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Parametric spatiotemporal oscillation in reaction-diffusion systems
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We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-
dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal
instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold
condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent
of Arnold’s tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the
models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially
localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation
in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical
models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

DOI: 10.1103/PhysRevE.93.032209

I. INTRODUCTION

Periodic forcing of dynamical systems has been studied
over many decades because of their implications in several
areas of natural sciences [1,2]. An oscillatory system entrains
to periodic perturbation for appropriate range of values of
amplitude and frequency. The forcing with frequency ωp may
cause a shift of the system’s characteristic frequency to a new
value ω, so that entrainment may occur for rational ratios
of numbers n, m such that ωp/ω = m/n. The system may
also exhibit quasiperiodic motion with irrational ratios for
weak perturbation. Over the years the dynamical systems
in zero dimension as well as with spatial extension have
been investigated in the context of circadian cycles driven by
sunlight [3–5], chemical patterns in photosensitive Belousov-
Zhabotinsky (BZ) reaction [6,7], such as standing wave
labyrinths [8] and rotating spirals [9,10] forced by light, small
sinusoidal potential wave induced electrochemical material
growth [11] exhibiting oscillatory Turing pattern, etc.

A closer look into the above-mentioned studies suggests
that it is possible to categorize the forcing into two major
types. First, the dynamical system is forced directly [12] as in
the case of a forced oscillator; second, a suitable parameter of
the oscillator, e.g., its characteristic frequency, is modulated
by a time-periodic perturbation [13]. In the latter case the
system undergoes parametric oscillation and is amenable to
studies in terms of the Mathieu-Hill equation ẍ + a(t)x = 0,
where a(t) = a(t + T ) with T = 2π/ωp, the time period of
the parameter a(t). Depending on the amplitude, frequency
locking may occur in such systems when the time period
(T ) or nT of the parameter matches with the frequency of
the unforced system. Thus, a system in a Hopf state may
exhibit complex mixed-mode oscillations under parametric
perturbation [14]. Mixed-mode oscillatory patterns have been
observed in periodically forced BZ reaction model in a
parameter regime where the unforced system is excitable
(i.e., with no sustained intrinsic oscillations) so that it has
no intrinsic natural frequency [15]. An extended Oregonator
model has been used to show how spatiotemporal chaos and
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intermittency may emerge out of mixed mode oscillations
and breathing dynamics [16]. Reaction-diffusion systems also
offer interesting candidates showing spatial localization but
temporally breathing in this state [17].

A key aspect of the perturbed system is the consideration
of the dynamical state under unforced condition. In the over-
whelming majority of the studies on reaction-diffusion systems
the state remains in an oscillatory state with a characteristic
frequency [18]. The dynamics under such a condition is well
described by the Ginzburg-Landau (GL) equation [19,20]
near Hopf bifurcation. Such approach has been adopted,
for example, in the treatment of response of Turing stripe
patterns to a simple spatiotemporal forcing in the form of a
traveling wave and is spatially resonant with characteristic
Turing wavelength, leading to interesting symmetry breaking
of striped patterns [21]. The object of the present paper is
to explore the time-periodic parametric perturbation on a
spatially extended dynamical system in a homogeneous stable
steady state, a scenario that remains outside the scope of GL
description. It has been shown when the forcing frequency
matches twice the oscillation frequency of the forced system
for the amplitude of forcing beyond a critical threshold, the
system undergoes spatially stationary, temporal parametric
oscillation. We have formulated a general scheme to derive
the threshold frequency, which critically determines the range
of wavelength for this parametric spatiotemporal instability.
Our full numerical simulation results show that depending on
the specificity of nonlinearity of the models, this instability
may lead to patterns of various types. A typical one observed
in the present study is a kind of standing clusters with
fixed irregular spatial domains that oscillate periodically in
time as demonstrated earlier in experiments with Belousov-
Zhabotinsky reaction with global feedback [22]. We have
also shown the occurrence of localized breathing patterns
with characteristic wavelength. Our theoretical analysis is
illustrated with the help of two specific well-known exam-
ples, chlorine-dioxide-iodine-malonic acid (CIMA) reaction
[23–26] and iodine clock or Briggs-Rauscher reaction [27,28].

The outline of the paper is as follows. In Sec. II we have
formulated a general scheme of parametric spatiotemporal
oscillation of a reaction-diffusion system kept in a stable
steady state. The major focus lies on deriving the threshold
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condition for oscillation. Section III is devoted to a perturbative
analysis to identify the instability region which is a V-shaped
Arnold’s-tongue-like structure [29] for specific values of
threshold frequency. In Sec. IV we have considered two
specific examples. The paper is concluded in Sec. V.

II. SPATIOTEMPORAL PARAMETRIC OSCILLATION IN
REACTION-DIFFUSION SYSTEMS: GENERAL SCHEME

To start with we consider an arbitrary reaction-diffusion
system in two variables. The dynamical equations in two
dimensions (x,y) can be written down as follows;

u̇ = f (u,v) + Du∇2u, v̇ = b̃G(u,v) + Dv∇2v, (2.1)

where, u(x,y,t) and v(x,y,t) are the concentration of the two
reacting species of a chemical reaction; Du and Dv are the
respective diffusion coefficients. f (u,v) and G(u,v) are, in
general, nonlinear functions. b̃ is a constant parameter. The
parametric variation is considered by making b̃ explicitly time
dependent as follows:

b̃(t) = b + h sin(ωpt), (2.2)

where, b is the constant part and h and ωp are the amplitude and
frequency of the input time-dependent sinusoidal perturbation,
respectively. Let (u0,v0) be the homogeneous steady state of
the dynamical system. Linearization of the system around
the steady state leads us to the time evolution of the small
perturbation (δu,δv) as given by;

δ̇u = fuδu + fvδv + Du∇2δu (2.3)

δ̇v = b̃[Guδu + Gvδv] + Dv∇2δv. (2.4)

Here, fu, fv and Gu, Gv are, as usual, the partial derivatives
of functions f (u,v) and G(u,v) with respect to the variables
u and v evaluated at the steady state (u0,v0). The steady state
will be stable to spatially uniform perturbation if and only
if, (fu + gv) < 0 and (fugv − fvgu) > 0, with gu = bGu and
gv = bGv . From Eqs. (2.2) and (2.4) it follows;

δ̇v = [gu + b1 sin(ωpt)]δu + [gv + b2 sin(ωpt)]δv

+Dv∇2δv, (2.5)

where,

b1 = hGu,b2 = hGv. (2.6)

Assuming spatiotemporal perturbations δu and δv in two
dimensions of the following forms

δu = δU (t) cos(Kxx + Kyy),

δv = δV (t) cos(Kxx + Kyy). (2.7)

Equations (2.3) and (2.5) can be represented as

˙δU = (fu − DuK
2)δU + fvδV (2.8)

˙δV = [gu + b1 sin(ωpt)]δU

+ [(gv − DvK
2) + b2 sin(ωpt)]δV (2.9)

with K2
x + K2

y = K2.

By differentiating Eq. (2.8) with respect to t and following
elimination of δV terms from the resulting equation we write

¨δU = (fu − DuK
2) ˙δU + fv

˙δV

= [fu + gv − (Du + Dv)K2 + b2 sin(ωpt)] ˙δU

− [fugv − fvgu − (fuDv + gvDu)K2 + DuDvK
4

+ (fub2 − fvb1 − Dub2K
2) sin(ωpt)]δU. (2.10)

Finally, the system reduces to the form of a damped,
parametrically driven oscillator as follows:

¨δU + [κ − b2 sin(ωpt)] ˙δU + [
ω2

0 + 2α sin(ωpt)
]
δU = 0,

(2.11)

where,

κ = −[
fu + gv − (Du + Dv)K2

]
(2.12)

ω2
0 = (fugv − fvgu)

− (fuDv + gvDu)K2 + DuDvK
4 (2.13)

α = 1
2 (fub2 − fvb1 − Dub2K

2). (2.14)

Equation (2.11) describes an oscillator in which frequency
ω0 and damping κ are modulated by an external forcing
term with time dependence sin(ωpt). In absence of forcing
terms (i.e., h = 0) Eq. (2.11) reduces to a damped harmonic
oscillator. On the other hand, when the damping contribution
is altogether absent, Eq. (2.11) turns out be the well-known
Mathieu equation, extensively used in many areas of physics.
It is also apparent that absence of forcing contribution in
the damping term leads to an oscillator where the energy
storage parameter is modulated at ωp. The parametrically
driven oscillator described by Eq. (2.11) is capable of sustained
periodic oscillation. To show this we assume a solution

δU (t) = A cos(ωt + φ), (2.15)

where, A and φ are the amplitude and phase of the solution
signal wave. Using expansion of sin(ωpt) in Eq. (2.11) and
Eq. (2.15) and discarding nonsynchronous terms oscillating at
ωp + ω we are led to the following equation;

(
ω2

0 − ω2 + iκω
)

exp{i(ωt + φ)} +
(

b2ω

2
− iα

)
× exp{i(ωpt − ωt − φ)} = 0. (2.16)

From Eq. (2.16) it follows that sustained oscillation is possible
if

ωp − ω = ω or ωp = 2ω (2.17)

and

ω2 − b2ω

2
− ω2

0 = 0; φ = 0, mπ (m = integer) (2.18)

α = κω. (2.19)

From the condition (2.17) the pump frequency ωp is twice
the oscillation frequency ω with oscillation phase φ = 0 or
mπ . Let τ be the time period of the output signal, then it
can be expressed as τ = 4π/ωp. The strength of pumping α
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must satisfy Eq. (2.19). The last condition is the threshold
for oscillation as it ensures a pumping strength necessary to
overcome the mean losses (κ) at the threshold. The oscillation
frequency ω is generically different from the Hopf frequency,
which is given by ωH =

√
4(fugv − gufv) − (fu + gv)2/2. It

therefore follows from (2.13) and (2.14) that for a given forcing
amplitude (h), Eq. (2.19) shows a variation of K2 with ωp as
follows:

K2 = bωp(fu + gv) + h(fugv − fvgu)

Dugvh − bωp(Du + Dv)
. (2.20)

The result (2.20) gives an estimate of the threshold frequency
ωp as a function of K2 for spatiotemporal instability initiating
pattern formation from a homogeneous steady state. We shall
use this relation in Sec. IV.

Before concluding this section we mention two pertinent
points. First, the present study is for a two-variable system. The
question is: Can the treatment be extended to higher number
of variables? As the scheme is based on linearization around
a steady state, the parametric oscillation can occur in systems
with more than two variables, provided the pumping strength
exceeds a critical threshold. Casting n-variable linear system
of equations in a vector form would be a convenient approach.
Second, we have considered forcing of a parameter associated
with variable v. This choice is guided by the experimental
models like CIMA or Briggs-Rauscher reaction-diffusion
system. The parametric oscillation can also be effected by
forcing the parameter appearing multiplicatively in the other
variable u. However, forcing both u and v may lead to
much more complicated mixed-mode oscillations instead of
parametric oscillation at multiple frequencies.

III. STABILITY ANALYSIS OF SPATIOTEMPORAL
OSCILLATION

We now return to Eq. (2.11) and resort to its perturbative
analysis. Our object here is to locate the regions where the
system looses its stability with the emergence of pattern
forming solutions with growing normal modes. The dynamical
equation (2.11) for δU (t) can be rewritten in a modified time
scale τ = ωpt as follows:

¨δU + ερ[1 − c sin(τ )] ˙δU + γ [1 + ε sin(τ )]δU = 0, (3.1)

where,

ε = 2α

ω2
0

, c = b2

κ
, ρ = κω2

0

2αωp

, γ = ω2
0

ω2
p

. (3.2)

Equation (3.1) constitutes two time scales for small values of
ε; the time scale ξ = τ of the periodic motion itself, and a
slower time scale η = ετ , which represents the approach to
the periodic motion. Expanding δU (ξ,η) in a power series in
ε as

δU (ξ,η) = δU0(ξ ) + εδU1(ξ ) + ε2δU2(ξ ) + . . . (3.3)

in Eq. (3.1), the resulting equation can be solved order by
order. The zero-order equation of ε can be represented as

∂2

∂ξ 2
(δU0) + γ (δU0) = 0, (3.4)

which gives a solution of a simple harmonic oscillator with
frequency

√
γ

δU0 = A(η) cos(
√

γ ξ ) + B(η) sin(
√

γ ξ ). (3.5)

For the first order in ε and for the special choice γ = 1
4 , we

have

∂2

∂ξ 2
(δU1) + γ (δU1)

=
[
dA

dη
+ ρA

2
+ ρcB

4
− A

8

]
sin

ξ

2

−
[
dB

dη
+ ρB

2
+ ρcA

4
+ B

8

]
cos

ξ

2

+
[
ρcB

4
− A

8

]
sin

3ξ

2
−

[
ρcA

4
− B

8

]
cos

3ξ

2
. (3.6)

To avoid secular terms we set the coefficients of sin ξ

2 and
cos ξ

2 equal to zero so that we have(
dA
dη

dB
dη

)
=

(− ρ

2 + 1
8 − ρc

4

− ρc

4 − ρ

2 − 1
8

)(
A

B

)
. (3.7)

It is clear that A and B have exponential growth. This
instability arises because of γ = 1

4 and corresponds to a 2:1
subharmonic resonance in which the driving frequency (ωp)
is twice the natural frequency (ω0). Expanding γ in a power
series in ε one obtains

γ = 1
4 + εγ1 + ε2γ2 + · · · . (3.8)

Repeating the same calculation with this γ , we get some addi-
tional terms in Eq. (3.7), which can be solved by assuming a
solution in the form A(η) = A0exp(η�), B(η) = B0exp(η�).
For nontrivial constants A0 and B0, the following condition
must hold ∣∣∣∣∣

− ρ

2 + 1
8 − � − ρc

4 + γ1

− ρc

4 − γ1 − ρ

2 − 1
8 − �

∣∣∣∣∣ = 0. (3.9)

The eigenvalues �± are given by �± = − ρ

2 ±√
ρ2c2

16 − γ 2
1 + 1

64 . For the transition between stable
and unstable regions, we set �± = 0, and obtain

γ1 =
√

ρ2c2

16 − ρ2

4 + 1
64 . The condition gives the two transition

curves emerging from γ = 1
4 forming instability region in the

form of a V-shaped Arnold’s-tongue-like profile in the ε-γ
plane, outside which the system shows quasiperiodic motion.
γ is therefore modified up to first order as follows:

γ = 1

4
± ε

√
ρ2c2

16
− ρ2

4
+ 1

64
. (3.10)

Keeping in mind that α, ω2
0, κ are all dependent on wavelength

one can plot γ vs. K2 for selected parameter values and
find that for a given ωp, there is a particular permissible
range of K2 for a specific γ . The pattern formation out of
a homogeneous steady state due to instability may therefore
occur for this allowed range of wave numbers. Second, the
stable and unstable regions and the associated boundaries
for a given range of K2 can be captured from the variation
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of γ as a function of ε according to Eq. (3.10) depicting
the V-shaped region. The region within the V-shaped curve,
i.e., within the tonguelike structure is due to the exponential
growth of the solution, which is responsible for the emer-
gence of temporally oscillating patterns. The outside region
corresponds to the stable quasiperiodic domain. A further
clarification regarding the V-shaped region is in order. It is well
known that the amplitude-frequency characteristics depicting
Arnold’s tongue refers to the situation when the system’s
characteristic frequency is a Hopf frequency. The parametric
oscillation at frequency ω in the present case is determined by
the forcing frequency ωp through the relation (2.17). While
the Hopf frequency depends only on the system parameters,
the parametric oscillation frequency ω exists for every ωp and
oscillation takes place provided the threshold condition (2.19)
is maintained. However, as the perturbative analysis in the two
cases are parallel, we have referred to the V-shaped curve as
a tonguelike structure. We illustrate these issues with the help
of two examples in detail in the following section.

IV. EXAMPLES AND NUMERICAL SIMULATIONS

A. CIMA reaction-diffusion model

The Lengyel-Epstein model [23–25] for CIMA reaction-
diffusion system [30] can be described in dimensionless form
as follows;

∂u

∂t
= a − u − 4uv

1 + u2
+ ∇2u (4.1)

∂v

∂t
= σ

[
b̃

(
u − uv

1 + u2

)
+ d∇2v

]
. (4.2)

Here u and v refer to the concentrations of intermediates
I− and ClO−

2 , respectively. a and b̃ are the parameters, which

10 15 20 25 30 35 40
0

6
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24

(iv)
(iii)

(ii)

Q.

b

a

 Hopf line,  =1.0
 Turing line
 Hopf line,  =10.0

.P

(i)

FIG. 1. Parameter space for undriven CIMA model. Region (i)
shows steady-state domain. Region (ii) remains oscillatory with
respect to green Hopf line (for σ = 1.0) but steady-state domain
with respect to blue Hopf line (for σ = 10.0). Region (iii) between
Turing and blue Hopf line stands for Turing pattern forming domain.
Region (iv) represents oscillatory domain with respect to both the
Hopf lines.

6.5 7.0 7.5 8.0 8.5 9.0 9.5
-0.05

0.00

0.05

p(threshold)

nonpermissible value for K2

p

K2

h=5.0
a =20.0
b=14.0

pattern formation

FIG. 2. Estimation of ωp(threshold) of parametric oscillation;
K2 vs. ωp curve plotted for the steady state P (a,b) = (20,14) shown
in Fig. 1 according to Eq. (2.20) for Dv/Du = 1.5 and h = 5.0 for
CIMA reaction-diffusion model.
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FIG. 3. (a) Estimation of the range of unstable modes using
Eq. (3.10); γ vs. K2 curve. (b) Location of the region of spatiotem-
poral oscillation within V-shaped or Arnold’s-tongue-like region; ε

vs. γ curve for the parameters (as mentioned in the figure) for CIMA
reaction-diffusion system.
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depend on rate constants and the concentrations of the slow
reactants. d is the ratio of two diffusion coefficients, Dv/Du. σ
is a parameter that characterizes the strength of complexation
of an iodide ion with an external complexing agent such as
starch or polyvinyl alcohol. To explore parametric oscillation
we make b̃ a time-dependent function b̃(t) = b + h sin(ωpt),
where h and ωp are the strength and frequency of the
modulating field, respectively.

The linear stability analysis of the system (4.1) and (4.2)
with constant b is well known [31,32]. By varying the
concentration of the complexing agent, i.e., by adjusting σ

one can control (Fig. 1) the Hopf bifurcation line in such
a way in a-b parameter space that it lies above or below
the Turing line (shown as dotted line), which is independent
of σ . In Fig. 1 we have separated out the various regions
in the parameter space. The region (i) separated from the
oscillatory region (ii) by Hopf bifurcation boundary line
for σ = 1.0 comprises the stable steady-state domain of the
system. With increase of σ from 1.0 to 10.0, the Hopf line
shifts downwards (the blue one). As it crosses the Turing line
and lies below it, one encounters the region (iii) in between
the Turing and Hopf line, which corresponds to the region of
diffusion-induced instability or the region of stationary Turing
pattern. Below the Hopf line at σ = 10.0, we have the usual
limit cycle region (iv). Two representative points, namely, P

and Q in the homogeneous steady-state region (i) are shown
in Fig. 1. Our object is to look for spatiotemporal instability

due to a periodic perturbation of parameter b on these steady
states.

To proceed further we now choose the steady state P in the
region (i) for which a = 20.0, b = 14.0. The other parameters
corresponding to Fig. 1 are σ = 1.0, d = 1.5. We then switch
on the temporal perturbation h sin(ωpt) on the parameter b by
setting h = 5.0. A closer look at our earlier analysis in Sec. II
clearly suggests that the driving frequency ωp must exceed
a ωp(threshold) for which K2 is positive and the condition
ωp = 2ω [Eq. (2.17)] is maintained. For the parameter set
as mentioned ωp(threshold) can be obtained from a plot of
K2 vs. ωp using Eq. (2.20), which, in turn, is the threshold
condition (2.19) for parametric oscillation. It is apparent from
the change of sign of K2 that the threshold frequency ωp = 7.7.
Therefore, only for ωp � ωp(threshold) the strength of the
field is strong enough to induce spatiotemporal parametric
oscillation at ω = ωp/2.

Figure 2 does not give any upper bound for ωp and also
the allowed range of K2. However, these can be obtained
from the perturbative analysis of spatiotemporal instability as
carried out in Sec. III. To this end we take resort to perturbative
estimate of γ [Eq. (3.10)] and plot in Fig. 3(a) γ as a function
of K2 for the aforesaid parameters for several values of ωp. It
is apparent that with increase of ωp the range of K2 increases
for a specific value of γ . In order to locate the region of
spatiotemporal oscillation we now plot ε vs. γ according to
(3.10) for several values of ωp and for K2 = 0.01. The results

(e)

(a) (b) (c) (d)

(f) (g) (h)

(i) (j) (k) (l)

FIG. 4. Standing clusters: Parametric spatiotemporal oscillatory patterns of u induced by sinusoidal perturbation h sin(ωpt) [above
ωp(threshold)] with h = 5.0 on the steady state P (a = 20.0, b = 14.0) shown in Fig. 1 for three sets of ωp values for the parametric
set as mentioned in the text for CIMA reaction-diffusion model. White corresponds to high concentration of u. For each set (for a fixed ωp)
snapshots are taken at definite interval of time period τ (= 4π/ωp), of the parametric oscillation.
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are displayed [Fig. 3(b)] as typical V-shaped regions in the
form of well-known Arnold’s tongues, which separate out the
oscillatory region from the rest of the parameter space. For
convenience, we now locate five points (asterisk marked) on
a line at ε = 0.357 in the ε-γ parameter space corresponding
to five values of ωp [note that ε = 2α/ω2

0, where ω2
0 and α are

defined in Eqs. (2.14) and (2.14), respectively and γ = ω2
0/ω

2
p

according to (3.2)]. When ωp is 7.5 i.e., below ωp(threshold)
the point lies outside the corresponding V-shaped region.
At ωp = ωp(threshold) (= 7.7), it crosses the boundary to
enter into the spatiotemporal unstable region responsible for
exponential growth. When ωp = 9.0 the phase point crosses
of the boundary of the corresponding V-shaped profile to
escape out the oscillatory region. Thus with increase of ωp,
the position of γ moves from right to left in the ε-γ plane
and only when the points remain inside the tongue profile
the dynamical system undergoes spatiotemporal oscillation
induced by parametric modulation of the scaling parameter.

In order to corroborate the above theoretical analysis we
now carry out full numerical simulations of Eqs. (4.1) and (4.2)
with explicit Euler method following discretization of space
and time. A finite system size of 1000 × 1000 points with
periodic boundary conditions has been chosen. A time interval
�t = 0.0025 and a cell size �x = �y = 2.5 have been found
to be appropriate for this purpose. The parametric modulation
of b is performed on the stable steady state P of Fig. 1
(a = 20.0, b = 14.0) with a fixed value of h = 5.0 for the
parameter set σ = 1.0, d = 1.5. The numerical simulation
results have been obtained for five sets of ωp values corre-
sponding to Fig. 3. At ωp = 7.5, i.e, below ωp(threshold)
the system remains homogeneous. In Fig. 4 we have presented
three horizontal panels for u corresponding to ωp = 7.7, 8.0,
and 8.5. The snapshot of each profile of u of a particular panel is
obtained at an interval of 1000τ time unit (τ = 4π/ωp). Each
horizontal panel suggests that at every interval of 2000τ time
units, the pattern repeats. During 1000τ time period the regions
that were dark in the earlier period becomes bright. This finding
is reminiscent of the standing clusters [22] characterized

FIG. 5. Cross-shaped diagram for parameter space of undriven
Briggs-Rauscher reaction for μ > b, showing stable fixed point
region, the bistable regions and the limit cycle oscillatory regions.

FIG. 6. Estimation of ωp(threshold) of parametric oscillation;
K2 vs. ωp curve plotted for the stable steady state S(k = 3.0,λ =
−0.8) of Fig. 5 according to Eq. (2.20) with μ = 3.0, b = 1.0,
Du = 1.0, Dv = 10.0, and h = 0.9 for Briggs-Rauscher reaction-
diffusion model.

(a)

(b)

FIG. 7. (a) Estimation of the range of unstable modes using
Eq. (3.10); γ vs. K2 curve. (b) Location of the region of spatiotem-
poral oscillation within V-shaped tonguelike region; ε vs. γ curve
for the parameters (as mentioned in the figure) for Briggs-Rauscher
reaction-diffusion model.
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(a) (b)

(e) (f)

(c) (d)

FIG. 8. Breathing patterns: Parametric spatiotemporal profiles of u induced by sinusoidal perturbation h sin(ωpt) with h = 0.9 on the
steady state S(k = 3.0,λ = −0.9) of Fig. 5 for μ = 3.0, b = 1.0 for Briggs-Rauscher reaction model. (a) ωp = 2.2 [below ωp(threshold)]
showing homogeneous state, (b)–(e) ωp = 3.2 [above ωp(threshold)] showing snapshots at an interval of 500τ (with τ = 4π/ωp). Turing-like
labyrinth breathes periodically in time (f) ωp = 4.2 (outside V-shaped or tonguelike region); the system returns to homogeneous state.

by fixed spatial domains that oscillate periodically in time
(and occupy the entire medium), a scenario, experimentally
observed earlier in the BZ reaction by incorporating the effect
of global feedback. At ωp = 9.0 the system comes out of the
V-shaped region and returns to homogeneous state confirming
our theoretical prediction.

B. Briggs-Rauscher reaction-diffusion model

A simple analytical model for designing a chemical
oscillator that captures the behavior of oscillating iodine clock
reaction or Briggs-Rauscher reaction [27] was suggested by
Boissonade and De Kepper [28]. The governing reaction-
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diffusion equations for the two species u and v are

u̇ = −u3 + μu − kv − λ + Du∇2u (4.3)

v̇ = b̃(u − v) + Dv∇2v, (4.4)

where μ, k are the positive parameters [33]. However,
parameter λ can assume positive or negative value. b̃ is
the reciprocal of characteristic evolution time τ̃ of the
feedback, where b̃ = b + h sin(ωpt). Linear stability analysis
for h = 0.0 is well known for homogeneous system [28]
and shows that depending on whether μ > b or μ < b,
phase space of the dynamical system can be divided into
separate regions. For μ > b the phase space is composed
of bistable, stable steady state and limit cycle oscillation
regions as depicted in Fig. 5. It is apparent from Fig. 5 that
for k < b and λ1− < λ < λ1+ there are two stable solutions
(bistable regions) where λ1± = ±2[(μ − k)/3]3/2. For b <

k < (2μ + b)/3 the system is bistable for λ2− < λ < λ2+
where λ2± = ± 1

3 [(μ − b)/3]1/2[3k − 2μ − b]. For λ > |λ2±|
there is only one stable solution (stable fixed point regions).
For k > (2μ + b)/3 and λ2− < λ < λ2+ the system has only
unstable steady state, which undergoes limit cycle oscillations.
For (2μ + b)/3 < k < μ and λ < |λ1±| the system has three
unstable steady states solutions; for other values of λ there is
only stable fixed point regions. Two representative fixed points
R and S as marked in the region of negative λ of Fig. 5 are
shown as stable steady states.

Having depicted in Fig. 5 the various stability zones in the
λ-k parameter space for the undriven system (h = 0.0), we
first select the steady state S(k,λ) = (3.0,−0.8) and switch
on the perturbation h sin(ωpt) on the scaling parameter to
explore parametric spatiotemporal oscillation initiating pattern
formation. To this end we first set μ = 3.0, b = 1.0, Du = 1.0,
and Dv = 10.0 for the rest of the calculations. The strength of
modulation is fixed at h = 0.9 and we look for ωp(threshold)
as in the previous example. Making use of the condition (2.20)
a plot of K2 vs. ωp as shown in Fig. 6 suggests the value of
ωp(threshold).

Next we look for the allowed ranges of K2 and the region of
unstable growth of the system modes lying within the V-shaped
region with help of Eqs. (3.2) and (3.10). In Fig. 7(a) the
variation of γ as a function of K2 for several values of ωp

around ωp(threshold) is displayed. We observe as before that
the range of K2 for a given γ becomes wider for higher values
of ωp. The passage of the dynamical system into the unstable
region (V-shaped profile) with change of ωp from below to
above threshold values is shown in Fig. 7(b) in terms of the plot
of ε vs. γ for K2 = 0.001. The three star marked points lying
on a straight line for ε = 0.901 in the figure corresponding to
these ωp values clearly reveal that when ωp = 2.2, the point
lies outside the tongue. With increase of ωp the point shifts
from right to left and only when the point lies within the
V-shaped region the system exhibits instability. At ωp = 4.2
the system comes out of the boundary and escapes the region.

In order to corroborate the aforesaid analysis we now carry
out numerical simulations of Eqs. (4.3)–(4.4) with explicit
Euler method for a finite system size of 80 × 80 points with
periodic boundary conditions. The time interval �t = 0.0025
and a cell size �x = �y = 0.4 have been found to be
appropriate for this purpose. The results are plotted in Fig. 8

FIG. 9. Snapshots at an interval of 500τ for the spatial variation
of concentration variable u vs. y at a fixed x = 50 of Briggs-Rauscher
reaction-diffusion model [u values lie along the blue dotted line as
indicated in Figs. 8(b)–8(e)] showing periodic breathing.

for three values of ωp. Figure 8(a) shows the homogeneous
profile of u for ωp = 2.2 [below ωp(threshold)] stationary in
time. Figures 8(b)–8(e) represent the snapshots of Turing type
labyrinths of u for ωp = 3.2. These stripes breath slowly at
regular interval of 500τ . To make this time-periodic breathing
more prominent we have taken snapshots at a regular time
interval of 500τ for the variation of the concentration variable
u as a function of y for a fixed x [the selected u values lie on
the dotted blue line in Figs. 8(b)–8(e)] in Fig. 9. Each profile
of u repeats at an interval of 1000τ . This breathing clearly
demonstrates parametric spatiotemporal oscillatory patterns.
Again, at ωp = 4.2, i.e., when the system is outside the
V-shaped region the system becomes homogeneous altogether
[Fig. 8(f)], vindicating our theoretical analysis. We point out
in passing that the nature of the pattern remains unaffected
by the change of boundary condition (from periodic to zero
flux). Patterns are, however, sensitive to the variation of
initial condition, i.e., the location of the steady state. This is
not unexpected in view of the fact that although our linear
analysis and the multiscale perturbation theory predict the
spatiotemporal parametric threshold, the nature of the pattern
type, which depends on the specificity of nonlinearity of the
kinetics and the extent of departure from the threshold, remains
outside the scope of our scheme.

V. CONCLUSION

We have considered a reaction-diffusion system in a
homogeneous steady state. When subjected to a time-periodic
perturbation of a scaling parameter, the dynamical system un-
dergoes spatiotemporal oscillation, beyond a critical threshold
frequency of the perturbation, which fixes the range of allowed
modes for the spatially stationary but temporally oscillating
patterns. A multiscale perturbation analysis of this scenario
clearly reveals the domain of instability within a V-shaped
region similar to Arnold’s tongue in an amplitude-frequency
plot. The main conclusions of this study can be summarized
as follows.
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(i) Forcing a dynamical system that remains in a Hopf state
can be well described by an amplitude equation in the form of
Ginzburg-Landau equation. This is, however, not appropriate
for understanding the present situation as the dynamical state in
absence of perturbation remains in a steady state. A linearized
description such as Eq. (2.11) is sufficient and can be used for
other examples. Second, it should be noted that an amplitude
equation based approach for analysis of the emergence of
spatiotemporal instability and patterns is not advantageous
because the parametric oscillation is generically distinct from
usual Hopf oscillation. The difference lies in the fact that in
the latter case the dynamical system has an unique threshold
(Hopf bifurcation threshold) while the threshold for parametric
oscillation depends on the frequency and amplitude of forcing
and this makes the choice of perturbation parameter (ε in our
case) difficult since for every threshold there exists a perturba-
tion parameter. For this reason we have chosen this parameter
as a ratio, 2αω/ω2

0, which is a frequency ratio associated with
oscillation threshold and characteristic oscillation frequency.
For ideal validity of the perturbation expansion it is necessary
to keep ε � 1 throughout the treatment.

(ii) The parametrically driven damped linear oscillator
[Eq. (2.11)] can effectively capture the underlying physics
of instability that results in temporally breathing and spatially
localized patterns in the form of standing clusters and temporal
breathers observed in full numerical simulation of the models.
The parameters of the oscillator, e.g., frequency, damping,
amplitude of forcing depend on the wavelength of excitation
(K �= 0). It is also apparent that in the studies of the two
models the pattern types are different although they originate
from a generic parametric spatiotemporal instability. In the

case of standing clusters the patterns look irregular while the
breathers are typical stripes with characteristic wavelengths.
We believe that this is due to nature of nonlinearity of the
models concerned. It is therefore not difficult to anticipate
that other models may lead to different pattern types when
they are subjected to parametric instability. These patterns are
generically distinct from what one observes for Turing patterns
or other patterns observed under forced condition.

(iii) The dependence of the range of allowed values of
wavelength (K2) on the excitation frequency (ωp) beyond
the critical threshold for oscillation as well as the scaled
amplitude-frequency plot depicting a V-shaped tongue reveal
the key aspects of parametric instability of spatially localized
patterns.

(iv) A simple variant of the general scheme presented
in Sec. II can be considered by bringing in the parametric
modulation in the Gu term of Eq. (2.4), instead of the scaling
factor b̃. The pattern types can be explored by numerical
simulation of the relevant model.

Time-periodic forcing by light in a number of chemical
reactions has been investigated successfully in the recent past
on several occasions. We believe that parametric oscillation of
the stationary pattern can be observed by proper choice of the
parameters required for fixing the appropriate conditions for
instability in these models.
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