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Localized nonlinear waves on quantized superfluid vortex filaments in the presence of mutual
friction and a driving normal fluid flow
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We demonstrate the existence of localized structures along quantized vortex filaments in superfluid helium
under the quantum form of the local induction approximation (LIA), which includes mutual friction and normal
fluid effects. For small magnitude normal fluid velocities, the dynamics are dissipative under mutual friction.
On the other hand, when normal fluid velocities are sufficiently large, we observe parametric amplification
of the localized disturbances along quantized vortex filaments, akin to the Donnelly-Glaberson instability for
regular Kelvin waves. As the waves amplify they will eventually cause breakdown of the LIA assumption
(and perhaps the vortex filament itself), and we derive a characteristic time for which this breakdown occurs
under our model. More complicated localized waves are shown to occur, and we study these asymptotically and
through numerical simulations. Such solutions still exhibit parametric amplification for large enough normal fluid
velocities, although this amplification may be less uniform than would be seen for more regular filaments such as
those corresponding to helical curves. We find that large rotational velocities or large wave speeds of nonlinear
waves along the filaments will result in more regular and stable structures, while small rotational velocities and
wave speeds will permit far less regular dynamics.
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I. INTRODUCTION

Quantum turbulence is an active area of current research and
spans several related areas as part of the theory of superfluidity
including vortex generation, interaction, and reconnection of
closely spaced vortex lines and phase transition problems
influenced by quantum vortices [1]. Characterized by highly
disordered sets of one-dimensional singularities and defects,
the theory of superfluid turbulence is also perceived to be a
variation of string field theory as it is used in the study of
chaotic motion of objects possessing nonlinear and nonlocal
interactions and reconnections. The stochastic dynamics of
vortex filaments, particularly in quantum fluids, possesses
significant potential to aid in the understanding of superfluid
turbulence, a term coined by Feynman in 1955 [2]. This
describes the appearance of a disordered set of quantised
vortex lines termed vortex tangles in superfluids such as He
II for velocity values above a critical value [3]. What is
interesting to note is that equations such as the Biot-Savart
Law describing the nonlocal dynamics of vortex-line motion
provide valuable information about the properties of vortex
tangles, which in turn form the essence of quantum turbulence.
The complexity of this problem originates from the coupling
of the deterministic motion of the vortex filaments and
random collisions of the vortex loops, which motivates the
reduction of the Biot-Savart model to a simpler local induction
approximation (LIA). In the classical limit (where mutual
friction effects are ignored), the LIA can be mapped into a
cubic nonlinear Schrödinger (NLS) equation.

Unlike in a classical fluid, the motion of a thin vortex
filament in a superfluid such as 4He is modeled taking into
account mutual friction, such as that discussed in the HVBK
model [4–6]. A number of fundamental results were provided
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by Vinen [7–10]. Mutual friction also plays a role in the
dynamics of vortex filaments in 3He [11,12]. The self-induced
motion of a single quantized vortex filament is governed by
the Biot-Savart integral. Nonlocal dynamics under the Biot-
Savart integral are often approximated by the local induction
approximation (LIA), provided that such an approximation is
reasonable for the specific physical scenario being described.
At finite temperatures, a quantized vortex is also influenced by
mutual friction. Replacing the nonlocal term with the LIA and
accounting for mutual friction in the normal and binormal
directions, Schwarz [13] obtained a kind of quantum LIA
(qLIA), which accounts for mutual friction and the interaction
with a normal fluid. This model is given in nondimensional
form by

v = κt × n + αt × (U − κt × n) − α′t × (t×(U − κt × n)).
(1)

Here U is the dimensionless normal fluid velocity, v = rt is the
velocity of the filament, t and n are the unit tangent and unit
normal vectors to the vortex filament, κ is the curvature, and
α and α′ are dimensionless mutual friction coefficients which
are small (except near the λ point; for reference, the λ point
is the temperature (≈2.17 K, at atmospheric pressure) below
which normal fluid helium transitions to superfluid helium
[14]). In the limit (α,α′) → (0,0), we recover the classical Da
Rios equations for the motion of a vortex filament in a classical
fluid [15–17].

The small deformations of vortex lines are referred to as
Kelvin waves [18], which serve as the primary mechanism to
account for the low-temperature decay of superfluid turbulence
in the absence of dissipation through mutual friction. The
appearance of large vortex rings in chaotic quantized vortices
in He II aids in shedding further light on phase transition
problems. The key question “To what extent is the dynamics
of a set of vortex line able to reproduce the properties of
real hydrodynamic turbulence?” [1] can thus be answered by

2470-0045/2016/93(3)/032218(13) 032218-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.032218


REHAN SHAH AND ROBERT A. VAN GORDER PHYSICAL REVIEW E 93, 032218 (2016)

studying the behavior of vortex filaments not in classical fluids,
but in quantum fluids.

A number of studies exist on the solutions to the quantum
LIA given in (1). In the α,α′ → 0 limit, these solutions
should collapse into solutions of the classical LIA. One highly
important class of solutions to the classical LIA would be the
one-soliton solution found by Hasimoto [19], by way of what is
now referred to as the Hasimoto transformation, which puts the
classical LIA into correspondence with the cubic NLS. While
a number of solutions to the quantum LIA have been studied
either numerically or analytically, the Hasimoto one-soliton
has never been extended to the quantum LIA. Recently, the
Hasimoto transformation was extended to the quantum LIA
(1) in the case where α|U| = O(α2) [i.e., |U| = O(α) was
sufficiently small so as to be neglected] in [20]. Defining a
complex scalar function

ψ(s,t) = κ(s,t) exp

(
i

∫ s

0
τ (ŝ,t)dŝ

)
, (2)

where κ(s,t) is the local curvature and τ (s,t) is the local torsion
of the filament, respectively, it was shown that the evolution
equation for ψ(s,t) takes the form

ψ̇ = iA(t)ψ + (i(1 − α′) + α)ψss +
(

(1 − α′) i

2
− α

)

× |ψ2|ψ − α

2
ψ

∫ s

0
{ψ(ŝ,t)ψs(ŝ,t)

∗−ψ(ŝ,t)∗ψs(ŝ,t)}dŝ.

(3)

Equation (3), obtained from the quantum Hasimoto formu-
lation, is a complex coefficient Ginsburg-Landau equation
(GLE) with an extra dissipation term, which for classical fluids
(when α,α′ = 0) reduces to the cubic nonlinear Schrödinger
equation (NLS) [19]. The presence of a standing soliton on
a vortex filament has been demonstrated theoretically by
Hasimoto [19] for classical fluids and by Van Gorder [20]
for quantum fluids under Eq. (3). Experimentally, Hopfinger
and Browand [21] observed solitary waves on vortex filaments
when studying turbulent flow in a rotating container. Such
results are useful in demonstrating the interplay between
solutions of integrable models (such as the cubic NLS
equation) and vortex filament solutions under the LIA.

Equation (2) allowed for a study of Stokes waves, one-
solitons, similarity solutions, and other traveling wave solu-
tions along quantized vortex filaments in superfluid helium
under mutual friction effects [20]. Each of these solutions
generalizes known results for the classical LIA. This map from
the quantum LIA to Eq. (3) is a completely natural general-
ization of the classical LIA to cubic NLS map pioneered by
Hasimoto [19], which in its own right has motivated both
experimental and theoretical work over the past 40 years. As
one example, Hopfinger and Browand [21] studied turbulent
flow in a rotating container, and determined that the theoretical
solutions predicted by Hasimoto [19] do actually occur along
vortex filaments in practical experiments.

Unlike solitons or regular Kelvin waves (which take the
form of pure helical vortex filaments) which maintain a
constant shape over time, it is possible to search for highly
localized waves along quantized vortex filaments in superfluid
helium. Recently, a special class of such solutions were

shown to exist in the very cold limit where α,α′ → 0,
corresponding to the classical limit. In particular, breathers
along quantized vortex filaments [22,23] have been obtained
for the classical LIA valid for very cold temperatures (near
temperatures of 0 K). However, as it is known that the mutual
friction effects and the coupling to the normal fluid flow play
large roles in the structural dynamics of a vortex filament
for the warmer superfluid limit (temperatures above about
1.0 K), it is worthwhile to search for highly localized vortex
filament structures in the presence of these quantum effects.
Obtaining a framework for studying these highly localized
waves along quantized vortex filaments, and then determining
the qualitative influence of mutual friction and normal fluid
velocities on the behavior of said waves, is the goal of this
work.

In Sec. II, we outline the theoretical model which will allow
us to study localized waves along quantized vortex filaments in
superfluid helium. We obtain a new complex scalar equation,
since the existing quantum Hasimoto transformation is of
limited use in the regime where normal fluid effects dominate.
We are able to discuss general properties of the solutions
to this equation, and then relate them back to qualitative
features of the quantized vortex filaments. Once a solution is
known, one may obtain the vortex filament in either Cartesian
coordinates or in terms of curvature and torsion. We elect to do
the former, since it permits direct visualization of the vortex
filament curve. In Sec. III we obtain some asymptotic results
for various vortex filament structures under our formulation.
Then, in Sec. IV, a number of numerical solutions are provided
to demonstrate the variety of structures possible under the
formulation.

In the small normal fluid velocity regime, dissipative mutual
friction effects dominate, as was true in the case for solitary
waves in the very low-temperature regime. However, when
the normal fluid velocity is large enough, we observe a
parametric amplification of the localized perturbations along
the filaments, which was not possible to see in classical
formulations such as [22,23], which neglected mutual friction
and normal fluid coupling, nor in the low-temperature limit
for the quantum case considered in [20], where normal fluid
contributions were taken to be negligibly small [assuming
|U| = O(α)]. This amplification is akin to the Donnelly-
Glaberson instability [24–26] observed in regular Kelvin
waves along quantized vortex filaments. In Sec. V we give
a discussion of the results, as well as routes for future work.

II. COMPLEX SCALAR PDE FROM THE QUANTUM LIA

To account for the case of non-negligible normal fluid
velocity when U is not necessarily small in magnitude, we
refrain from employing the quantum Hasimoto transformation
(3). Instead, we will derive a new formulation for a different
complex scalar function, proceeding like in [27]. The function
will not have the simple interpretation where the amplitude is
the curvature of the filament, and the phase is an integral of the
torsion. However, the formulation will permit large magnitude
normal fluid velocity effects, which one expects will have
a significant influence on the highly localized waves along
quantized vortex filaments.
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Differentiating with respect to the arclength variable s, and
performing several vector manipulations, we have that the
quantum LIA (1) becomes

ṫ = ∂

∂s
{(1 − α′|t|2)t × ts − α[(t · ts)t − |t|2ts]}

+ ∂

∂s
{αt × U − α′t × (t × U)}. (4)

Here we have made use of standard vector calculus identities,
and we have also taken t to be a unit vector. Taking t to be
a unit vector, as is standard, Eq. (4) simplifies slightly to the
equation

ṫ = ∂

∂s
{(1 − α′)t × ts + αts + αt × U − α′(t · U)t}. (5)

By introducing a complex-valued function v(s,t), v : R2 �→
C, the unit tangential vector t can be written as

t =
(

v + v∗

2
,
v − v∗

2i
,
√

1 − |v|2
)

. (6)

It is worth noting that both v+v∗
2 = Re(v) and v−v∗

2i
= Im(v)

are real valued and hence t, as written, is a vector with real

components. Moreover, it is simple to show that |t| = 1; hence
t is always a unit vector. Note that |v| � 1 by assumption.
Placing (6) into (5), we obtain a system

∂

∂t

(
v + v∗

2

)
= rhs1[v,v∗],

∂

∂t

(
v − v∗

2i

)
= rhs2[v,v∗],

∂

∂t
(
√

1 − |v2|) = rhs3[v,v∗], (7)

where the rhsk[v,v∗] is a complicated function of v,v∗ and
their derivatives in s. (These expressions were obtained via
Maple and checked by hand. The explicit forms are omitted
for brevity.) Since the first two equations are related through
complex conjugations, adding the first equation to i times the
second gives

v̇ = ∂

∂t

(
v + v∗

2

)
+ i

∂

∂t

(
v − v∗

2i

)
= rhs1[v,v∗] + i rhs2[v,v∗]. (8)

Substituting the form of the right-hand side, we obtain

v̇ = ∂

∂s

{
i(1 − α′)

vs√
1 − |v|2

+ αvs + i(1 − α′)(v2v∗
s − |v|2vs)

2
√

1 − |v|2
+ α′U3|v|2v√

1 − |v|2

− α′U3v√
1 − |v|2

− iαU3v − (U1 + iU2)

[
α′

2
|v|2 − iα√

1 − |v|2

]
+ α′

2
(iU2 − U1)v2

}
, (9)

where U = (U1,U2,U3). A remark worth making is that
the condition ∂

∂t
(
√

1 − |v|2) = rhs3[v,v∗] was not used in
obtaining this equation. This can be treated as a consistency
condition and should be satisfied by any unit vector solution t.
For instance, the condition holds if we align the filament along
the z coordinate.

It is then assumed that the solution is oriented with the
tangent vector t, so that the coordinate frame is (x,y,z) for
simplicity. It is also assumed that the filament is aligned along
the z axis. As shown by Shivamoggi in [28], the normal fluid
flow along the x or y axis will not have much qualitative
influence on the shape of the filament. Therefore, we can
set the components of the normal fluid velocity orthogonal
to the orientation of the filament, U1 and U2, to zero, while
maintaining the qualitative properties of the filament solutions.
Furthermore, observe that

vs + v2v∗
s − |v|2vs

2
= (1 − |v|2)3/2 ∂

∂s

(
v√

1 − |v|2

)
. (10)

After these simplifications, Eq. (9) becomes

v̇ = ∂

∂s

[
i(1 − α′)(1 − |v|2)

∂

∂s

(
v√

1 − |v|2

)

+αvs − U3(α′√1 − |v|2 + iα)v

]
. (11)

While not at all similar to the equation obtained under the
Hasimoto transformation, we note that this equation should
encode the relevant physics present under that model in the
limit where U3 → 0. Furthermore, once a solution to (11) is
known, the position vector r(s,t) = [x(s,t),y(s,t),z(s,t)] can
be recovered from the function v(s,t), viz.,

r(s,t) =

⎡
⎢⎣
∫ s

0 Re(v(σ,t))dσ + x0(t)∫ s

0 Im(v(σ,t))dσ + y0(t)∫ s

0

√
1 − |v(σ,t)|2dσ + z0(t)

⎤
⎥⎦. (12)

It has been shown in the literature [13,28] that α′ < α � 1
and that α′ does not strongly influence the qualitative behavior
of solutions. Therefore, the α′ terms can be dropped to reduce
the PDE in Eq. (11) to

v̇ = i
∂

∂s

{
(1 − |v|2)

∂

∂s

(
v√

1 − |v|2

)}
+ αvss − iαU3vs.

(13)
Equation (13) and Eq. (11) give qualitatively similar solutions,
and therefore it is sufficient to consider solutions of Eq. (13).
From (13) we see that the time evolution for v involves three
qualitatively distinct terms. The first term in (13) is the LIA in
the classical limit α → 0; hence under the present formulation,
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the representation of the classical LIA is exactly

v̇ = i
∂

∂s

{
(1 − |v|2)

∂

∂s

(
v√

1 − |v|2

)}
. (14)

Since both this and the Hasimoto transformation are equivalent
to the classical LIA, then for each solution to the classical
LIA under the Hasimoto map (i.e., the cubic NLS equation),
there must exist a corresponding solution to (14). The second
term in Eq. (13), αvss , is a diffusion term, which results in
dissipation of the filament in the presence of mutual friction.
The third term in (13), −iαU3vs , holds the influence of the
normal fluid velocity, |U| = U3. This term may amplify waves
along the vortex filament, leading to strong changes in the
filament structure.

Since α � 1, a regular perturbation expansion may be
attempted of the form v(s,t) = v0(s,t) + αv1(s,t) + O(α2).
This was done under the alternate formulation (3) for solitons
and other regular waves in [20]. The O(1) term corresponds to
a solution v0(s,t) for a classical vortex filament, while the
O(α) equation represents the first-order correction. While
the equation giving the first order correction is linear in
v1, it has complicated functional coefficients in terms of s

and t , through the dependence on v0(s,t). Such equations
can be very difficult to work with, which is why we avoid
perturbation on the quantum Hasimoto model in the first
place, for the types of highly localized waves we wish to
study. Hence an alternative approach must be sought out in
order to determine the behavior of solutions to this model of
quantized vortex filament dynamics. Before doing this, the
mathematical properties of Eq. (13) are studied, to get a better
understanding of the general qualitative behavior of solutions.
Then, in Sec. III, we shall obtain approximate solutions to
this equation corresponding to specific localized structures. In
Sec. IV, we obtain numerical solutions for a wider variety of
behaviors.

A. Stability of small perturbations in (11)

This section analyzes the stability of small perturbations
along line filaments governed by Eq. (11). Note that a line
filament will correspond to v(s,t) = 0. It is useful to consider
small-amplitude perturbations of a line filament in the form of
Kelvin waves, so we consider

v(s,t) = β ei(ks−c(t))+r(t), (15)

where |β| � 1, while c(t) and r(t) are real functions to be
determined. Then, neglecting O(β2) terms, Eq. (11) gives

−iċ(t) + ṙ(t) = {−(1 − α′)k2 − U3α
′k}i − α(k2 − U3k),

(16)

which implies, since c(t) and r(t) are real, that c(t) = (1 −
α′)k2t + U3α

′kt and r(t) = −αk(k − U3)t . If U3 < k, which
means the normal fluid velocity is less than the wave number
of the perturbation, then r(t) < 0 for α > 0,k > 0 and the
perturbations are stable. On the other hand, if U3 > k, then the
perturbations grow and the solution is unstable.

Therefore, in the small U3 case, it is expected that solutions
to the PDE will be stable, while for large U3, they will be
unstable. This is essentially the statement of the Donnelly-
Glaberson instability [24–26] for the model (11). Under the

quantum LIA, results like this were shown for regular helical
vortex filaments in [29], while recently such results were
shown under the quantum form of the nonlocal Biot-Savart
dynamics in [30]. What this means is that, for small U3, there
should be no drastic changes in the solutions between the
quantum Hasimoto map and the PDE (11), since both are
essentially the dissipative limit. On the other hand, when U3

is large, the PDE in Eq. (11) should be considered as the
reliable model, since solutions to the quantum Hasimoto map
are no longer representative due to the fact that the model (3)
was derived under the assumption that α|U| = O(α2). Another
point to be noted is that α′ does not qualitatively influence the
structure of these perturbations, which adds further support
to our choice to neglect α′, and to use Eq. (13) in place of
Eq. (11).

B. Influence of the dissipative term

In this section, the influence of the αvss term in Eq. (13)
is considered. It is worthwhile to consider a PDE given in
conservation form as an initial value problem

wt = i
∂

∂s
(J [w]), w(s,0) = W (s), s ∈ R, t > 0. (17)

Here J is a nonlinear differential operator in the spatial
variable, s, with the property (J [w])∗ = J [w∗]. It is useful
to note that the complex conjugate w∗ can be written as
w∗

t = −i ∂
∂s

(J [w∗]). Multiplying Eq. (17) by w∗ and the
complex conjugate of (17) by w and then adding gives

∂

∂t
|w|2 = i

(
w∗ ∂

∂s
(J [w]) − w

∂

∂s
(J [w∗])

)
. (18)

The total wave action (or energy, in some literature) can be
defined by

E(t) =
∫ ∞

−∞
|w(s,t)|2ds. (19)

Then, from Eq. (18), assuming that E(t) is sufficiently
bounded, it can be found that

dE

dt
= i

∫ ∞

−∞

{
w∗ ∂

∂s
(J [w]) − w

∂

∂s
(J [w∗])

}
ds

= i

∫ ∞

−∞
{J [w∗]ws − J [w]w∗

s }ds, (20)

where the last line follows from an integration by parts and also
from the assumption that |w| → 0 as |s| → ∞ and J is finite
such that |J [w]| < ∞ as |w| → 0, all sufficiently rapidly.

Equation (20) gives the change in the wave action over time.
Having dealt with the change in energy for the system (17),
it is then worth considering a related system with a diffusion
term added, that is

ŵt = i
∂

∂s
(J [ŵ]) + αŵss, ŵ(s,0) = W (s), s ∈ R, t>0.

(21)

A remark to make is that the system (21) has the same initial
condition as (17). Let Ê(t) denote the quantity (19) with ŵ

replacing w. Then, provided Ê(t) exists, and using the same
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technique as before,

dÊ

dt
= i

∫ ∞

−∞
{J [ŵ∗]ŵs − J [ŵ]ŵ∗

s }ds

+α

∫ ∞

−∞
{ŵ∗ŵss + ŵŵ∗

ss}ds. (22)

It can be noted that∫ ∞

−∞
{ŵ∗ŵss + ŵŵ∗

ss}ds = −
∫ ∞

−∞
(ŵ∗

s ŵs + ŵsŵ
∗
s )ds

= −2
∫ ∞

−∞
|ŵs |2ds. (23)

Therefore, this results in

dÊ

dt
= i

∫ ∞

−∞
{J [ŵ∗]ŵs − J [ŵ]ŵ∗

s }ds − 2α

∫ ∞

−∞
|ŵs |2ds.

(24)

Since both w(s,0) = W (s) and ŵ(s,0) = W (s), it can be
concluded that w(s,0) = ŵ(s,0), so for small time t > 0, it
makes sense to then write

dÊ

dt
= dE

dt
− 2α

∫ ∞

−∞
|ws |2ds. (25)

For all time t,
∫∞
−∞ |ws |2ds � 0, with equality to zero holding

in the case of a constant solution in space. Then, when α > 0,

dÊ

dt
� dE

dt
, (26)

for small time. Hence it has been shown that the inclusion of
the term αwss in a general PDE of the form in Eq. (21) results
in faster initial decay of the wave action of the solution.

For the PDE in Eq. (13), it can be noted that

J [v] = (1 − |v|2)
∂

∂s

(
v√

1 − |v|2

)
− iαU3v. (27)

Therefore, the same analysis applies to the PDE (13) with
initial condition v(s,0). Thus this means that for the PDE (13),
the αvss term results in more rapid dissipation of the energy
of an initial state v(s,0). Therefore, for very small t , it is
expected that there will be little change in the initial solution
profile v(s,0); as t increases, more rapid dissipation will be
observed. For the vortex filament, there will be more rapid
dissipation of an initial disturbance or wave corresponding to
α > 0 rather than in the classical case when α = 0.

This is consistent with what has been observed in the
literature for Kelvin waves along quantum vortex filaments

[29,30] (corresponding to helical filaments). For those cases,
the dissipation manifests as a factor which scales as e−αk2

efft ,
where keff is an effective wave number [keff = O(1) in α] for
the helical filament.

III. ASYMPTOTIC SOLUTIONS

Before moving on to numerical solutions, we shall first
consider some particular regimes within which one may obtain
asymptotic solutions for the vortex filament structure.

Due to the complicated form of the PDE (13), in order
to obtain asymptotic results we shall assume solutions with
modulus that depend on time alone. These solutions can
be seen as generalized helix type solutions which gradually
amplify or deamplify depending on time. We shall later use
numerical simulations to describe solutions with modulus that
depends strongly on spatial location.

A. Helix with nonuniform rotation in time

Let us assume a solution

v(s,t) = A(t) exp (iφ(s,t)) , (28)

where both A(t) and φ(s,t) are real-valued functions. This
assumption puts (13) into the form of two real equations, given
by

Ȧ = −
√

1 − A2Aφss + αA(U3φs − φ2
s ) , (29)

φt = −
√

1 − A2φ2
s + αφss . (30)

Let us first consider the case where φ(s,t) = ks − θ (t),
where k > 0 is a wave number. For nonlinear θ (t), this
describes a helix with nonuniform rotation in time. From
Eqs. (29) and (30) we have

Ȧ = αk(U3 − k)A, (31)

θ̇ =
√

1 − A2k2, (32)

which gives

A(t) = A0 exp (αk(U3 − k)t) (33)

and

θ (t) = k2
∫ t

0

√
1 − A2

0 exp (2αk(U3 − k)σ )dσ + θ0, (34)

where 0 < A0 < 1 and 0 � θ < 2π are constant parameters.
This gives the solution

v(s,t) = A0 exp (αk(U3 − k)t) exp

(
i

{
ks − k2

∫ t

0

√
1 − A2

0 exp (2αk(U3 − k)σ )dσ + θ0

})
. (35)

Recovering the filament solution via (12), we find

r(s,t) =

⎡
⎢⎢⎢⎣

A0
k

exp(αk(U3 − k)t) sin
(
ks − k2

∫ t

0

√
1 − A2

0 exp (2αk(U3 − k)σ )dσ + θ0
)+ x̂0(t)

−A0
k

exp (αk(U3 − k)t) cos
(
ks − k2

∫ t

0

√
1 − A2

0 exp (2αk(U3 − k)σ )dσ + θ0
)+ ŷ0(t)√

1 − A2
0 exp (2αk(U3 − k)t)s + z0(t)

⎤
⎥⎥⎥⎦. (36)
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The time evolution of this filament will depend on the relative
size of k and U3. If U3 < k, then the solution will gradually
decay in amplitude over time, tending to a line filament
as t → ∞. If U3 = k, then the filament will maintain it’s
radius of deflection from the central axis for all time. In
this case, the rotational motion will become uniform in time.
Finally, if U3 > k, corresponding to the Donnelly-Glaberson
instability, then the filament will amplify over time. However,
this cannot continue indefinitely, as we assumed |v(s,t)| < 1
in deriving the model. Therefore, there exists some critical
value of time at which the framework will break down as the
radius of deflection becomes too large. Physically, this may
correspond to breakdown of the vortex filament. In particular,
when U3 > k, we find that the filament will amplify for time t

satisfying

0 < t < t∗ = 1

αk(U3 − k)
ln

(
1

A0

)
, (37)

while breakdown of the model (and perhaps the filament
itself) will occur for t = t∗, after which point the filament
no longer exists. For very small α, this breakdown time is
greatly increased. So, for the ultracold limit, the filament
will amplify more slowly, with breakdown taking longer. As
α → 0, there is no longer parametric amplification or decay,
and any solutions are eternal (as is true for the classical
LIA). As k → U3, the solution also becomes eternal as the
dissipation and amplifying effects are balanced, and we obtain
a helical filament curve with constant radius. This recovers
qualitative results of [29], which were obtained by more
complicated derivations employing the full vector form of the
LIA.

B. Compression wave or kink along a helical filament

We shall now turn our attention to a type of localized
nonlinear wave which travels along a helical filament resulting
in a compression or expansion of the filament curve. Let us
first assume a small amplitude solution, A(t) � 1, so that the
term 1 − A2 ≈ 1. We also assume now that A can depend on
space, but slowly (so, time is the dominant term in A). First,
Eq. (30) gives

φt = −φ2
s + αφss. (38)

If we assume a solution of the form

φ(s,t) = ks − ωt + α�(S,T ), (39)

with fast variables S = s/α and T = t/α, and pick ω = k2,
we end up scaling α out of the PDE, obtaining

�T + 2k�S + �2
S − �SS = 0. (40)

Consider a wave solution �(S,T ) = η(S − cT ) = η(q). Then,
Eq. (40) is put into the form

(2k − c)
dη

dq
+
(

dη

dq

)2

− d2η

dq2
= 0. (41)

Note that (41) has the exact solution

η(q) = − ln {C + exp ((2k − c)q)}. (42)

Returning to original variables, we have obtained the exact
solution

φ(s,t) = ks − k2t − α ln

{
C + exp

(
2k − c

α
(s − ct)

)}
.

(43)
In addition to the wave number, the solution has free parame-
ters c and C. Again, assuming variations in A are small with
s, we find that A(s,t) scales like

A(s,t) ∼ A0 exp

(
C(2k−c)

c

[
C+ exp

(
2k−c

α
(s − ct)

)]−1
)

+O(α2), (44)

where 0 < A0 � 1. The O(α2) term includes the contribution
of U3, and hence the dynamics arising from interactions with
the normal fluid occur at very slow time scales for these
particular solutions.

Physically, as (2k − c)s → −∞ (which is the limit where
the ln term acts as a constant), we have a helical structure with
effective wave number k. However, in the limit (2k − c)s →
∞ (which is the limit where the ln term grows linearly), we
have a helical structure with effective wave number c − k.
Therefore, the wave s − ct will modify the helix structure
as it passes. This can be viewed as a kink or a compression
wave, depending on how it acts on the undisturbed helix with
wave number k. Depending on the parameter values taken,
this wave can cause the helix to compress (c > 2k), remain
unchanged (c = 2k), unwind (k < c < 2k), annihilate into a
line filament (c = k), or reverse in orientation (c < k). Hence
this nonlinear wave has a strong influence on the local structure
of the vortex filament as it passes. We use (12) to recover the fil-
ament curve, and plot representative solutions in Fig. 1. In these
plots we fix α = 0.073, which corresponds to a temperature of
1.5 K [13]. The value of C is not found to strongly influence the
form of the solution, it just should be positive, so we fix C = 1.

Note that the effect is O(1) in α due to the fast time
variable t/α. Of course, we still need finite positive α for
this formulation to make sense, meaning that we cannot take
the limit α → 0 directly and recover a type of solution to the
classical LIA. Indeed, this solution is particular to the quantum
LIA.

From the form of A, as the wave passes, the amplitude
of deflection from the central axis of symmetry is also
modified slightly, although it remains positive (no decay to
zero) for appropriate parameter values. One could obtain a
more accurate approximation or expansion for A, but the
approximation given is suitable for our purposes.

This solution demonstrates an interesting kind of nonlinear
wave which propagates along the vortex filament and changes
the geometry of the vortex filament curve as it passes. Such a
solution is permitted due to the appearance of two time scales.
The first time scale is the standard O(1) time scale with which
the macroscopic helical filament rotates. The second time scale
permits a small wave to propagate along this filament with
time scale O(α−1), resulting in a possible change in filament
geometry as it passes. In the ultracold limit α → 0, the action
of this highly localized wave would be instantaneous, and we
would simply recover the static filament geometry exhibiting
only rotation in the slower time scale.
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(a) (b)

(d) (e)

(c)

FIG. 1. Here we plot solutions originating from (43) and (44) for fixed α = 0.073, k = 1, C = 1, and A0 = 0.1, given various values of
the wave speed parameter c: (a) c = 0.7, (b) c = 1, (c) c = 1.5, (d) c = 2, and (e) c = 3. Note that it is sufficient to fix one of c or k, since
it is their difference which determines the qualitative properties of solutions. These solutions sample the variety of possible behaviors seen
when the wave propagating along the vortex filament results in a coiling or decoiling of the helical structure. All plots correspond to t = 0. As
time increases, the helical filaments will rotate, while the interface between the two solution forms will propagate with wave speed c along the
filament.

IV. NUMERICAL SIMULATION OF LOCALIZED WAVE
SOLUTIONS

Due to the complicated nature of the governing equation
(13), we now turn our attention to numerical simulations. We
shall focus on localized wave solutions along rotating filament
structures. To this end, consider

v(s,t) = f (ζ )e−iωt , (45)

where ζ = s − χt is the wave variable and both of ω and χ are
nonzero real parameters. This transformation of the solution
results in the conversion of (13) into the complex traveling
wave ODE

− χ
df

dζ
− iωf = i

d

dζ

{
(1 − |f |2)

d

dζ

(
f√

1 − |f |2

)}

+α
d2f

dζ 2
− iαU3

df

dζ
. (46)

For the sake of numerical calculation, we write f (ζ ) =
fR(ζ ) + ifI (ζ ), and we obtain the coupled system of real
ODEs

−χ
dfR

dζ
+ ωfI

= − d

dζ

⎧⎨
⎩(1 − f 2

R − f 2
I

) d

dζ

⎛
⎝ fI√

1 − f 2
R − f 2

I

⎞
⎠
⎫⎬
⎭

+α
d2fR

dζ 2
+ αU3

dfI

dζ
, (47)

−χ
dfI

dζ
− ωfR

= d

dζ

⎧⎨
⎩(1 − f 2

R − f 2
I

) d

dζ

⎛
⎝ fR√

1 − f 2
R − f 2

I

⎞
⎠
⎫⎬
⎭

+α
d2fI

dζ 2
− αU3

dfR

dζ
. (48)
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(c)(b)(a)

(f)(e)(d)

FIG. 2. Plot of localized structures on vortex filaments for various α and U3: (a) α = 0.006,U3 = 0, (b) α = 0.006,U3 = 2, (c) α =
0.006,U3 = 5, (d) α = 0.073,U3 = 0, (e) α = 0.073,U3 = 2, and (f) α = 0.073,U3 = 5. Here we plot solutions originating from the traveling
wave solutions to (47) and (48) for fixed χ = 1, ω = 1, and with initial conditions fR(0) = 0.1, fI (0) = 0, f ′

R(0) = 0, and f ′
I (0) = 0. Plots are

given at t = 0: as these are traveling wave solutions, the filament structures will rotate in time while the structure itself is shifted downward
or upward with wave speed χ . Plots are given for α = 0.006 (corresponding to a temperature of 1.0 K) and α = 0.073 (corresponding to a
temperature of 1.5 K). We observe amplification as U3 increases, and this amplification is more pronounced in the warmer superfluid (larger
α) as the coupling between the vortex dynamics and the normal fluid is enhanced as the temperature increases. However, unlike the helical
case, here the amplification is not uniform, owing to the more localized structure of solutions. Interestingly, the structures do not destabilize
uniformly for large U3. Rather, for larger values of U3, we actually find some pattern formation. In panel (f), for instance, we obtain a solution
which connects a line filament when s → −∞ with a twisted helix when s → +∞.

Note that one may consider a linear stability analysis
around a purely helical solution in order to determine the
sign of the real part of the resulting eigenvalues (purely

complex eigenvalues will asymptotically give the helix). We
find that for the four eigenvalues λj (j = 1,2,3,4), when χ2 +
4ω > 0,

min
j

Re(λj ) = U3 − χ

2
α − |U3χ − χ2 − 2ω|

2
√

χ2 + 4ω
α + O(α2) (49)

and

max
j

Re(λj ) = U3 − χ

2
α + |U3χ − χ2 − 2ω|

2
√

χ2 + 4ω
α + O(α2). (50)

Therefore, when α > 0, there is no localized amplification or decay of the wave if both χ = U3 (the wave speed exactly agrees
with the normal fluid velocity) and ω = 0 (the rotational part is trivial). Of course, if α = 0 (the classical limit), then there will
be no amplification or decay and the filament structure is eternal. Similar results can be obtained for χ2 + 4ω � 0.
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)c()b()a(

)f()e()d(

FIG. 3. Plot of localized structures on vortex filaments for various values of the wave speed χ : (a) χ = −5, (b) χ = −1.5, (c) χ = −0.5,
(d) χ = 0.5, (e) χ = 1.5, and (f) χ = 5. Here we plot solutions originating from the traveling wave solutions to (47) and (48) for fixed ω = 1,
and with initial conditions fR(0) = 0.1, fI (0) = 0, f ′

R(0) = 0, and f ′
I (0) = 0. Plots are given for α = 0.006 (corresponding to a temperature

of 1.0 K, with similar results holding when α = 0.073) and U3 = 2. Plots are given at t = 0: as these are traveling wave solutions, the filament
structures will rotate in time while the structure itself is shifted downward or upward with wave speed χ .

For given boundary data and parameter values, the solutions can be obtained numerically. Once this is done, one can use the
map (12) to obtain the vortex filament solution, which is given by

r(s,t) =

⎡
⎢⎢⎣
(∫ s

0 fR(σ − χt)dσ
)

cos(ωt) + (∫ s

0 fI (σ − χt)dσ
)

sin(ωt) + x̂0(t)(∫ s

0 fI (σ − χt)dσ
)

cos(ωt) − (∫ s

0 fR(σ − χt)dσ
)

sin(ωt) + ŷ0(t)∫ s

0

√
1 − (fR(σ − χt))2 − (fI (σ − χt))2dσ + ẑ0(t)

⎤
⎥⎥⎦. (51)

For our numerical simulations, we consider either α =
0.006 or α = 0.073, which correspond to a temperature of
1.0 K or 1.5 K, respectively [13]. As temperature decreases,
the value of α will decrease, resulting in slower dynamics due
to mutual friction and the interaction with the normal fluid. In
Fig. 2 we plot solutions for various values of U3 to show the
amplification effects of increasing the strength of the normal
fluid velocity. Note that since we obtain localized structures,
rather than uniform global helical structures, the manner of
amplification is not always uniform. Note that if we change the
sign of U3, then the filaments will appear to amplify toward the
negative s axis rather than the positive s axis. For larger values

of U3 we can also observe the emergence of somewhat regular
solutions for some parameter values. One such solution, which
behaves asymptotically like a line filament as s → −∞ and
asymptotically like a twisted helix as s → +∞, is shown in
Fig. 2(f). Note, particularly in Fig. 2(c), the appearance of
sharper turns of kinks along what otherwise appears to be a
helical structure. These are localized waves that will propagate
along the filament curve. These types of waves may only
appear over certain regions. In Fig. 2(d), for instance, we see
such waves sufficiently close to s = ct at a fixed time t , yet
away from this (|s − ct | > 10) the solution takes on a more
helical appearance.
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Plot of localized structures on vortex filaments for various values of the rotational velocity parameter, ω: (a) ω = −0.1, (b) ω = 0,
(c) ω = 0.2, (d) ω = 0.6, (e) ω = 2, and (f) ω = 15. Here we plot solutions originating from the traveling wave solutions to (47) and (48)
for fixed wave speed χ = 0.5 (corresponding to slowly moving waves along the vortex filament), and with initial conditions fR(0) = 0.1,
fI (0) = 0, f ′

R(0) = 0, and f ′
I (0) = 0. Plots are given for α = 0.006 (corresponding to a temperature of 1.0 K) and U3 = 2. Plots are given

at t = 0: as these are traveling wave solutions, the filament structures will rotate in time while the structure itself is shifted downward or
upward with wave speed χ . Solutions appear to stop existing for large negative ω. If ω = 0, the solution will reduce to a line filament. Large
ω corresponds to a rapidly rotating filament structure, and rotational motion appears to dominate the filament structure as we increase ω,
smoothing any perturbations of disturbances along the filament curve.

In Fig. 3 we plot the dependence of the solutions on the
wave speed parameter, χ . We find that for large wave speeds,
that is for high velocity translation of local waves along the
vortex filament, there is a regularization of the overall filament
structure. This results in a far more uniform filament, even if
some small disturbances are present along the filament curve,
and appears to suppress the influence of mutual friction and the
normal fluid velocity on amplifying or deamplifying the waves
as they travel. Therefore, waves with high translational velocity
(in either direction along the filament) appear to be more robust
against perturbation. On the other hand, slowly moving waves
along the filament appear far more susceptible to the effects
of various perturbations, and less regular structures emerge.
It is therefore in the regime where |χ | is sufficiently small
that we can see vortex filament structures which exhibit great
variability in their structure. Note that when χ = 0, we would
obtain a planar vortex filament, but only in the case where

α = 0. If α > 0, such a planar solution is not possible, due to
induced torsion from the mutual friction terms [31]. Therefore,
χ = 0 and α > 0 will result in nonplanar solutions.

Regarding nonlinear waves, note that for large z Fig. 3(b)
shows dynamics akin to those corresponding to breathers in
[22]. Meanwhile, for negative z, the filament takes on the
appearance of a helix. Therefore, as the filament amplifies due
to the normal fluid component directed along the z axis, planar
Kelvin waves which are essentially linear will give way to
nonlinear waves with propertied defined by the nonlinearity
in the problem. More extreme cases of nonlinear waves are
shown in Figs. 3(c) and 3(d). As the wave speed of these
waves increases, the nonlinear effects matter less compared
the other terms, and the nonlinear waves appear to reduce
again to planar Kelvin waves.

In Figs. 4 and 5, we plot the dependence of some of these
solutions on the spectral or rotational velocity parameter,
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Plot of localized structures on vortex filaments for various values of the rotational velocity parameter, ω: (a) ω = −10, (b) ω = −1,
(c) ω = 1, (d) ω = 5, (e) ω = 10, and (f) ω = 20. Here we plot solutions originating from the traveling wave solutions to (47) and (48) for
fixed wave speed χ = 5 (corresponding to rapidly moving waves along the vortex filament), and with initial conditions fR(0) = 0.1, fI (0) = 0,
f ′

R(0) = 0, and f ′
I (0) = 0. Plots are given for α = 0.006 (corresponding to a temperature of 1.0 K) and U3 = 2. Plots are given at t = 0: as

these are traveling wave solutions, the filament structures will rotate in time while the structure itself is shifted downward or upward with wave
speed χ . Since we have previously shown that rapidly moving waves appear to be more stable, we are able to sample a wider range of possible
large magnitude rotational velocities.

ω. First, in Fig. 4, we consider the small wave speed case
(taking χ = 0.5), and demonstrate the dependence of solution
structures on the rotational velocity parameter, ω. For small
and moderately sized rotational velocity ω, the localized
structures along the vortex filament will persist. For large
negative ω, the solutions fail to exist. Likely, solutions become
unstable for large enough negative ω. The reason for this is that
ω < 0 corresponds to rotation of the vortex filament against
the normal fluid, while ω > 0 corresponds to rotation of the
vortex filament with the normal fluid. Therefore, when ω < 0
and |ω| is sufficiently large in magnitude, the mathematical
solutions do not exist. Physically, these solutions would break
down at finite time, and hence are not stable. Meanwhile, for
large positive ω, the rotational motion dominates and smooths
any perturbations or disturbances along the vortex filament.
This results in a regular and tightly coiled structure.

In Fig. 5, we consider the large wave speed case (taking
χ = 5), and again demonstrate the dependence of solution

structures on the rotational velocity parameter, ω, for this case.
Here solutions are very regular for small magnitude ω, and we
find helical filaments. This is in agreement with what was seen
in Fig. 3, as when the translational motion of waves along
the filament is large, the solutions exhibit a strong degree of
regularity. Due to the increase in regularity of the large wave
speed solutions, we are able to demonstrate the existence of
large negative ω. These solutions exhibit a large degree of
disorder near the origin, while for large |z| the solutions tend
to appear helical. If we consider large positive ω, then the
solutions will appear tightly coiled with patterns forming along
the filament curves. For very large positive ω, the solutions will
be dominated by rotational motion, akin to what was seen in
Fig. 4 for the large positive ω limit.

Figures 4 and 5 again demonstrate the existence of more
localized nonlinear waves along the vortex filaments. These are
best observed in Figs. 4(c)–4(e) when the rotational velocity of
the filament is sufficiently small. For large rotational velocities,
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there is a smoothing effect, and nonlinear waves can give
way to planar Kelvin waves in this regime. See, for instance,
Figs. 5(d)–5(f), which demonstrate this regularization or
deregularization (depending on the sign of χ ) of the solutions
with time.

Also in the numerical solutions, when ω = 0, we always
obtain a line filament. When χ = 0 and α = 0 we obtain a
planar filament. However, when χ = 0 yet α > 0, we no longer
have this planar filament (in agreement with the results of [31]
which show that planar filaments are not to be expected under
quantum LIA models such as that we consider here due to
torsion effects from the coupling with α and U).

While a variety of solutions are possible, and the above
are only a sampling, these numerical solutions demonstrate
that there are indeed rather localized structures possible
under our complex scalar PDE formulation of the LIA. Such
localized waves along vortex filament still exhibit parametric
amplification from the normal fluid coupling (for large enough
normal fluid velocity); however, this amplification can be
less uniform than what we see for the helical filaments
(corresponding to uniform Kelvin waves).

V. DISCUSSION

We have obtained a framework for studying quantized
vortex filaments in superfluid helium which exhibit strong
locality in space and time. In contrast previous results in this
area have neglected [22] the effects of mutual friction and
normal fluid velocity, although we show that the normal fluid
velocity is important, with parametric amplification observed
in some regimes. Other previous studies have considered
very regular shaped filaments in space, such as solitary
waves or helices [20,29]. Highly localized structures along
vortex filaments are completely transient, and will not display
persistence in time. This may make such solutions ideal for
studying rapid changes in vortex filament structure, perhaps
leading to turbulence.

In Sec. II we obtained an alternate model for the dynamics
of a quantized vortex filament in superfluid helium. This
was motivated by the need to include the effects of strong
normal fluid velocities directed along the quantized vortex
filaments, which were anticipated to have strong qualitative
influence over the vortex filament dynamics in the case where
strongly localized waves along the filaments was permitted.
Models based on classical LIA and the quantum generalization
of the Hasimoto transformation neglect such effects. For
the highly localized waves along vortex filaments, large
structural changes in the filaments resulted when the normal
fluid velocity and the temperature were both sufficiently
large. Therefore, the consideration of normal fluid effects
is essential in the warmer temperature regime if one is to
appropriately study temporally localized waves on quantized
vortex filaments. On the other hand, when either the magnitude
of the normal fluid velocity is small, or the temperature is
close enough to the zero-temperature limit (i.e., equal to or
below a temperature of about 1.0 K), there were minimal
structural changes, and one can therefore assume these effects
are perturbative. In this latter case, one is justified in studying
models such as (3), which is the generalization of the Hasimoto
transformation to include mutual friction. Some particular

asymptotic scalings are given for this model throughout Sec. II,
while some asymptotic solutions (in the case where the
modulus of solutions is primarily temporally dependent rather
than spatially dependent) are provided in Sec. III. We are
able to derive, for helixlike vortex filaments, a characteristic
time scale on which solutions can persist in the case of
parametric amplification before the reduction to LIA is no
longer valid. After this time, the filaments are not guaranteed
to exist; indeed, they may collapse, or nonlocal terms from
the Biot-Savart dynamics may be needed to properly describe
their time evolution. For solutions not exhibiting parametric
amplification, the filaments will either maintain their general
form or will asymptotically collapse to line filaments.

In Sec. IV, we obtained numerical solutions for various
values of U3 to show the amplification effects of increasing
the strength of the normal fluid velocity. Note that since
we obtain localized structures, rather than uniform global
helical structures, the manner of amplification is not always
uniform, and for certain parameter values, more interesting
vortex filament structures were found. When we consider
waves moving along the vortex filament, we find that for
large wave speeds, there is a regularization of the overall
filament structure. Meanwhile, slowly moving waves along
the filament appear far more susceptible to the effects of
various perturbations, and less regular structures emerge. In
this regime, the amplitude of the disturbance will play a much
larger role. It is therefore in the small wave speed regime that
we can see vortex filaments exhibit great variability in their
structure. Likewise, in the limit where rotational velocity of the
entire filament is very large, it dominates the filament structure
and dynamics in time. When rotational velocity and the wave
speed of nonlinear waves along the filament are both small
enough, a variety of structures dominated by the nonlinearity
inherent in the LIA are possible.

Many of the nonlinear waves observed along filaments
occur locally, with the filament behaving like a helical filament
asymptotically for |z| → ∞. Hence the nonlinear wave solu-
tions obtained tend to be local rather than global in nature. This
is potentially useful experimentally: one could have boundary
conditions consistent with more common helical filaments,
yet still hope to observe less regular nonlinear waves along the
vortex filaments for appropriate parameter values, as well.

As might be expected from the known Donnelly-Glaberson
instability results for Kelvin waves (which correspond to
helical vortex filaments [29,30]), we observe a parametric
amplification of the localized spatiotemporal waves along
the quantized vortex filaments. However, while the helical
filaments would exhibit a uniform amplification over the
entire vortex filament length, the localized waves may exhibit
parametric amplification only locally. Therefore, the paramet-
ric amplification of such vortex filaments ends up being a
local, rather than global, phenomenon. This is perhaps more
physically realistic, as it means that the straight segments of
a filament are largely unaffected, while sharp turns and waves
in the center of the filament are strongly modified, in contrast
to a uniform amplification seen in the helical case.

Here we have studied nonlinear waves along a single
quantum vortex filament. Such filament configurations con-
stitute one part of the possible dynamics of the vortex lines.
Superfluid turbulence involves large deformations of vortex
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loops, collisions and reconnection of vortex lines, the escape
of vortex loops from the bulk, and so on [1]. To account for
such behaviors, one typically needs the nonlocal formulation of
the vortex filament problem, which was recently used to study
parametric amplification of Kelvin waves [30] when mutual
friction and normal fluid effects were included. Kelvin waves
roughly obeying the dynamics expected from the LIA have
recently been observed in experiments in superfluid helium
[32], lending validity to the view that LIA dynamics are worthy
of further study. An interesting area of future work would be
the interaction of two or more quantized vortex filaments,
each with a highly localized structure such as those reported

here. The irregular, transient structures explored in this paper
could, perhaps, serve as interesting models for the generation
of quantum turbulence, since we expect that their interaction
dynamics would be more complicated than the dynamics of
interacting regular Kelvin waves (uniformly helical filaments).

On a related note, it may be possible to observe some of the
quantized vortex filament structures obtained mathematically.
Indeed, the one-soliton was observed experimentally a decade
ago [21] after it was predicted theoretically by Hasimoto [19].
The one-soliton is rather idealized, so less regular filament
structures obtained due to strong mutual friction and normal
fluid velocity effects are certainly possible.
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