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We study the dynamics of self-trapping in Bose-Einstein condensates (BECs) loaded in deep optical lattices
with Gaussian initial conditions, when the dynamics is well described by the discrete nonlinear Schrödinger
equation (DNLSE). In the literature an approximate dynamical phase diagram based on a variational approach was
introduced to distinguish different dynamical regimes: diffusion, self-trapping, and moving breathers. However,
we find that the actual DNLSE dynamics shows a completely different diagram than the variational prediction. We
calculate numerically a detailed dynamical phase diagram accurately describing the different dynamical regimes.
It exhibits a complex structure that can readily be tested in current experiments in BECs in optical lattices and in
optical waveguide arrays. Moreover, we derive an explicit theoretical estimate for the transition to self-trapping
in excellent agreement with our numerical findings, which may be a valuable guide as well for future studies on
a quantum dynamical phase diagram based on the Bose-Hubbard Hamiltonian.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) trapped in periodic
optical potentials have proven to be an invaluable tool to
study fundamental and applied aspects of quantum optics,
quantum computing, and solid state physics [1–5]. In the
limit of large atom numbers per well, the dynamics can be
well described by a mean-field approximation that leads to a
lattice version of the Gross-Pitaevskii equation, the discrete
nonlinear Schrödinger equation (DNLSE) [5,6]. One of the
most intriguing features of the dynamics of nonlinear lattices
is that excitations can spontaneously localize stably even for
repulsive nonlinearities. This phenomenon of discrete self-
trapping, also referred to as the formation of discrete breathers
(DBs), is a milestone discovery in nonlinear science that
has sparked many studies (for reviews see [7–9]). Discrete
breathers have been observed experimentally in various phys-
ical systems such as arrays of nonlinear waveguides [10,11]
and Josephson junctions [12,13], spins in antiferromagnetic
solids [14,15], and BECs in optical lattices [16]. Self-trapping
has also been shown to exist in the dynamics of the Bose-
Hubbard Hamiltonian [17] and in calculations beyond the
Bose-Hubbard model, which include higher-lying states in the
individual wells [18,19].

Under which conditions will a Gaussian distributed initial
condition in an optical lattice become diffusive, self-trapped, or
a moving breather after sufficient propagation time? This ques-
tion was addressed in a seminal work [20] that has become a
standard reference in both experimental and theoretical studies
involving self-trapping in optical lattices including BECs and
optical waveguide arrays in the past decade [5,16,21–35]. By
means of a variational approach that approximates the DNLSE
dynamics, it was shown that the dynamical phase diagram
is divided in in different regimes (diffusion, self-trapping,
and moving breathers) [20]. The dynamical phase diagram
distinguishes between qualitatively different steady-state so-
lutions. However, a recent study [36] indicated that numerical
simulations based on the DNLSE show strong deviations from
the variational dynamics. Moreover, as we show in Fig. 2(a),
the actual parameter regions in which the different dynamical

phases can be observed are completely different from those
predicted in Ref. [20]. Therefore, an alternative theory of the
self-trapping of Gaussian wave packets is needed that can
predict the dynamical regimes.

Here we study Gaussian wave packets of BECs in deep op-
tical lattices in the mean-field limit (described by the DNLSE).
We present both analytically and numerically a detailed and
accurate dynamical phase diagram that separates the different
dynamical regimes (diffusion, self-trapping, moving breathers,
and multibreathers).

Although our focus is on BECs in optical lattices, where our
dynamical phase diagram can be readily probed with single-
site addressability [5,23,37], our results apply as well to other
systems described by the DNLSE including optical waveguide
arrays [21,38]. Our results may as well be a valuable guide for
studies that aim to understand the deviations of the correlated
self-trapping dynamics as described by the Bose-Hubbard
Hamiltonian from the mean-field dynamics. Examples of such
deviations have been observed both experimentally [32] and
theoretically [17].

II. MODEL

In the limit of large atom numbers per well, the dynamics
of dilute Bose-Einstein condensates trapped in deep optical
potentials are well described by the mean-field Bose-Hubbard
Hamiltonian [6,39,40]

H =
M∑

n=1

U |ψn|4 + μn|ψn|2 − T

2

M−1∑
n=1

ψ∗
nψn+1 + c.c., (1)

where M is the lattice size, |ψn(t)|2 is the norm (number of
atoms at site n), U denotes the on-site interaction (between
two atoms at a single lattice site), μn is the on-site chemical
potential, and T is the strength of the tunnel coupling
between adjacent sites. We use wave functions normalized
to the total number of atoms, i.e.,

∑M
n=1 |ψn(t)|2 = 1. The

corresponding dynamical equation is the DNLSE, which reads
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FIG. 1. Examples of the different dynamical regimes and com-
parison with the variational approach [20]. The density plots show the
evolution of the norms |ψn|2 of initially Gaussian wave packets (3).
The insets on the left show the time traces of the maximum local
norm N [Eq. (6)]. (a) Strongly diffusive regime. In contrast, the
variational approach predicts self-trapping. The parameters are α0 =
1, cos(p0) = 0.88, and λ = 2.5. (b) Moving breather regime. The
variational approach predicts diffusion. The parameters are α0 = 1,
cos(p0) = 0.88, and λ = 1.5. (c) The DB solution for the parameters
α0 = 1, cos(p0) = −1, and λ = 3. (d) Breather of higher order with
asymmetric shape for the parameters α0 = 4, cos(p0) = −0.6, and
λ = 8.9. It corresponds to a drop in Hthrs. The examples are indicated
by (a) �, (b) ©, (c) ♦ (in Fig. 2), and (d) ∗ (in Fig. 6).

in its dimensionless form

i
∂ψn

∂t
= (λ|ψn|2 + εn)ψn − 1

2
[ψn−1 + ψn+1] (2)

for n = 1, . . . ,M , λ = 2U/T , and εn = μn/T . In the nu-
merics we present we use periodic boundary conditions
(ψn+1 = ψ1), however, we checked that our results hold
equally for closed boundary conditions. The DNLSE describes
a high-dimensional chaotic dynamical system. Its dynamics,
however, is in general far from being ergodic and shows,
for example, localization in the form of stationary DBs
(localized excitations pinned to the lattice) and so-called
moving breathers traversing the lattice [7] (see Fig. 1).

The different characteristic types of dynamics are exem-
plified in Fig. 1: An initial condition that rapidly disperses,
i.e., shows diffusive behavior, can be seen in Fig. 1(a).
Moving breathers are strictly speaking not supported by the
DNLSE [41]; they radiate from the norm and will eventually
be pinned to the lattice or diffusively spread. However, as in
Fig. 1(b), these losses of norm can become infinitesimally
small so that these solutions remain traveling for extremely
long times and can therefore be regarded as actual moving

breather solutions for practical use. Finally, an example of a
stationary DB emerging from a Gaussian initial condition is
shown in Fig. 1(c).

Exact DB solutions were calculated analytically in
Refs. [7,42] for a system of three sites (trimer). For larger
lattices the DB solutions can be calculated numerically using
the anticontinuous method [7,43,44] or a Newton method [45].
Preparation of an experimental system in exact breather states
is usually not feasible in practice. In contrast, Gaussian initial
conditions, for which we derive a dynamical phase diagram,
can be well controlled in experiments on BECs with single-site
addressability [5,23,37].

III. VARIATIONAL APPROACH

In Refs. [20,39] the dynamics of Gaussian wave packets
defined by

ψn,0 ∝ exp

[
− (n − ξ0)2

α0
+ ip0(n− ξ0) + i

δ0

2
(n− ξ0)2

]
(3)

was studied using a variational collective coordinate ap-
proach (a technique very successfully applied in a variety of
fields [46,47]). Here ξ0 and α0 are the center and the width
of the Gaussian distribution and p0 and δ0 their associated
momenta. The variational approach leads to approximate
equations of motion for the conjugate variables (p,ξ ) and
(δ,

√
α) [20,39]. It is important to note that the variational

approach assumes that the excitation is well approximated by a
Gaussian at all times. The effective (approximate) Hamiltonian
is [39]

H = λ

2
√

πα
− cos(p)e−η, (4)

with η = 1
2α

+ αδ2

8 depending on the initial values of the center
ξ0 and width parameter

√
α0 as well as p0 and δ0 their conjugate

momenta.
In Ref. [20] a dynamical phase diagram was derived based

on the variational approach (4). These theoretical predictions,
however, disagree with our numerical simulations of the actual
DNLSE dynamics, because the final dynamical state will in
most cases be highly non-Gaussian. Hence, the variational
approach breaks down, e.g., Fig. 1(a) shows diffusion, while
the variational approach predicts a self-trapped state. In
Fig. 1(b) we find a moving breather while the variational
approach yields diffusive behavior. Moreover, the entire phase
diagram in Fig. 2(b) (top) for the DNLSE is completely
different from the prediction of the variational approach
[shown as dashed and dotted lines in Fig. 2(a)].

IV. NUMERICAL CONSTRUCTION
OF THE PHASE DIAGRAM

In order to construct a dynamical phase diagram based on
the DNLSE, criteria to distinguish the different dynamical
regimes are needed. This separation is nontrivial, as part of
the atom cloud can, e.g., remain trapped in one region while
another part diffuses in the remainder of the lattice. We can
separate the regimes by first defining a local norm and local
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FIG. 2. (a) Construction of the dynamical phase diagram to identify diffusion, self-trapping, and solitons based on two order parameters J
(top) and N (bottom), compared with our analytical estimate (9) (thick black line) for the transition to self-trapping (α0 = 1). The variational
approach [20] (shown here as dashed and dotted lines) fails to predict the different regimes accurately: Above the dashed line all states were
predicted to be self-trapped. In the region (for cos p < 0) between the dashed and dotted lines moving breathers should occur. The remainder
would be the diffusive regime. In fact, we find that the dashed and dotted lines do not at all mark any of the transitions between the different
dynamical regimes. Examples of the dynamics for three points in the phase diagram marked with the symbols �, ©, and ♦ are shown in
Fig. 1. (b) Dynamical phase diagram of Gaussian initial conditions in the DNLSE separating diffusion (white), self-trapping (light gray),
moving breathers (dark gray), and higher-order self-trapping (multibreathers) (black). The black line represents our analytical estimate (9) of
the onset of self-trapping for α0 = 1 (top) and α0 = 4 (bottom) and is in excellent agreement with the numerical data. The other parameters are
M = 1001 and ε = 1.37.

average current

Nloc(x) =
x+a∑

n=x−a

|ψn|2,

jloc(x) = 1

2

∣∣∣∣∣
x+a∑

n=x−a

Im[ψn+1ψ
∗
n − ψ∗

nψn−1]

∣∣∣∣∣, (5)

where the parameter a was chosen to be the smallest integer
larger than or equal to

√
α0. From these quantities we construct

two order parameters by

N =
〈

max
x

[Nloc(x)]

〉
, J = 〈jloc(xmax)〉, (6)

where xmax is the central site at which Nloc(x) assumes its
maximum. Both quantities were evaluated at time τ = 10 000
and averaged over the last 10% of the time.

In the diffusive regime both order parameters are small.
Moving breathers are characterized by large N and large J ,
while in the self-trapping regime one finds large N but nearly
vanishing currentsJ due to the stationarity of the self-trapping
solutions. Figure 2 shows J and N as a function of the initial
phase difference p0 and the nonlinearity λ for α0 = 1 (see the
Appendix 3 for α0 = 4). The examples of Fig. 1 are marked
in Fig. 2 by different symbols to demonstrate how the above
criteria can be used to distinguish the dynamical regimes [a
cut along cos(p0) = 0.88 can be found in the Appendix 1].

We construct the dynamical phase diagram, which assigns
every initial condition to a specific dynamical regime by
defining suitable thresholds for the order parameters N and
J . Figure 2(a) (top) shows remarkably sharp transitions in
the maximum local probability current. We use the thresholds
Jthrs = 0.002 to separate moving breathers from self-trapping
and diffusion and Nthrs to delimit diffusion from self-trapping.
By setting a threshold pT = 10−4 for the probability density
function of N to be observed in a diffusive state (see the
Appendix 2 for details), we find Nthrs = 0.028 for α0 = 1 and
Nthrs = 0.032 for α0 = 4.

With these thresholds we obtain the dynamical phase
diagram shown in Fig. 2(b). Our results are not sensitive
to the exact value of the parameter pT . For comparison
we show a phase diagram obtained with pT = 10−5 in the
Appendix 2, which differs only minimally from Fig. 2(b). To
identify higher-order self-trapped excitations of more complex
structure [see Fig. 1(d)] in our dynamical phase diagram,
we use a third-order parameter, the local energy Hloc(x) =∑x+a

n=x−a
λ
2 |ψn|4 − ∑x+a

n=x−a−1
1
2 (ψ∗

nψn+1 + c.c.) in the vicinity
of xmax measured relative to the fixed point energy HCP (which
will be introduced below), i.e., H(λ) = Hloc(xmax)/HCP(λ,1).
For higher-order self-trapping we found H 	 1 in contrast to
H ≈ 1 for discrete breathers centered around a single site. We
chose Hthrs = 0.8 and marked this regime in black in Fig. 2(b).

V. THEORY

In the following we derive an analytical estimate for the
self-trapping transition separating the different phases in the
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dynamical phase diagram. The exact DB solution forming a
single peak centered at a single lattice site (denoted by CP
for central peak) is a local maximum in the energy and can
be numerically constructed using the methods described in
Refs. [7,43–45]. The CP solutions correspond to elliptic fixed
points in phase space [48], which are separated from moving
and chaotic solutions by saddle points in the energy landscape.
These saddle points correspond to another kind of stationary
solution centered between two lattice sites called central bond
(CB) states. They are unstable [48] and have lower energy
than CP solutions. Due to continuity, the CB solutions are
considered intermediate states for an excitation to hop between
lattice sites.

A necessary condition for self-trapping is HG � HCB,
where HG is the energy of the initial Gaussian function and
HCB is the energy of the CB solution. Since, however, the
self-trapped solution is non-Gaussian, only a fraction n of the
full norm will be self-trapped. We therefore have to consider
the energy HCB of a central-bond state with norm n < 1. To
this aim we note that the energy of an arbitrary state of norm
n compared to the state of the same shape but of unit norm
scales as E(λ,n) = nE(λn,1). Thus HCB reads

HCB(λ,n) = nHCB(λn,1) = 

λ
HCB(,1), (7)

with  = λn. We approximate the energy of the initial
Gaussian by HG = λ

2
√

πα0
− cos(p0)e−η0 , with η0 = 1

2α0
[see

Eq. (4)], which we found agrees very well with the energy H of
the DNLSE Hamiltonian (1), although the dynamics strongly
differs.

We make the following ansatz to estimate the critical
nonlinearity λc at the transition to self-trapping:

HCB(λc,nc) = c

λc

HCB(c,1) = ε

λc

!= HG(λc), (8)

where ε = cHCB(c,1) and c = λcnc. The critical nonlin-
earity at the transition to self-trapping reads

λc(p0) = e−η√πα0 cos p0

+
√

e−2ηπα0 cos2 p0 + 2ε
√

πα0. (9)

Our analytical estimate of the self-trapping transition (9)
is shown in Fig. 2(a) (thick black line) and Fig. 2(b) (thick
red line) and is in excellent agreement with the simulations
of the DNLSE dynamics. By fixing p0 = π we can determine
the constant ε numerically. We find λc(p0) ≈ 1.35 and εnum =
1.375. We choose p0 = π for the estimate since the phase
difference between neighboring sites for an exact solution of a
discrete breather is π . Below we will present an independent
way to obtain ε by calculating c directly.

How can we interpret the rescaled nonlinearity c in
Eq. (8)? The ability of localized excitations to move inside a
lattice can be analyzed using the concept of the Peierls-Nabarro
(PN) energy barrier, which we briefly review: A crucial
condition for a localized excitation to move across the lattice
is that the initial energy is lower than the energy of a CB
solution such that this intermediate state cannot act as a barrier.
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FIG. 3. The onset of a nonzero PN barrier HPN is found at
nonlinearity λPN ≈ 1.3 (for n = 1). The PN barrier HPN is calculated
as the difference between the energies of a CP breather (located
around a single site) and a CB breather (located between two lattice
sites).

Self-trapping, on the other hand, requires the initial energy to
be between the maximum energy state CP and CB, which can
thus act as a barrier in phase space and inhibits migration. This
energy gap HPN between the CP and CB is referred to as the
PN barrier [42,48,49].

We report the PN barrier in Fig. 3. Self-trapping requires
a nonzero PN barrier, which we find for nonlinearities larger
than λPN ≈ 1.3 in Fig. 3. Since the transition to self-trapping
is reflected by the onset of a nonzero PN barrier, we identify
C ≡ λPN. With HCB(λPN,1) ≈ 1.0723 we find ε = 1.37 in
excellent agreement with the numerical value εnum. Note that
only a fraction of the norm of the initial Gaussian will actually
be trapped when a breather is created (and this norm is
smaller the more the phase difference p0 of the Gaussian
function deviates from the phase difference of the breather
fixed point, i.e., p = π ). Our theoretical analysis focuses on
the self-trapped fraction of the norm and thus the existence of a
nonzero PN barrier corresponding to the respective fraction of
the norm n. This of course leaves the background unattended
yet proves to be a valid approximation.

VI. CONCLUSION

We calculated a dynamical phase diagram for the different
dynamical regimes (diffusion, moving breathers, and self-
trapping) of Gaussian initial conditions in periodic optical
potentials. By defining two order parameters, the maximum
local atomic density and the maximum local current, we con-
structed numerically the dynamical phase diagram. We derived
an explicit expression (9) for the nonlinear interaction λc that
separates the dynamical regimes, in very good agreement
with the numerical results. Gaussian initial conditions can
be well controlled in experiments on BECs with single-site
addressability [5,23,37], where our predictions can be readily
tested experimentally. We hope our study further stimulates
experiments and theoretical work on the transition between
self-trapping, diffusion, and solitons in the quantum regime,
e.g., based on the Bose-Hubbard Hamiltonian.
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APPENDIX

1. A cut through the dynamical phase diagram

The dynamical phase diagram of Fig. 2 shows a remarkable
transition from diffusive to moving breather behavior back to
diffusive motion and then to self-trapping for cos(p0) � 0.88.
In Fig. 4 we shows curves of the order parameters as a function
of the nonlinearity λ for cos(p0) = 0.88, illustrating the sharp
features in the order parameters at the transitions between the
different regimes.

2. Definition of the threshold Nthrs

In order to find a suitable upper threshold of the maximal
local norm in the diffusive regime we calculate the cumulative
probability density function (PDF) of N in the diffusive case
where the single-site norms are known to be exponentially
distributed p = Me−Mx [50]. Assuming statistical indepen-
dents in this regime gives the PDF of the maximum single-site
norm as pmax = M2[1 − exp(−Mx)]M−1 exp(−Mx). A DB,
however, is localized over several sites around the maximum.
Therefore, we need to calculate the PDF of the local norm
within a range of a sites on either side of the maximum.
The PDF of the sum of two single-site norms is given by the
convolution of the two PDFs. For r sites with exponentially
distributed norms we can thus calculate the PDF of norms
iteratively by pr = pr−1 ∗ p, where the asterisk denotes
convolution. The PDF of the local norm in the range of 2a

sites around the maximum can consequently be expressed as
pN = p2a ∗ pmax. Let us examine an initial condition that leads
to vanishing current J . We will consider it to be self-trapped
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if its evolution leads to a maximum local norm N that is
sufficiently unlikely to be found in the diffusive state. We
define as the threshold Nthrs the norm for which the PDF
falls below pT = 10−4. We find Nthrs = 0.028 for α0 = 1 and
Nthrs = 0.032 for α0 = 4. However, our results are not
sensitive to the exact value of this parameter pT . Assuming
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trapping regime [Eq. (9)].
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pT = 10−5 yields Nthrs = 0.031 for α0 = 1 and Nthrs = 0.035
for α0 = 4, which result in the dynamical phase diagrams
shown in Fig. 5, which differ only minimally from those of
Fig. 2(b).

3. Order parameters for α = 4

Figure 6 shows the three order parameters J , H, and N
for α = 4, which give rise to the dynamical phase diagram for
α = 4 [see Fig. 2(b) (bottom)].
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