one
of the line additions represented in Fig. 3 (labels correspond to
the labels of the additional lines in Fig. 3) and illustrates one of
the three Braess scenarios identified in this work. Interestingly, (c)
shows the coexistence of two different stable solutions for δ � 5.98.

We first add dashed line (a) in Fig. 3 between two nodes with
the angle difference θNorth − θSouth ≡ θN,S ≈ 0.9π ∈ [π/2,π ].
For this choice, Fig. 2 predicts counterintuitively that power
will flow from the north to the south through the new
connection. This is numerically verified in Fig. 3 (right panel),
which shows that adding the new line increases even further
the load on the two original lines connecting the two zones:
the power flow in the new line goes in the wrong direction. The
effect is quantified in Fig. 4(a) as a function of the capacity
of the new line. Both the loads on the original connection
lines and the Lyapunov exponent λ2 increase as a function
of δ. Going beyond the validity of our perturbative approach,
synchrony is lost in the interval δ ∈ [2.1,5.2] [the gray region
in Fig. 4(a)] and is recovered at larger values of δ, where the
stable operating state strongly differs from the unperturbed
one. Synchrony is lost for δ ↗ 2.1 and δ ↘ 5.2 as the power
flow solutions become unstable (λ2 → 0), similar to results
reported in Ref. [26].

The added line labeled (b) in Fig. 3 is chosen to connect
two nodes such that θN,S ≈ −0.9π ∈ [−π, − π/2]. As can be
seen in Fig. 4(b), power is flowing from the south to the north
along this new line. Despite the associated reduction of the
power flow on the two original lines, the Lyapunov exponent
increases, as predicted in Fig. 2. For larger added capacity,
however, λ2 reaches a maximum, then starts to decrease, and
synchrony is never lost. This observation can be understood
qualitatively in terms of our simple model: as the capacity of
the new connection increases, the difference θN,S , originally
in the third quadrant, increases until eventually it reaches the
fourth trigonometric quadrant for which the correction to λ2 is
expected to become negative.

We finally add line (c) in Fig. 3 between two nodes with
θN,S ≈ 0.3π . This time power flows through the new line from
the north to the south. The loads on the original connections
between the two zones, which were already close to saturation,

032222-5



TOMMASO COLETTA AND PHILIPPE JACQUOD PHYSICAL REVIEW E 93, 032222 (2016)

FIG. 5. Lyapunov exponent (dashed) and power flowing though
the lines connecting the north and south areas as a function of
the capacity of the additional line δ for the UK transmission grid
in the case of line capacities uniformly distributed in the interval
[9.75,16.25]. Each panel refers to one of the line additions represented
in Fig. 3 and illustrates one of the three Braess scenarios identified in
this work.

increase further. Quite interestingly, the linear stability of the
solution is improved, 
λ2 � 0, despite this load increase. The
solution followed as δ is increased from zero remains linearly
stable in the whole capacity range investigated δ ∈ [0,13].
When the capacity of the additional line reaches 5.98 units
of power, the numerical simulations also converge to another
stable solution of the power flow equations [see Fig. 4(c)]. The
behavior of λ2 indicates that the new, large-δ solution becomes
unstable (λ2 = 0) when δ ↘ 5.98. The regime δ � 5.98 is
an example of the coexistence of multiple stable power flow
solutions [31,41–44].

To assess the robustness of the perturbation theory results
we repeat the numerical simulations for the UK transmission
grid including line capacity variations of ±25% with respect
to the uniform case, K ≡ 13, presented above. We take line
capacities uniformly distributed in the interval [9.75,16.25],
keeping the most loaded line crossing the north-south border
at K = 13, and consider the same network upgrades discussed
earlier. The numerical results presented in Fig. 5 are very
similar to those of Fig. 4, indicating that the three different
Braess scenarios identified for the uniform line capacity case
are robust with respect to the significant capacity variations
considered.

VII. CONCLUSION

We classified the impact of a line addition in an ac power
grid into four possible scenarios depending on the change in
linear stability of the synchronous solution and on the change
in power load on the lines. For the chain model, we showed
that the effect of such network upgrades depends uniquely on
the voltage angle difference between the nodes connected by
the new line. This classification is summarized in Fig. 2, and
we showed that it can be extended to meshed networks with the

topology of transmission grids. In this case it is, however, less
straightforward to predict from the unperturbed operational
state which of the four scenarios will be realized.

We think that our theory has significantly deepened our
understanding of the Braess paradox in electric power systems.
More generally, it is based on rather generic models, which
suggests that Braess paradoxes, in the form of weaker stability
of the synchronous state after coupling addition, are ubiquitous
in systems of coupled oscillators. Future works should attempt
to extend this theory to the nonperturbative regime of large
line capacity and include dissipation effects, which become
important as voltage angle differences become large.
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APPENDIX A: JACOBI MATRICES

1. Properties of Jacobi matrices

In this section we list some of the properties of the
eigenvalues and eigenvectors of Jacobi matrices. For further
details and proofs of these results see Ref. [38]. Consider the
following positive semidefinite, symmetric, tridiagonal matrix
with strictly negative subdiagonals:

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 −b1 0 . . . 0

−b1 a2 −b2 0
...

0
. . .

. . .
. . . 0

...
. . .

. . . −bn−1

0 . . . 0 −bn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, bi > 0 .

(A1)

Such matrices are also known as Jacobi matrices and have the
property that their eigenvalues are distinct [38]. Furthermore,
the principal minors of J (the kth principal minor J is the trun-
cated version of J consisting of Ji,j with i,j = 1, . . . ,k � n)
satisfy the following recurrence relation:

Dk+1(λ) = (ak+1 − λ)Dk(λ) − b2
kDk−1(λ) , (A2)

where Dk(λ) is the characteristic polynomial of the kth
principal minor of J [D0(λ) = 1 and D1(λ) = a1 − λ]. In
particular Dn(λ) is the characteristic polynomial of J which
vanishes when λ is equal to one of the eigenvalues λ1 < λ2 <

· · · < λn of J . It can be shown [38] that the sequence

{Dn−1(λ),Dn−2(λ), . . . ,D1(λ),D0(λ)} (A3)

contains j − 1 sign changes when evaluated at the j th
eigenvalue λ = λj .

If u(j ) = (u(j )
1 , . . . ,u

(j )
n ) is the eigenvector of J associated

with λj , it is straightforward to show that the coefficients of
u(j ) satisfy a recurrence relation which is similar to that of
Eq. (A2),

Ju(j ) = λj u(j ) ,

⇔ −bk−1u
(j )
k−1 + aku

(j )
k − bku

(j )
k+1 = λju

(j )
k , (A4)

⇔ bku
(j )
k+1 = (ak − λj )u(j )

k − bk−1u
(j )
k−1
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for k ∈ {1, . . . ,n} and u
(j )
0 = u

(j )
n+1 = 0. In fact one obtains

that (A4) is fulfilled by

u
(j )
k ∝ Dk−1(λj )

b1 · · · bk−1
. (A5)

Hence, given the sign property of the sequence {D(λj )}, it is
clear that the components of the eigenvector u(j ) will have
j − 1 sign changes.

We mention a last property [38] of the eigenvectors
of J which is useful for our electrical model. Given two
eigenvectors u(j ) and u(i), we have

− bk−1u
(j )
k−1 + aku

(j )
k − bku

(j )
k+1 = λju

(j )
k ,

(A6)
−bk−1u

(i)
k−1 + aku

(i)
k − bku

(i)
k+1 = λiu

(i)
k .

Eliminating ak , one obtains

bk

(
u

(i)
k u

(j )
k+1 − u

(i)
k+1u

(j )
k

) + bk−1
(
u

(i)
k u

(j )
k−1 − u

(i)
k−1u

(j )
k

)
= (λi − λj )u(j )

k u
(i)
k , (A7)

which summed over k = 1,2, . . . ,l gives

bl

(
u

(i)
l u

(j )
l+1 − u

(i)
l+1u

(j )
l

) = (λi − λj )
l∑

k=1

u
(j )
k u

(i)
k . (A8)

2. Connection to the chain model

The matrix −M constructed for our chain model prior to
the line addition is a Jacobi matrix with the additional property
that since ai = bi + bi−1, its first eigenvalue λ1 is equal to
zero and the corresponding eigenvector is u(1) = (1, . . . ,1).
Thus, applying Eq. (A8) to −M with j = 1 and i = 2 yields
a relation between any two consecutive components of u(2),

(
u

(2)
l − u

(2)
l+1

) = λ2

bl

l∑
k=1

u
(2)
k . (A9)

Additionally, according to the properties of Jacobi matrices,
there will be only one sign change in the list of the coefficients
of u(2), which therefore will have the form (±, . . . , ± , ∓
, . . . ,∓). Last, the orthogonality relation between u(1) and u(2)

implies that

u(1)�u(2) = 0 ⇔
n∑

k=1

u
(2)
k = 0 . (A10)

Using Eq. (A10) and the sign properties of the coefficients of
u(2) suffices to show that Eq. (A9) leads to the conclusion that
the components of u(2) are monotonously ordered (i.e., for any
i > j we either have u

(2)
i � u

(2)
j or u

(2)
i � u

(2)
j ).

APPENDIX B: PERTURBATION THEORY
FOR A GENERIC GRAPH

In this section we extend the calculation of the leading order
correction to the Lyapunov exponent λ2 resulting from the
addition of a new line to the case of a generic electric network.
Given a generic network of N nodes and lines of capacity Ki,j ,
let {θi} and {θ̃i} respectively denote the solutions of the power
flow equation (1) before and after the addition of a line of
capacity δ � Ki,j between nodes α and β. Assuming the θ̃i

are small deviations of the unperturbed solution (θ̃i ≈ θi + δθi ,
with |δθi | � 1), we expand the power flow equations to leading
order in δ,

0 =
∑
l∼i

Kl,i cos(θl − θi)(δθl − δθi) i 	= α,β ,

0 =
∑

l∼α, l 	=β

Kl,α cos(θl − θα)(δθl − δθα)

+ δ sin(θβ − θα) i = α ,

0 =
∑

l∼β, l 	=α

Kl,β cos(θl − θβ)(δθl − δθβ)

+ δ sin(θα − θβ) i = β . (B1)

Equations (B1) can be rewritten using the stability matrix M

[defined below Eq. (5)] of the system prior to the line addition,

Mδθδθδθ = δ sin θα,βvvv , (B2)

where δθδθδθ = (δθ1, . . . ,δθN ) and vvv is the N dimensional vector
whose ith component is equal to vi = δi,α − δi,β .

M , being a real symmetric matrix, is diagonalized by an
orthogonal matrix T whose lth column is the lth eigenvector
u(l) of M . Furthermore, the U (1) symmetry of the power
flow equations implies that one of the eigenvalues of M is
null [λ1 = 0 associated with u(1) = (1, . . . ,1)/

√
N ]. Since M

is singular, it cannot be inverted. However, Eq. (B2) can be
solved for δθi by using the Moore-Penrose pseudoinverse of
M defined as

M−1 = T

⎛
⎜⎜⎜⎝

0
λ−1

2
. . .

λ−1
N

⎞
⎟⎟⎟⎠T � , (B3)

where T = (u(1), . . . ,u(N)) and λl are the eigenvalues of M .
M−1 is such that M−1M = M−1M = 1 − (1/N )u(1)u(1)�,
where u(1)u(1)� is equal to the N × N matrix having ones
for all its entries. Multiplying (B2) by M−1 yields⎛

⎜⎝
δθ1

...
δθN

⎞
⎟⎠ − 1

N

⎛
⎜⎝

∑
l δθl

...∑
l δθl

⎞
⎟⎠

= δ sin θα,β

⎛
⎜⎝

M−1
1,α − M−1

1,β

...
M−1

N,α − M−1
N,β

⎞
⎟⎠ . (B4)

The difference in δθi between any two nodes is given by

δθi − δθj ≡ εi,j = δ sin θα,β

[(
M−1

i,α − M−1
i,β

)
− (

M−1
j,α − M−1

j,β

)]
, (B5)

where the term
∑

l δθl drops due to the global rotational
invariance of the power flow solution. Finally, Eq. (B5) can
be expressed in terms of the eigenvectors of M making use
of (B3). This yields

εi,j = δ sin θα,β

∑
l�2

(
u

(l)
i − u

(l)
j

)(
u(l)

α − u
(l)
β

)
λ−1

l (B6)
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for any node i connected to node j . Having established the
correction to the power flow solution (B6), we can straightfor-
wardly compute the leading correction to the stability matrix


M and obtain the correction of the Lyapunov exponent

λ2 = u(2)�
Mu(2). The final expression for 
λ2 in the case
of a generic network is presented in Eq. (18).
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