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Statistics of Lyapunov exponent spectrum in randomly coupled Kuramoto oscillators
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Characterization of spatiotemporal dynamics of coupled oscillatory systems can be done by computing
the Lyapunov exponents. We study the spatiotemporal dynamics of randomly coupled network of Kuramoto
oscillators and find that the spectral statistics obtained from the Lyapunov exponent spectrum show interesting
sensitivity to the coupling matrix. Our results indicate that in the weak coupling limit the gap distribution of the
Lyapunov spectrum is Poissonian, while in the limit of strong coupling the gap distribution shows level repulsion.
Moreover, the oscillators settle to an inhomogeneous oscillatory state, and it is also possible to infer the random
network properties from the Lyapunov exponent spectrum.
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The sensitivity of a dynamical system to small changes in
the initial conditions is typically quantified by estimating the
Lyapunov exponents (LE). LEs quantify the temporal growth
of a perturbation in phase space and if the maximal Lyapunov
exponent is positive the corresponding dynamics is chaotic [1].
In the case of N -dimensional spatially extended systems, it is
possible to compute the N -dimensional Lyapunov spectrum
(LS) and important physical quantities like the Lyapunov di-
mension [2], Kolmogorov-Sinai entropy [3], synchronization
criteria [4], extensive or subextensive properties [5], etc. can
be determined. These coarse-grained quantities along with the
scaling behavior of the LS are useful tools in characterization
of chaotic systems. However, there have been fewer attempts to
extract more information about the topology of the dynamical
system from the full LS.

In an earlier attempt, the LS computed for a coupled map
lattice model was shown to exhibit synchronization induced by
disorder [6]. Another significant observation had been that this
LS can be compared with the energy spectrum of a Hermitian
operator showing disorder-induced localization as in the
Anderson problem [6,7]. The comparison is justified, if we
observe that the computation of the LEs, essentially involving
the diagonalization of the Jacobian matrix, is analogous to
determining the energy spectrum of discrete Schrödinger
operators in quantum systems. Furthermore, recall that in
the Anderson localization problem depending on the strength
of the on-site disorder term, a transition from localized to
extended states is also observed. For example, in the well-
studied Harper model, the energy gap distribution shows a
transition from Poisson to Wigner distribution as predicted
by the random matrix theory [8,9]. While this property is
conjectured to be an universal signature of quantum chaos
[10] can there be evidence of avoided level crossing in simple
classical systems?

In coupled one-dimensional maps it is known that differ-
ences in the Lyapunov exponents exhibit coupling sensitivity
of chaos [11]. It has also been shown that in chaotic coupled
maps the LEs exhibit avoided level crossings and level spacing
distribution is exponentially suppressed at small values [12].
The important observation made in Ref. [12] is that the
disordered chaotic systems have randomness due to two
sources, namely, quenched disorder and chaotic fluctuations.
However, interesting spatiotemporal patterns arise in quenched
dynamical systems even in the absence of chaotic behavior

[13]. It will be interesting to study how quenched disorder
influences the behavior of the level spacing distribution in
large coupled systems in the absence of dynamic randomness.
In this paper, we explore the spectral properties of the LS
of a system of randomly coupled phase oscillators evolving
continuously in time. We find that the LE spectral statistics
depend on the random network properties and show signatures
of level repulsion in close analogy to the Anderson problem.
We demonstrate that for weak and strong coupling strengths
the distribution of LE differences exhibit Poisson and Wigner
distributions, respectively.

The motivation for studying the dynamics on a random net-
work is manifold. The short-ranged, long-ranged, power-law,
scale-free, or random connectivity properties of such networks
are manifested in the emergent behavior of the dynamical
processes taking place on them [14]. Synchronized dynamics is
one such behavior and the onset of synchronization or the lack
of it as a function of the topological property of the network
has been a subject of active research [4,15]. A paradigmatic
model for studying synchronization is the Kuramoto model, a
system of globally coupled phase oscillators that depending on
the strength of coupling exhibits emergence of synchronized
behavior [16,17]. The Kuramoto model consists of N coupled
oscillators, in which the phase of the oscillators evolves in time
according to

dθn

dt
= ωn + K

N

N∑
m=1

sin(θm − θn), (1)

where n = 1,2, . . . ,N is the oscillator index and each oscilla-
tor is coupled to all other oscillators. θn is the phase of the nth
oscillator and K � 0 is the coupling constant. Each oscillator
has an intrinsic natural frequency, ωn, randomly drawn from
a given probability density g(ω). The Kuramoto model has
been mostly studied for a unimodal frequency distribution
g(ω), with mean frequency ω = ω0 [17,18]. In this study the
frequencies will be chosen from a Lorentzian distribution. It
is known that in the limit N → ∞, the system of oscillators
in the steady state undergoes a continuous transition at the
critical threshold Kc = 2/πg(0). For K < Kc, each oscillator
tends to oscillate independently with its own natural frequency.
On the other hand, when K > Kc, the coupling synchronizes
the phases of the oscillators, and in the limit K → ∞, they all
oscillate with the mean frequency ω0.
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FIG. 1. Eigenvalue statistics of random uniform matrix. (a) Eigenvalue spectrum of banded coupling matrix, λi vs i/N , shown for two
system sizes, N = 32, 64 and W = 2, N . The eigenvalue spectrum is symmetric and the rescaled values λ̄i = 2λi/(λmax − λmin) exhibit data
collapse as shown in inset. (b) The distributions of rescaled eigenvalues show agreement with Wigner semicircle law. (c) The eigenvalue gap
distribution P (S), where S is the gap between successive eigenvalues are shown for band-widths W = 2, N , where N = 32. The continuous
curves are theoretical predictions. (d) Same as (c) for N = 64. An ensemble average is taken over for 1000 realizations.

Recent studies on the Kuramoto model and its many
variants have focused on the onset of synchronization in
large networks coupled by random connectivity matrices
[18]. The transition from incoherence to coherence can be
captured by a suitably defined order parameter and the critical
coupling strength depends on the largest eigenvalue of the
connectivity matrix, called the coupling matrix [19]. Mean-
field behavior with such mixed interactions has also been
recently studied under conditions of very general randomness
[20,21]. In our variant of the Kuramoto model, we consider
coupling matrix elements to be uniformly distributed random
numbers with zero mean. This implies that both attractive
or repulsive interactions are encoded in a random coupling
matrix Anm, and the Kuramoto model now assumes the
form

dθn

dt
= ωn + K

W

N∑
m=1

Anm sin(θm − θn), (2)

where Anm = 0, for |n − m| � W , i.e., for any W < N , the
coupling matrix is banded. In the case of all-to-all coupling
(W = N ), the random connections introduce frustration in the
system leading to quasientrainment with slow relaxation as
in a glassy system [22]. However, there is some discrepancy
in determining the critical value at which the transition takes
place and also the exact nature of the relaxation dynamics
of Eq. (2) is debated [18,22,23]. In recent studies [19],
the elements of the coupling matrix are randomly chosen
0 or 1 and the critical transition is found to take place at

K�
c = Kc/λmax, where λmax is the largest eigenvalue of the

random coupling matrix. While the above-mentioned studies
address important issues of relaxation dynamics and the
onset of synchronization, we are interested in inferring the
random network topology from the dynamics of the oscillator
network.

Let us now consider a random coupling matrix Anm,
n,m = 1,2, . . . ,N , where the elements are chosen from a
uniform random distribution in the domain [−1,1]. The
ensemble of such random matrices, in the limit of large
N , shows universal properties [9]. One such signature in
the case of symmetric matrices is that the the eigenvalue
distribution follows a semicircle law [24]. This can be easily
verified for an ensemble of random matrices and shown in
Fig. 1(b). Another universal feature is that the eigenvalue
spacing distribution computed from an ensemble of random
matrices shows Wigner distribution [9,24]. If the spacings
are denoted by S, the distribution P (S) = πS

2 exp(−πS2/4).
This is known as Gaussian orthogonal ensemble (GOE) and
the numerical estimates along with theoretical curves are
shown in Figs. 1(c) and 1(d) for two system sizes N = 32, 64,
respectively. These random matrices correspond to the case of
all-to-all coupling [W = N in Eq. (2)]. As mentioned earlier
the coupling matrices can also be banded, with bandwidth
W , corresponding to short-range coupling. In the case when
W = 2, i.e., only the tridiagonal matrix elements survive,
all the eigenvalues will be completely independent of each
other leading to a Poissonian spacing distribution P (S) ∼
exp(−S) [see solid curves in Figs. 1(c) and 1(d)]. This limit
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FIG. 2. Spatiotemporal dynamics of sin(θ (ωi,t)) for randomly
coupled Kuramoto oscillators (N = 64). The oscillator index is or-
dered according to the magnitude of the frequency. (a) K = 2, W = 2,
(b) K = 2, W = N , (c) K = 100, W = 2, (d) K = 100, W = N .

corresponds to the case of completely disordered systems.
For any banded matrix, 1 < W < N , it is expected that there
is transition from Poissonian statistics to Wigner statistics.
It has been rigorously ascertained that Wc ∼ √

N , is the
critical bandwidth, below (above) which eigenvalue spectrum
is Poissonian (Wigner) [25]. It is to be noted that the eigenvalue
spectrum irrespective of N and W are indistinguishable up
to a scaling factor [inset of Fig. 1(a)], but the eigenvalue
spacing distribution reveals the distinct structure of the random
matrices.

Now we will study the dynamics of the random Kuramoto
model. The coupled differential equations, Eq. (2), are numer-
ically integrated by Runge-Kutta fourth-order method with a
time step of 10−2. The spatiotemporal evolution is shown in
Fig. 2 for different choices of K and W . In the spatiotemporal
plots the oscillator index is ordered according to the strength
of the intrinsic frequencies, ωi drawn from a Lorentzian
distribution g(ω) = γ

π(γ 2+ω2) . We have set γ = 1, such that the
critical coupling for onset of synchronization in the traditional
Kuramoto model is Kc = 2. Let us first consider the case of
strong coupling K = 100 and the ranges of coupling W = 2
and W = N = 64, for which the spatiotemporal dynamics are
shown in Figs. 2(c) and 2(d), respectively. Each snapshot
in time indicates inhomogeneous spatial state and we have
checked that the spatial correlations decay exponentially.
However, in the case of global coupling, the temporal evolution
shows periodic recurrence of the inhomogeneous spatial states.
Figures 2(a) and 2(b) correspond to weak coupling, K = 2,
showing spatial inhomogeneity and chaotic evolution. While

understanding the onset of synchronization has been one
of the primary goals in studying the traditional Kuramoto
model and its variants, the spatiotemporal dynamics in our
model do not indicate any synchronized behavior. The disorder
in the coupling introduces frustration resulting in spatial
inhomogeneity. The extent of synchronization is typically
captured by a complex order parameter defined as

r(t) = r(t)eiψ(t) = 1

N

N∑
m=1

eiθm(t), (3)

where r(t) with 0 � r(t) � 1 measures the phase coherence of
the oscillators, while ψ(t) gives the average phase. In the case
of random coupling as in Eq. (2) it will be more appropriate
to define a local order parameter weighted by the random
coupling matrix,

zn(t) = zn(t)eiφn(t) = 1

N

N∑
m=1

Anmeiθm(t). (4)

However, for the random coupling matrix we consider here,
either of the order parameters are inadequate to describe the
irregular spatiotemporal dynamics and this motivates us to
compute the Lyapunov spectrum to characterize the random
Kuramoto model.

For a general N -dimensional dynamical system θ̇i(t) =
f (θ1(t),θ2(t), . . . ,θN (t)) the dynamics of small perturbations
is given by the linearized system δθ̇i = Jδθi , where J is the
Jacobian matrix. The solution of the linearized system can be
represented in matrix form as δθ (t) = M(t)δθ (0). The LEs
{�1,�2, . . . ,�N } defined as

� = lim
t→∞

1

t
log

‖δθ (t)‖
‖δθ (0)‖ (5)

can be equivalently computed from the logarithm of the
eigenvalues of the Osledec matrix limt→∞ [M(t)T M(t)]

(1/2t)
.

We compute the LE based on an algorithm involving
the continuous Gram-Schmidt orthonormalization [26]. This
method is particularly efficient in the presence of degeneracy
of eigenvalues as compared to other standard methods [27]. We
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FIG. 3. The Lyapunov spectrum for the Kuramoto oscillators with
normally distributed frequencies. The theoretical curve [28] and the
numerical simulation results for two stability parameter values (β =
2,20) are shown for a single realization. The numerical integration
has been done for N = 64 oscillators with a step size of 10−2 and
105 time steps. Inset shows the convergence of the maximum and the
minimum LE for a single realization.
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FIG. 4. Lyapunov exponent statistics of randomly coupled Kuramoto oscillators for strong coupling, K = 100. (a) Lyapunov spectrum
of banded coupling matrix, �i vs i/N , shown for two system sizes, N = 32, 64 and W = 2,N . (b) The distributions of rescaled Lyapunov
exponents �̄i , where the rescaled values �̄i = (2�i + |�min|)/|�min|. (c) The Lyapunov exponent gap distribution P (S), where S is the
gap between successive Lyapunov exponents are shown for bandwidths W = 2, N , where N = 32. The continuous curves are theoretical
predictions. (d) Same as (c) for N = 64. An ensemble average is taken over for ∼2 × 103 realizations.

first validate the numerical method for the analytically solvable
case of Kuramoto oscillators with constant coupling. In the
presence of Gaussian frequency distribution the analytical
expression of the Lyapunov spectrum is given in Ref. [28],
which is in reasonable agreement with our numerical estimates
considering that our simulation has been done for N = 64
oscillators while the theoretical curve corresponds to N → ∞
limit (Fig. 3). For estimating the LS we use the algorithm
proposed in Ref. [26], which involves a stability parameter β.
In Fig. 3 the numerical computations of LEs have been done
with β = 2, 20 and both data are almost equal, indicating
robust convergence of the LS. In all our simulation results,
shown henceforth, the stability parameter, β, has been chosen
such that it is greater than the magnitude of all LEs, β >

max(abs(�)).
Now we compute the LS for randomly coupled Kuramoto

oscillators. In Fig. 4(a) we show the LS for large coupling
strength, indicating that the dynamics is not chaotic (all LE
being negative). However, more information can be obtained
from the spectrum and this is the main focus of this paper. The
distribution of the rescaled LE is computed for strong coupling
strength, K = 100, and for all-to-all coupling (W = N ) is
shown in Fig. 4(b) along with the Wigner semicircle law
for comparison. The LE gap distribution indicates Wigner
statistics for all-to-all coupling W = N while the distribution
is Poissonian for bandwidth of the coupling matrix W = 2.
Recall that these statistics are similar to that observed for the
coupling matrices (Fig. 1). It is important to note that numerical
data agrees well with the theoretical functions and it does not
involve any fitting. The distributions are only normalized such

that ∫
P (S)dS = 1 and

∫
SP (S)dS = 1.

The LE statistics also exhibits a transition from Poissonian
to Wigner distribution at ≈ Wc, the critical band width of the
coupling matrix. This transition can be quantified in terms of
the parameter α of the Brody distribution [29] defined as

P (S) = (α + 1)bSα exp(−bSα+1), (6)

where

b =
[
�

(
α + 2

α + 1

)]α+1

. (7)
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FIG. 5. The Brody parameter α is shown for varying matrix
bandwidth W . The coupling strength K = 100.
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The parameter α ∈ [0,1] parameterizes the Brody distribution
and it is easy to see that α = 0 corresponds to Poisson
distribution and α = 1 corresponds to Wigner distribution.
The Brody parameter α is determined by fitting Eq. (6)
to P (S) obtained for varying matrix bandwidth W . (The
fitting is done in MATLAB using the Levenberg-Marquardt
method.) Below the critical band-width of the coupling matrix
(W < Wc = √

N ≈ 5.65) for N = 32 the LS gap distribution
is Poissonian (α = 0, W = 2) and for W > Wc the value of α

is closer to 1 confirming level repulsion as expected for Wigner
distribution (Fig. 5). Similar transition is seen for N = 64 at
W ≈ 8.

Next we investigate the role of weak coupling. It is
expected that for small coupling, (say, K = 5), there are fewer
frequencies that satisfy |ωn| < KNzn/W . The frequencies
that satisfy this condition exhibit phase locking while the
remaining number of oscillators are drifting. In Figs. 2(a)
and 2(b) the spatiotemporal dynamics are shown for W = 2
and W = N = 64, respectively. The LS and the LE statistics
are computed for K = 5 and shown in Fig. 6. In the case
of weak coupling for bandwidth W = 2, the LE, �i � 0,
and the corresponding spacing distribution resembles Poisson
distribution as shown in Fig. 6(c). While for weak and all-to-all
coupling the spatiotemporal dynamics has a significant number
of positive and zero LE, corresponding to the chaotic and the
drifting oscillators, respectively. The zero LEs in the spectrum
contribute to the sharp peak in P (S) as the gap S → 0. The
spacing distributions are also computed separately for positive

and negative LEs showing level clustering as seen in Fig. 6(d).
In the case of all-to-all coupling if we now vary the coupling
strength, K , the number of chaotic and drifting oscillators
decreases with increase in the coupling strength K . In the
absence of chaotic fluctuations the coupling disorder prevails,
resulting in enhanced level repulsion due to strong coupling.
We observe that for moderate values of K ≈ 30, N = 32 and
K ≈ 50, N = 64 the statistics show sharp peaks. However, the
LS converges to Wigner like distribution for coupling strength
K � 100. We show the spacing distributions P (S) in Fig. 7
and to quantify the resemblance to the Wigner distribution the
estimated Brody parameter is shown for varying K (inset of
Fig. 7). Thus, for strong all-to-all coupling the spatiotemporal
dynamics is most sensitive to the properties of the coupling
matrix.

In the Kuramoto model in Eq. (2) if we set ωi = 0 and add
a noise term we obtain the XY spin-glass model [30], which
shows a paramagnetic spin-glass transition. Level spacing
distribution in spin-glass model or in a quantized version
of Kuramoto oscillators are worth investigating. In order to
explore the generality of our method we have investigated a
related model, a system of classical XY rotors with infinite
range coupling known as Hamiltonian mean field model
(HMF) [31]. The HMF is described by the Hamiltonian

H =
N∑

i=1

p2
i

2
+ K

2N

N∑
i,j=1

Aij [1 − cos(θi − θj )], (8)
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FIG. 6. Lyapunov exponent statistics of randomly coupled Kuramoto oscillators for weak coupling, K = 5. Lyapunov spectrum of banded
coupling matrix, �i vs i/N , is shown for two system sizes, N = 32, 64 for bandwidth (a) W = 2, (b) W = N . The LS is an ensemble average
taken over for ∼103 realizations. The arrows indicate the range in which the LEs are ∼0. (c) The spacing distribution for �i < 0 is shown for
W = 2. In (d) the spacing distributions are shown separately for positive and negative LS for W = N .
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FIG. 7. Lyapunov exponent statistics of randomly all-to-all cou-
pled Kuramoto oscillators for varying coupling strength K for system
size (a) N = 32, (b) N = 64. The ensemble averages are taken over
∼103 realizations. The insets show the estimated Brody parameter as
a function of K .

where N particles are moving on a circle θi ∈ [−π,π ] and
pi are the corresponding momenta. The HMF model, for
homogeneous coupling, i.e., Aij = 1 ∀i,j , is analytically
tractable and a phase transition from ordered to disordered state
is seen as a function of the energy per particle, U . For, K > 0
(K < 0), particles attract (repel) resembling the ferromagnetic
(anti-ferromagnetic) state. For the ferromagnetic case the max-
imal LE characterizes the transition from ordered to disordered
state. The HMF model is integrable at small and large U , i.e.,
in these limits the maximum LE vanishes, while the system is

most chaotic at Uc ≈ 0.75 [ as seen in Fig. 8(a)]. In our study,
we have introduced a random coupling matrix Aij , whose
elements are chosen from a uniform distribution in [−1,1],
and obtained the LS and the spacing distribution as shown
in Fig. 8. The signature of level-repulsion in HMF model is
evident at U = 1 ≈ Uc, reminiscent of Wigner distribution
seen in level spacing statistics of Harper equation at criticality
[8]. For U = 10 
 Uc, i.e., the system is integrable and the
LS statistics resembles Poisson distribution. We have also
quantified the similarity by estimating the parameter α of the
Brody distribution and have found α = 0 and α = 0.9543 for
U = 10 and U = 1, respectively.

Our results show that the coupling sensitivity of coupled
oscillator systems is remarkably captured by level spacing
distribution of Lyapunov exponents in dissipative as well
as conservative dynamical systems. The simple numerical
analysis presented here suggests a novel method of charac-
terization of complex spatiotemporal systems. The sensitivity
to coupling matrix results in level repulsion as observed in
disorder-induced localization in quantum systems. In the ran-
dom Kuramoto model with local coupling W = 2 (W <

√
N )

the coupling matrix is tridiagonal (narrow band) and the
corresponding distribution is Poissonian irrespective of the
coupling strength. On the other hand, for strong and all-to-all
coupling the repulsion is stronger and the level statistics
resembles Wigner distribution. Earlier studies on coupled
chaotic maps showed that depletion in the distribution of LE
spacings is exponential at small spacings [12]. In contrast
to the chaotic dynamics of the low-dimensional coupled
maps, in our study the resemblance to Wigner distribution
is exclusively exhibited by the negative LEs. In the absence
of dynamic randomness the LS only depends on the quenched
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FIG. 8. Lyapunov exponent statistics of randomly coupled HMF model (N = 32). (a) The largest LE as a function of the energy per particle
U . (b) LS shown for U = 1, 10. The LS spacing distributions, for the positive and the negative LEs, are shown for (c) U = 1.0, (d) U = 10.0.
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disorder, i.e., the statistical properties of the random coupling
matrix. Our preliminary results also show similar repulsion in
random HMF model, which is governed by different physics
and needs to be studied in detail. However, the process of
estimating the full LS is computationally intensive and all our

results being averaged over a large number of realizations of
random matrices puts a restriction on us exploring large system
sizes. Determining the finite-size effects and establishing
whether our findings are truly universal need to be further
investigated.
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