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Parametric number covariance in quantum chaotic spectra
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We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance
as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using
the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality
of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant
and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also
investigated.
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I. INTRODUCTION

Random matrix theory (RMT) has been applied in physics
as well as in various other scientific disciplines [1–8]. In
physics, the most notable applications of RMT are found
in statistical nuclear physics, quantum chaotic systems, and
mesoscopic and disordered systems. RMT facilitates a theo-
retical understanding of the spectral correlations of a physical
or a model complex system. An important aspect of RMT is
the universality of spectral correlations, making the results of
the classical RMT ensembles, viz. the Gaussian ensembles,
useful in many fields.

Parameter-dependent RMT models [9,10] also yield univer-
sal results [10–16]. These models are applicable to complex
systems in which spectral statistics is governed by an external
parameter. In these models, one may also consider spectral
cross correlations at different parameter values [7,8,17]. Such
spectral correlations are associated with the level motion with
respect to the parameter, and they are referred to as paramet-
ric level correlations. These correlations have been studied
extensively, and their universality has been tested in diverse
systems, e.g., a hydrogen atom in a uniform magnetic field
with the strength of the field as the parameter, resonances in
quartz blocks at a uniform temperature where the temperature
is an external parameter, and chaotic billiards where Aharonov-
Bohm flux or the background potential or boundary parameters
are treated as an external parameter [18,19]. In these studies,
analytic results for the density-density correlation function
[7,8,17] are of fundamental importance, and they have been
obtained using the supersymmetric nonlinear σ -model for
disordered systems. Recent studies of the parametric spectral
cross-form factor and the fidelity [20–22] reemphasized the
importance of parametric correlations. In addition to the above
references, we also mention Ref. [23], which made important
contributions to the study of parametric correlations.

To estimate how long the correlations are sustained in a
parameter-driven complex system, it is suggestive to study
integrated measures such as a number variance. In this context,
such a measure appears in the literature [18]. However, in our

*vinayaksps2003@gmail.com
†sandeepsps@gmail.com
‡ap0700@mail.jnu.ac.in; apandey2006@gmail.com

opinion it is a nonlocal measure as it involves variance of the
staircase function from the ground state. This motivated us to
introduce the number covariance as a local measure to study
the parametric correlations. It is defined as the covariance of
the number of energy levels in intervals of fixed length between
spectra for two values of the parameter. By definition it is local,
and thus it fulfills the basic requirement for applying the RMT.
The number covariance can be calculated numerically from the
above-mentioned density-density correlation function, which
is known in the form of a multiple integral, or from the spectral
cross-form factor, which is somewhat simpler. It is surprising
that while many measures have been used in this context,
the number covariance, which is a natural quantity to use for
comparison with numerical data, has not been investigated.

In this paper, we consider the binary correlation method
[1,12] to derive compact expressions for the number covari-
ance. It turns out to be very close to the results obtained from
numerical integrations of the exact correlation functions. We
show that our results agree extremely well with the number
covariance calculated for the spectra of quantum kicked rotors
introduced in Ref. [24]. We also consider a local version of the
measure proposed in Ref. [18].

II. PARAMETRIC GAUSSIAN ENSEMBLES
AND THE NUMBER COVARIANCE

We consider the three invariant Gaussian ensembles (GEs)
of Hermitian matrices H of dimension N , viz., the Gaussian
orthogonal ensemble (GOE), the Gaussian unitary ensemble
(GUE), and the Gaussian symplectic ensemble (GSE). We use
the Dyson index β, where β = 1, 2, and 4, respectively, for
these ensembles [1,2]. The joint probability density of matrix
elements is given by P (H) ∝ exp(−trH2/4v2

β). Here the v2
β are

the variances for β distinct classes of the off-diagonal matrix
elements. Parametric variations in the GEs are described with
respect to a parameter α by the ensembles of matrices, Hα ,
defined as Hα = (H0 + αV )/

√
1 + α2. Here both H0 and V

belong to the same invariance class of the Gaussian ensembles,
and they are independently distributed. It is worth pointing out
that similar models are defined for the crossover ensembles
[10–13] with the matrices corresponding to different symmetry
classes. Variance v2

β is the same for H0, Hα , and V . Thus
Hα and H0 are identically distributed Gaussian ensembles
with correlation coefficient η = (1 + α2)−1/2 between H0;jk
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and Hα;jk for all j,k. The scale of the spectral statistics
is supplied by v2

β , which we fix by βv2
βN = 1 [1,25]. In

the limit of large N , the ensemble-averaged spectral density,
ρ(x), is described by Wigner’s semicircle law [1,10], ρ(x) =
π−1 sin ψ(x), where ψ(x) = π − cos−1(x/2). Notice that the
same density is valid for all α and β.

We introduce the number covariance, 	
1,1
(β) (x,y; α), which

is defined as the covariance of the number of levels in the
interval [x,y] for Hα and H0. In the limit of large N , the
number covariance becomes a function of r and 
, where
r = |x − y|ρN is the average number of eigenvalues in [x,y],
and 
 is the rescaled parameter defined by [10]


 = α2v2
β/D

2 = β−1α2Nρ2, (1)

where D ≡ 1/Nρ is the average level spacing. We remark that

 depends on x since ρ depends on x. It has been shown in
transition studies [10–12] that, for N → ∞ and α → 0, the
transition in the two-point correlation is abrupt as a function
of α but smooth with respect to 
. In terms of r and 
, the
number covariance, 	

1,1
(β) (r; 
), is given by

	
1,1
(β) (r; 
) = n0(r)n
(r) − n0(r) n
(r), (2)

where the overbar denotes ensemble averaging. n
(r) is the
number of eigenvalues in the interval [x,y] at parameter value

. Notice that the number variance is given by 	2

(β)(r) =
	

1,1
(β) (r; 0). We also introduce the parametric number variance

(PNV), as

V(β)(r; 
) = [n
(r) − n0(r)]2 = 2
[
	2

(β)(r) − 	
1,1
(β) (r; 
)

]
.

(3)
This is the local equivalent of PNV introduced in Ref. [18].
Note that n = r in Eq. (3) whereas n = O(N ) in Ref. [18]. For

 → ∞, V (r; 
) becomes 2	2(r), whereas in the latter case it
diverges as log(N ) [26,27], confirming thereby the nonlocality.

III. THE BINARY CORRELATION METHOD
FOR THE NUMBER COVARIANCE

To derive the number covariance, we consider the two-point
correlation function, Sρ

α (x,y), defined as

Sρ
α (x,y) = ρα(x)ρ0(y) − ρα(x) ρ0(y), (4)

where ρα(x) is the density at parameter value α with the
ensemble-averaged density, ρα(x), given by the semicircle law
above. Then

	
1,1
(β) (x,y; α) =

∫ x

y

∫ x

y

Sρ
α (x ′,y ′)dx ′dy ′. (5)

The binary correlation method has been described in detail
in Refs. [1,12,25]. In this method, the two-point function,
Sρ

α (x,y), is evaluated in terms of its moments given, for large
N , as

〈
Hp

α

〉〈
Hq

0

〉 − 〈
Hp

α

〉 〈
Hq

0

〉 =
∑
ζ�1

〈
Hp

α

〉〈
Hq

0

ζ

〉 � 2

βN2

∑
ζ�1

ζμ
p

ζ μ
q

ζ η
ζ ,

where μ
p

ζ =
(

p
p−ζ

2

)
. (6)

Here for any N × N Hermitian matrix H, 〈 H 〉 = (trH)/N
denotes the spectral averaging. The first equality in the above
equation is exact and denotes a decomposition of summation
in terms of ζ Hα’s in the first trace, which are cross-correlated
with ζ H0’s in the second trace. As in Refs. [1,12], the
underbracket, together with ζ underneath, is used to denote
these pairs. The second equality is valid for large N . μ

p

ζ

gives the number of correlated pairs that can be put in the
first trace with fixed positions of ζ Hα’s; Similarly, μ

q

ζ is the
number for the second trace. Also for large N , the ζ cross
correlations appear in a cyclic order. As in Refs. [1,12,27], μp

ζ

is the moment of a weighted polynomial:

μ
p

ζ = − 1

ζ

∫
xp d

dx
{ρ(x)νζ−1(x)}dx,

(7)

νζ (x) = (−1)ζ
sin[(ζ + 1)ψ(x)]

sin[ψ(x)]
,

where νζ (x) is the Chebyshev polynomial of the second kind
of order ζ , which is valid for −2 � x � 2 with the weight
function ρ(x). The summation in Eq. (6) is valid for p +
q = even and restricted to ζ such that p − ζ = even and q −
ζ = even. Note that η carries the entire α dependence of the
moments. Finally, carrying out the moment inversion, for large
N , we find

Sρ
α (x,y) �

∑
ζ�1 ηζ ζ cos[ζψ(x)] cos[ζψ(y)]

4βπ2N2 sin[ψ(x)] sin[ψ(y)]
. (8)

We are interested in local quantities defined in the large-N
limit. For instance, the unfolded cluster function, Y

(β)
11 (r; 
),

and the spectral cross-form factor, K(β)(k; 
), are defined by

Sρ
α (x,y)

ρ(x)ρ(y)
= −Y

(β)
11 (r; 
) =

∫ ∞

−∞
K(β)(k; 
)e−2πikrdk. (9)

The cross-form factor has been useful in the semiclassical
study [18,28], in calculating the current correlator [17], and
also in the fidelity analysis [20,21]. Note that for 
 = 0,
Y

(β)
11 and K(β) give, respectively, the unfolded cluster function

and the spectral form factor of the corresponding GEs, viz.,
Y

(β)
2 (r) − δ(r) and 1 − b

(β)
2 (k), as defined in Ref. [2]. To

obtain Y
(β)
11 from Eqs. (8) and (9), we replace the summation

by an integral, using ζ = 4Nπ2ρ2|k|. Ignoring the rapidly
oscillating part of the cos[ζ�(x)] cos[ζ�(y)] term in Eq. (8),
we finally get

−Y
(β)
11 (r; 
) �

∫ ∞

−∞

2|k|
β

e−2βπ2
|k|e2πirkdk. (10)

Note that 2|k|/β is the small |k| expansion of K(β)(|k|; 0). As
in Ref. [18], to improve the approximation we can replace this
term by K(β)(k; 0). Comparison of the resulting equation with
Eq. (9) yields

K(β)(k; 
) � K(β)(k; 0) exp(−2βπ2
|k|). (11)

See also [14], where similar results have been given for
the crossover ensembles. In an alternative method used in
[1,12], the summation in Eq. (8) can be evaluated using an
exponential cutoff factor. We introduce ε, replacing η by η′ as
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η′ = η exp(−ε/2Nπ2ρ2) in Eq. (8), to obtain

K(β)(k; 
) � 2|k|
β

exp[−2(βπ2
 + ε)|k|]. (12)

It follows from the stationarity of Sρ that the number
covariance, which is a double integral as in Eq. (5), can be
written as

	
1,1
(β) (r; 
) = −

∫ r

−r

(r − |s|)Y (β)
11 (s; 
)ds

=
∫ ∞

−∞
K(β)(k; 
)

[
sin2(πkr)

(πk)2

]
dk. (13)

Using Eq. (12) in the second equality of Eq. (13), we get the
compact answer

	
1,1
(β) (r; 
) � 1

βπ2
ln

[
1 + r2π2

(βπ2
 + ε)2

]
. (14)

The cutoff term has to be fixed with respect to the 
 =
0 result, i.e., 	2

(β)(r). Since this term has small variation

with respect to r , we fix its value at which 	
1,1
(β) (r; 0) in

Eq. (14) fits the exact 	2
(β)(r) for large r . We find ε = 0.3676,

0.1035, and 0.0149, respectively, for β = 1, 2, and 4. For
these values of ε we find that both of our approximations
(11) and (12) are close to each other for small |k|. Fi-
nally, we remark that the above result is valid for r � 1.

IV. THE PARAMETRIC NUMBER VARIANCE

PNV can be calculated from Eq. (3) along with Eq. (13) for
finite r . For r → ∞ and finite 
, we find

V(β)(∞; 
) =
∫ ∞

−∞

K(β)(k; 0) − K(β)(k; 
)

(πk)2
dk. (15)

Using Eqs. (3) and (14), we obtain

V(β)(∞; 
) � 4

βπ2
ln

(
ε + βπ2


ε

)
. (16)

We remark that the result given in Ref. [18] is half of our
result in Eq. (15) because their interval [x,y], used in Eq. (3),
starts from the ground state. Moreover, they have used the
approximation (11) instead of (12).

V. EXACT RESULTS

The exact results for the density-density correlation func-
tion, R(β)

11 (r; 
) = 1 − Y
(β)
11 , and the cross-form factor, K(β),

are known [7,8,17]. Note that for 
 = 0, R(β)
11 (r; 0) gives

R2(r) + δ(r), where R2(r) is the usual two-level correlation
function [2]. These can be used to obtain exact numerical
results for 	

1,1
(β) . The density-density correlation functions in

terms of our above parameter 
 are given by

R(1)
11 (r; 
) = 1 + Re

∫ ∞

1
dx

∫ ∞

1
dy

∫ 1

−1
dz

(xy − z)2(1 − z2)

(x2 + y2 + z2 − 2xyz − 1)2
exp [i(πr + iδ)(xy − z)]

× exp

[
π2


2
(x2 + y2 + z2 − 2x2y2 − 1)

]
, (17)

R(2)
11 (r; 
) = 1 +

∫ 1

0
dx

∫ ∞

1
dy cos(πxr) cos(πyr) exp[π2
(x2 − y2)], (18)

R(4)
11 (r; 
) = 1 + Re

∫ 1

−1
dx

∫ 1

0
dy

∫ ∞

1
dz

(xy − z)2(z2 − 1)

(x2 + y2 + z2 − 2xyz − 1)2
exp [−i(2πr + iδ)(xy − z)]

× exp[−4π2
(x2 + y2 + z2 − 2x2y2 − 1)], (19)

where δ → +0. Using Eqs. (18) in Eq. (9), one obtains a compact result for K(2)(k; 
):

K(2)(k; 
) =
⎧⎨
⎩

exp(−4π2
|k|) sinh(4π2
k2)
4π2
|k| , |k| � 1,

exp(−4π2
k2) sinh(4π2
|k|)
4π2
|k| , |k| � 1.

(20)

On the other hand, using (17) and (19) in Eq. (9), for β = 1 and 4, we get K(β)(k; 
) as double integrals of the variables u = xy

and v = x2:

K(1)(k; 
) = 2k2
∫ 2|k|+1

(1,2|k|−1)>

du[1 − (u − 2|k|)2] exp(−2π2
u|k|)
∫ u2

1
dv

exp[−π2
(u2 − 4k2 + 1 − v − u2/v)/2]

v(u2 − 4k2 + 1 − v − u2/v)2
, (21)

K(4)(k; 
) = k2

4

∫ 1

(−1,1−|k|)>
du[(u + |k|)2 − 1] exp(−8π2
u|k|)

∫ 1

u2
dv

exp[4π2
(u2 − k2 + 1 − v − u2/v)]

v(u2 − k2 + 1 − v − u2/v)2
. (22)

One can verify (11) for small |k|, but otherwise the exact results
are difficult to deal with analytically. We evaluate K(1)(k; 
)
and K(4)(k; 
) by solving the double integrals numerically.
Next, we use K(β)(k; 
) in Eq. (13) and evaluate 	

1,1
(β) (r; 
)

numerically.

It is worth pointing out that our approximate results
Eqs. (11) and (12) work well for small |k|. However, both
approximations yield 	

1,1
(β) close to the exact ones for r � 1.

It comes about because of the (πk)−2 term, which suppresses
the contribution of K(β)(|k|; 
) for large |k| in 	

1,1
(β) (r; 
).
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VI. NUMERICS OF THE GAUSSIAN ENSEMBLES

For the GE models, we have considered a 200-member
Gaussian ensemble of 1024-dimensional Hα matrices for all
three β at different values of α. The variance is fixed such
that the semicircle has radius 2. Since 
 depends on ρ(x), we
choose only 256 middle levels from each spectrum to ensure
that for a given α, the density ρ and therefore 
 do not vary
appreciably.

VII. THE QUANTUM KICKED ROTOR

The quantum kicked rotor is a prototypical example of
quantum chaotic systems. We consider the eigenangle spectra
of quantum kicked rotors [15,24]. The quantum map is
generated in an N -dimensional Hilbert space by the time-
evolution operator U of a kicked rotor with torus boundary
conditions. The standard case is that of a singly kicked rotor
with U = BG, where B ≡ B(K) = exp[−iK cos(� + θ0)/�]
and G = exp[−i(p + γ )2/2�], with � and p being the
position and momentum operators. Here, K is the kicking
parameter, θ0 is the parity-breaking parameter, and γ is the
time-reversal-breaking parameter (0 � γ < 1). We consider
parametric correlations arising from small variations δK

in the kicking strength K . Parametric correlation can also
be studied with variations in θ0 or γ [15]. In the posi-
tion representation, Bmn = exp[−i K

�
cos( 2πm

N
+ θ0)]δmn and

Gmn = 1
N

∑N ′
l=−N ′ exp[−i( �

2 l2 − γ l − 2πμl

N
)] for μ = m − n,

m,n = −N ′,−N ′ + 1, . . . ,N ′, N ′ = (N − 1)/2, and we set
� = 1. We choose the parameter θ0 �= 0 for parity breaking.

0

1

0 0.5 1 1.5 2
k

0

1

κ
(k

;Λ
)

(1
)

κ(2
) (k

;Λ
)

FIG. 1. The cross-form factorK(β)(k; 
) vs k, for β = 1 (top) and
2 (bottom), at four different values of the parameter 
, viz., 
 = 0,
0.025, 0.05, and 0.075 shown, respectively, in black (upper), brown
(mid upper), magenta (mid lower), and turquoise (lower). Solid lines
represent the exact results, and wriggled curves are obtained using
Eq. (23) for eigenangle spectra calculated at γ = 0 (top) and γ = 0.1
(bottom). We have used local averaging in the range �q = ±5 to
reduce the statistical fluctuations.

For γ = 0, it corresponds to the β = 1 symmetry class, and
otherwise it rapidly approaches β = 2. The eigenangle density
for the system is constant. The 
 parameter is given by [15]

 = N (δK)2/8βπ2, where δK is the variation in the initial
K . This can be proved from the first equality of Eq. (1)
by making the correspondence α → δK , D → 2π/N , and
v2 → [tr cos2(� + θ0)]/βN2 = 1/2βN . The spectral cross-
form factor is calculated as

K(β)(k; 
) = 1

N

∣∣tr Uq


 tr U−q

0

∣∣, (23)

where q is an integer and k = q/N .
In numerics, we consider 1025 dimensional matrices U with

θ0 = π/2N and γ = 0 and 0.1, respectively, for β = 1 and 2.
Initially, K is 10 000 and then varied in small steps of δK ∼
0.1. This represents one member of the ensemble at different
K values. The other independent members of the ensemble are
obtained by increasing the initial value of K in steps of 10 000.
Finally, we consider 50 such members of the ensembles.

VIII. NUMERICAL RESULTS

In Fig. 1, we illustrate K(β)(k; 
) versus k for the kicked
rotor data evaluated at 
 = 0, 0.025, 0.05, and 0.075. In Fig. 2,
we show 	

1,1
(1) (r; 
), 	

1,1
(2) (r; 
), and 	

1,1
(4) (r; 
) as a function

0

0.8 Exact
Binary Correlation
RMT(Numerical)
Kicked Rotor

0 0.25 0.5 0.75 1
Λ

0

0.4
0

0.5

Σ1,
1 (r

;Λ
)

Σ1,
1 (r

;Λ
)

(2
)

(4
)

Σ1,
1 (r

;Λ
)

(1
)

FIG. 2. The number covariance 	
1,1
(β) (r; 
) vs 
 for β = 1, 2,

and 4 from top to bottom, at three different values of r , viz., r = 1,
5, and 10 shown, respectively, in black (lower), orange (mid), and
brown (upper). Solid lines represent the exact results obtained from
the numerical integration, and dashed lines represent approximate
results (14). Circles represent the RMT data for all three β, and
crosses represent the kicked rotor data for β = 1 and 2.
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0.8

1.6

V
  (

r;
Λ

)

0 25 50 75 100
r

0.5

1

V
  (

r;
Λ

)
(1

)
(2

)

FIG. 3. PNV V(β)(r; 
) vs r for β = 1 (top) and 2 (bottom), at
three different 
, viz. 
 = 0.5, 1, and 1.5 for β = 1, and 
 = 0.2,
0.5, and 1.0 for β = 2, shown, respectively, in black (lower), orange
(mid), and brown (upper). As in Fig. 2, we use lines and symbols for
the theory and data, respectively.

of 
 at three values of r , viz., r = 1, 5, and 10. The difference
in results obtained from the approximations (11) and (12) is
nominal, and therefore the former approximation is not shown.
In Fig. 3, we illustrate V(1)(r; 
) and V(2)(r; 
) as a function of
r at several values of 
. In this figure, we consider r up to 100.
For r = 100, V(β)(r; 
) becomes almost independent of r .

It is evident from these figures that exact results are in
excellent agreement with the kicked rotor data. Also, our
binary correlation results yield a very good approximation
to the exact results.

IX. CONCLUSION

In conclusion, we have defined the parametric number
covariance to study parametric correlations in quantum chaotic
spectra. We have shown that the local spectral fluctuations
become rapidly independent as the parameter α of the system
is varied. Smooth statistical variations are found as a function
of a rescaled parameter 
 = α2ρ2N/β. For spectra with
ρ = O(1), we find 
 = O(1) when α = O(N−1/2). For such
small values of α, the global correlations between the spectra
are close to 1.

We have dealt with the three β cases and derived the number
covariance for the Gaussian ensembles using the binary
correlation method, which is close to the results obtained
from numerical integration of the exact formula. We have
shown its universality in the quantum kicked rotor spectra for
time-reversal invariant and time-reversal noninvariant systems.
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Phys. Rev. E 64, 036211 (2001); M. V. Berry and J. P. Keating,
J. Phys. A 27, 6167 (1994).

[24] F. M. Izrailev, Phys. Rev. Lett. 56, 541 (1986).
[25] K. K. Mon and J. B. French, Ann. Phys. (NY) 95, 90 (1975).
[26] F. J. Dyson, J. Math. Phys. 3, 166 (1962).
[27] J. B. French, P. A. Mello, and A. Pandey, Ann. Phys. (NY) 113,

277 (1978).
[28] J. Kuipers and M. Sieber, Nonlinearity 20, 909 (2007).

032217-6

http://dx.doi.org/10.1103/PhysRevE.88.012906
http://dx.doi.org/10.1103/PhysRevE.88.012906
http://dx.doi.org/10.1103/PhysRevE.88.012906
http://dx.doi.org/10.1103/PhysRevE.88.012906
http://dx.doi.org/10.1103/PhysRevE.81.036222
http://dx.doi.org/10.1103/PhysRevE.81.036222
http://dx.doi.org/10.1103/PhysRevE.81.036222
http://dx.doi.org/10.1103/PhysRevE.81.036222
http://dx.doi.org/10.1103/PhysRevE.82.036207
http://dx.doi.org/10.1103/PhysRevE.82.036207
http://dx.doi.org/10.1103/PhysRevE.82.036207
http://dx.doi.org/10.1103/PhysRevE.82.036207
http://dx.doi.org/10.1103/PhysRevE.47.1650
http://dx.doi.org/10.1103/PhysRevE.47.1650
http://dx.doi.org/10.1103/PhysRevE.47.1650
http://dx.doi.org/10.1103/PhysRevE.47.1650
http://dx.doi.org/10.1103/PhysRevLett.73.798
http://dx.doi.org/10.1103/PhysRevLett.73.798
http://dx.doi.org/10.1103/PhysRevLett.73.798
http://dx.doi.org/10.1103/PhysRevLett.73.798
http://dx.doi.org/10.1103/PhysRevE.51.R2719
http://dx.doi.org/10.1103/PhysRevE.51.R2719
http://dx.doi.org/10.1103/PhysRevE.51.R2719
http://dx.doi.org/10.1103/PhysRevE.51.R2719
http://dx.doi.org/10.1007/s002570050018
http://dx.doi.org/10.1007/s002570050018
http://dx.doi.org/10.1007/s002570050018
http://dx.doi.org/10.1007/s002570050018
http://dx.doi.org/10.1209/0295-5075/29/7/001
http://dx.doi.org/10.1209/0295-5075/29/7/001
http://dx.doi.org/10.1209/0295-5075/29/7/001
http://dx.doi.org/10.1209/0295-5075/29/7/001
http://dx.doi.org/10.1103/PhysRevLett.74.4635
http://dx.doi.org/10.1103/PhysRevLett.74.4635
http://dx.doi.org/10.1103/PhysRevLett.74.4635
http://dx.doi.org/10.1103/PhysRevLett.74.4635
http://dx.doi.org/10.1016/0375-9601(96)00204-6
http://dx.doi.org/10.1016/0375-9601(96)00204-6
http://dx.doi.org/10.1016/0375-9601(96)00204-6
http://dx.doi.org/10.1016/0375-9601(96)00204-6
http://dx.doi.org/10.1209/0295-5075/26/9/001
http://dx.doi.org/10.1209/0295-5075/26/9/001
http://dx.doi.org/10.1209/0295-5075/26/9/001
http://dx.doi.org/10.1209/0295-5075/26/9/001
http://dx.doi.org/10.1103/PhysRevE.64.036211
http://dx.doi.org/10.1103/PhysRevE.64.036211
http://dx.doi.org/10.1103/PhysRevE.64.036211
http://dx.doi.org/10.1103/PhysRevE.64.036211
http://dx.doi.org/10.1088/0305-4470/27/18/025
http://dx.doi.org/10.1088/0305-4470/27/18/025
http://dx.doi.org/10.1088/0305-4470/27/18/025
http://dx.doi.org/10.1088/0305-4470/27/18/025
http://dx.doi.org/10.1103/PhysRevLett.56.541
http://dx.doi.org/10.1103/PhysRevLett.56.541
http://dx.doi.org/10.1103/PhysRevLett.56.541
http://dx.doi.org/10.1103/PhysRevLett.56.541
http://dx.doi.org/10.1016/0003-4916(75)90045-7
http://dx.doi.org/10.1016/0003-4916(75)90045-7
http://dx.doi.org/10.1016/0003-4916(75)90045-7
http://dx.doi.org/10.1016/0003-4916(75)90045-7
http://dx.doi.org/10.1063/1.1703775
http://dx.doi.org/10.1063/1.1703775
http://dx.doi.org/10.1063/1.1703775
http://dx.doi.org/10.1063/1.1703775
http://dx.doi.org/10.1016/0003-4916(78)90205-1
http://dx.doi.org/10.1016/0003-4916(78)90205-1
http://dx.doi.org/10.1016/0003-4916(78)90205-1
http://dx.doi.org/10.1016/0003-4916(78)90205-1
http://dx.doi.org/10.1088/0951-7715/20/4/006
http://dx.doi.org/10.1088/0951-7715/20/4/006
http://dx.doi.org/10.1088/0951-7715/20/4/006
http://dx.doi.org/10.1088/0951-7715/20/4/006



