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In this paper we present a general framework for solving the stationary nonlinear Schrödinger equation
(NLSE) on a network of one-dimensional wires modeled by a metric graph with suitable matching conditions at
the vertices. A formal solution is given that expresses the wave function and its derivative at one end of an edge
(wire) nonlinearly in terms of the values at the other end. For the cubic NLSE this nonlinear transfer operation
can be expressed explicitly in terms of Jacobi elliptic functions. Its application reduces the problem of solving
the corresponding set of coupled ordinary nonlinear differential equations to a finite set of nonlinear algebraic
equations. For sufficiently small amplitudes we use canonical perturbation theory, which makes it possible to
extract the leading nonlinear corrections over large distances.
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I. INTRODUCTION

In a series of two papers we treat stationary solutions on
nonlinear quantum graphs and introduce an approach based
on canonical perturbation theory. This is the first paper in the
series, where we deal with the general theoretical framework.
In the second paper [1] we will apply the framework to a set
of basic graph structures.

Linear quantum graphs where the wave function obeys
the linear Schrödinger equation on the edges with suitable
matching conditions have attracted a lot of attention in physics
and mathematics in the past (see [2–4] and references therein).
In quantum chaos they serve as a paradigm model that
makes it possible to analyze spectral fluctuations [2,3,5,6],
wave function statistics [7], and chaotic scattering [8–10].
More generally, they are paradigm models for the effects of
nontrivial topologies on wave function propagation. Nonlinear
quantum graphs replace the linear wave equations with a
nonlinear wave equation and have the potential of becoming
a paradigm model for topological effects in nonlinear wave
propagation because they are sufficiently simple to allow
for comparatively straight forward numerical analysis and
analytical approaches while showing fundamentally nonlinear
effects (such as multistability or bifurcations).

Physically, they can be considered as models for wave
propagation in optical networks and quasi-one-dimensional
(cigarlike) Bose-Einstein condensates [11]. In either optical
systems or Bose-Einstein condensates nonlinear effects enter
naturally. In the optical systems this is due to nonlinear media
(Kerr effect) and in Bose-Einstein condensates it is due to the
boson-boson interaction. It is then required to add nonlinear
terms to the Schrödinger equation, which makes explicit
analysis generally much harder. One is often restricted to either
numerical analysis (see, e.g., [12]), diagrammatic approaches
valid for small nonlinearities (see, e.g., [13]), or one spatial
dimension [14,15].

Adding nonlinear terms to the wave equation on a quantum
graph results in a nonlinear quantum graph. A numerical
survey [16] showed the importance of nonlinear effects in sta-

tionary scattering from a nonlinear graph even if the incoming
waves have very low intensity. As has been revealed later [17],
this is partly due to the presence of very narrow (so-called topo-
logical) resonances. Stationary solutions on nonlinear quantum
graphs have been discussed for some basic graph struc-
tures [18]. For a general nonlinearity proportional to |ψ |2νψ ,
stationary states on a star graph were considered [19–21].
The phase space structure was analyzed on a three edge star
graph [22] and the stability of the states was studied [23]. On a
tadpole graph bifurcations and stability of stationary solutions
have been analyzed [24,25].

Some time-dependent solutions have been considered.
The propagation of a soliton through a vertex in a star graph
was analyzed in Refs. [26–30]. Interacting Bose liquids
in Y junctions and ring geometries [31] and H-shaped
potentials [32] or several differently connected branches of
discrete nonlinear networks [33–35] may also be considered
as nonlinear quantum graphs. An experimental realization
of one-dimensional scattering in optical nonlinear media is
reported in Ref. [36]; the escape of solitons in Ref. [37]. A
recent review by Noja [38] summarizes nicely some of the
more mathematical approaches mentioned above.

Our first aim in this paper is to reduce the coupled
nonlinear differential equations to a finite set of nonlinear
algebraic equations. Such a reduction requires the solution
of the nonlinear transfer problem; i.e., one needs to express
the wave function and its derivative at one end of an edge in
terms of the values at the other end. We give a general formal
solution to this problem. For the cubic nonlinearity these can
be expressed explicitly using Jacobi elliptic functions. In an
extensive appendix we give the complete set of solutions in
this case. This extends the known explicit stationary wave
functions on a line or a circle [39,40]. The second aim is
to develop a perturbation theory that simplifies the formal
transfer solution such that analytical methods can be used to
find approximate wave functions on a graph.

In Sec. II we give the general framework and discuss general
properties of the stationary solutions: We define nonlinear
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quantum graphs, describe how to obtain local solutions on
the edges and explain how to reduce the general problem of
finding stationary solutions to a finite set of nonlinear algebraic
equations. In Sec. III we introduce a perturbative treatment of
the nonlinearity in the framework of canonical perturbation
theory. Two extensive Appendixes A and B contain detailed
explicit solutions for the cubic NLSE for reference.

II. NONLINEAR QUANTUM GRAPHS

A. General setting

We consider a general graph G(V,E), where V is a set
of vertices and E a set of edges. In standard graph theory
each edge e ∈ E connects two vertices v1,v2 ∈ V . If v1 = v2,
the edge is called a loop. Two different vertices v1 �= v2 are
called adjacent or connected if there is an edge that connects
them. In this case we also say that the edge is connected
or adjacent to the vertices v1 and v2. In the present context
it is useful to generalize the notion of a graph slightly and
allow for semi-infinite edges that are only connected to one
vertex (formally one may think of this as a standard graph
with one vertex “at infinity” that collects all the loose ends).
We call the semi-infinite edges leads and all edges that connect
two vertices (including loops) bonds. The corresponding sets
of leads and bonds are denoted by L and B and we have
E = L ∪ B and L ∩ B = ∅. We only consider finite graphs
where the number of vertices V = |V| and edges E = |E |
are both finite. The numbers of leads L = |L| of and bonds
B = |B| are then also finite and E = B + L. If a graph has no
leads L = 0 we call it a closed graph, if it has at least one lead
L � 1 then we call it an open graph. Figure 1 shows examples
of open and a closed graphs.

In a quantum graph each edge models a waveguide or string
with waves propagating along them. This is realized by adding
a metric and a well-defined wave equation on the graph. In a
metric graph each edge has a length �e > 0, and a coordinate
xe ∈ [0,�e]. For any bond b ∈ B the length is finite �b < ∞,
and xb = 0 and xb = �b correspond to the end points of the
edge. For each lead l ∈ L the length is infinite �l = ∞, and

(a) (b)

(c)

FIG. 1. Examples of network structures: a finite open graph (a);
a finite closed graphs (b). If the structure of the graph (c) is continued
one obtains an infinite graph.

x� = 0 at the vertex attached to the lead. This structure defines
the distance between two points anywhere on the graph in
an obvious way as the length of the shortest connected path
through the graph that connects the two points [41].

We consider a scalar complex wave function on the metric
graph which is differentiable with respect to t and with respect
to x on the edges. It is written as a collection,

�(x; t) = {ψe(xe; t)}e∈E , (1)

where ψe(xe; t) is the wave functions on the edge e at
time t . The wave function on edge e satisfies the nonlinear
Schrödinger equation (NLSE)

i∂tψe = −∂2
xe

ψe + ge|ψe|2νψe. (2)

Here ν > 0 characterizes the power of the nonlinearity and ge

is the real nonlinear coupling parameter which we assume
constant and finite |ge| < ∞ on each edge. The nonlinear
coupling term is called repulsive for ge > 0 and attractive for
ge < 0. Without loss of generality we use units where Planck’s
constant and the mass take values � = 2m = 1 everywhere in
this paper. The cubic NLSE that is relevant for Bose-Einstein
condensates or optical media is obtained when ν = 1; in this
case the nonlinear term g|ψ |2ψ is cubic in ψ . The quintic
case ν = 2 with nonlinear term g|ψ |4ψ also finds some
applications [42].

Matching conditions at the vertices need to be added to
have a well-posed propagation of an initial wave function
�0(x). For linear quantum graphs the most general matching
conditions that result in a self-adjoint problem have been given
in Ref. [43] (see also [4]). All of these remain mathematically
and physically sound in the nonlinear setting (and may be
generalized by allowing nonlinear matching conditions). Here
we focus on the so-called δ-type (or Robin) conditions. For a
given vertex v let us assume (without loss of generality) that
xe = 0 corresponds to the end point at v for all edges e adjacent
to v. Then δ-type matching conditions at v are defined by two
conditions:

(i) The wave function is continuous through the vertex,

ψe(0; t) = ψe′ (0; t) ≡ ψ0, (3)

for all pairs of edges e,e′ ∈ E(v) and all times t . By definition,
E(v) is the set of all edges connected to the vertex v.

(ii) The sum of outward derivatives of the wave function
on the adjacent edges is proportional to the value of the wave
function on the vertex∑

e∈E(v)

∂xe
ψe(0; t) = λψ0. (4)

Here λ is a real parameter, the vertex potential. For a vertex
of valency two this condition is equivalent to a δ potential
of strength λ on an interval (the position of the δ potential
marking the position of the vertex). For λ < 0 we call the
vertex attractive and for λ > 0 repulsive. In most applications
that we discuss later we choose λ = 0. Then the matching
conditions are also known as standard (aka free, Kirchhoff, or
Neumann) matching conditions [44].

In the linear setting (g = 0) these conditions lead to a self-
adjoined extension of the metric Laplacian on the graph (i.e.,
a well-defined Schrödinger operator). The first condition is
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physically reasonable and the second ensures that the L2 norm
of the wave function

‖�(x; t)‖2 =
∑
e∈E

∫ �e

0
|ψe(xe; t)|2dxe (5)

is conserved. Physically, the L2 norm corresponds to the
number of particles (number of atoms in a Bose-Einstein
condensate, number of photons or total intensity in optics). If
ge = 0 for all edges e, Eq. (2) becomes the (free) Schrödinger
equation on a metric graph and the model becomes a quantum
graph. For quantum graphs wave propagation is described
by linear differential equations. If ge �= 0 on some edge, the
differential equations are nonlinear and we call the model
nonlinear quantum graph. Note that a nonlinear quantum
graph can be used as a model of either a quantum mechanical
system (Bose-Einstein condensate) or a purely classical wave
system (electromagnetic waves in optical fibres).

Generally, one is interested in the time-dependent dynamics
of an (square integrable and sufficiently smooth) initial
wave function �0(x) = {ψe,0(xe)}e∈E . For an infinite line this
problem is formally solved by the so-called inverse scattering
method [45], which is practical only for solitonlike solutions.
For a half line or an interval with appropriate boundary
conditions (e.g., Dirichlet) the problem of finding any time-
dependent solutions is highly nontrivial. The generalization
of the method to star graphs has recently been discussed in
Ref. [30]. In this paper we focus on stationary solutions of the
form

�(x; t) = e−iμt	(x) ⇒ ψe(xe; t) = e−iμtφe(xe). (6)

The function 	(x) = {φe(xe)}Ee=1 is then a collection of
solutions of the stationary NLSE,

−d2φe

dx2
e

+ ge|φe|2νφe = μφe, (7)

on each edge with the matching conditions (3) and (4) applied
to 	(x). We refer to the parameter μ as the chemical potential
(in accordance with the physics literature on Bose-Einstein
condensation).

B. Formal local solutions on a given edge

Before discussing stationary solutions for a complete graph
let us first consider a single fixed edge e. We will suppress
the index e until we come back to the discussion of the full
graph. The length of the edge is � and we assume that the
wave function and its derivative are given at x = 0. Our aim
is to find the nonlinear transfer operator that expresses the
wave function and its derivative at x = � in terms of their
values at x = 0. We will show that this is formally equivalent
to the solution of an initial value problem for a central force
dynamics of a two-dimensional mass point in the plane with a
central potential where x takes the formal role of a time. The
latter being integrable, it is straightforward to write a formal
solution using textbook methods of analytical mechanics. Let
us here summarize this approach and set

φ(x) = r(x)eiη(x), (8)

with real amplitude r(x) � 0 and real phase η(x). The NLSE
is then expressed as two coupled real ordinary differential
equations,

d2r

dx2
= r

dη

dx

2

+ gr2ν+1 − μr and
d

dx

[
dη

dx
r2

]
= 0. (9)

If x is formally considered a time, these equations are the
Euler-Lagrange equations for a point particle in the plane in
polar coordinates with a central potential

V (r) = μ

2
r2 − g

2ν + 2
r2ν+2. (10)

The angular momentum

pη = r2 dη

dx
= Im φ∗ dφ

dx
(11)

and the Hamiltonian energy

H = 1

2

dr2

dx
+ p2

η

2r2
+ V (r) (12)

are the two well-known constants of motion. Note that in terms
of the original NLSE pη is the intensity (or probability) flow.
As is well known, the radial motion then reduces effectively
to a mass point in the effective potential

Veff(pη,r) = p2
η

2r2
+ V (r). (13)

Let us denote the solutions of the dynamical system with initial
values

φ(0) = r0e
iη0 and

dφ

dx
(0) =

{
σ
√

2[H − Veff(r0)] + i
pη

r0

}
eiη0 (14)

(with σ = ±1) as

r(x) = Rg,μ(x; r0,pη,H,σ ) and

η(x) = η0 + ϑg,μ(x; r0,pη,H,σ ), (15)

where the two functions Rg,μ(x; r0,pη,H,σ ) > 0 and
ϑg,μ(x; r0,pη,H,σ ) are implicitly defined through the two
integrals

x = σ

∫ Rg,μ(x;r0,pη,H,σ )

r0

[2(H − Veff(pη,r)]−1/2dr, (16a)

ϑg,μ(x; r0,pη,H,σ )

= pη

∫ x

0
Rg,μ(x ′; r0,pη,H,σ )−2dx ′. (16b)

We often just write Rg,μ(x) and ϑg,μ(x) if the values of the
other parameters are clear from context. On the level of the
NLSE these two functions implicitly define the nonlinear
transfer operator by evaluating them and their derivatives at
x = �. Note that the integral (16a) defines Rg,μ(x; r0,pη,H,σ )
if x is sufficiently small; for bounded solutions this can be
extended to arbitrary large values of x. The sign σ = ±1
is positive (negative) if Rg,μ(x; r0,pη,H,σ ) is increasing
(decreasing) as a function of x at x = 0.

If the nonlinear coupling constant vanishes (g = 0) the
explicit expressions for R0,μ(x) and ϑ0,μ(x) can be obtained
from the known (local) solutions of the linear Schrödinger
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equation

R0,μ(x)eiϑ0,μ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r0 cos(kx) + σ
√

2Hr2
0 −p2

η−k2r4
0 +ipη

kr0
sin(kx) if μ = k2 > 0,

r0 + σ
√

2Hr2
0 −p2

η+ipη

r0
x if μ = 0,

r0 cosh(kx) + σ
√

2Hr2
0 −p2

η+k2r4
0 +ipη

kr0
sinh(kx) if μ = −k2 < 0.

(17)

The problem of finding solutions for arbitrary values of the
chemical potential μ �= 0 and nonlinear coupling constants
g �= 0 can be reduced to a few standard solutions due to the
scaling laws

Rg,μ(x; r0,pη,H,σ ) = R g

k2 ,±1

(
kx; r0,

pη

k
,
H

k2
,σ

)
, (18a)

ϑg,μ(x; r0,pη,H,σ ) = ϑ g

k2 ,±1

(
kx; r0,

pη

k
,
H

k2
,σ

)
, (18b)

where k = √|μ| > 0 and

Rg,μ(x; r0,pη,H,σ ) = αR±1,μ

(
x;

r0

α
,
pη

α2
,
H

α2
,σ

)
, (19a)

ϑg,μ(x; r0,pη,H,σ ) = ϑ±1,μ

(
x;

r0

α
,
pη

α2
,
H

α2
,σ

)
, (19b)

where α = |g|− 1
2ν .

For a given exponent ν > 0 it suffices to consider the cases
g = ±1 and μ = ±1 in order to get all local solutions for
arbitrary values g and μ; the case μ = 0 is included by taking
the limits

Rg,0(x; r0,pη,H,σ ) = lim
k→0

Rg,1(kx; r0,pη/k,H/k2,σ ),

(20a)

ϑg,0(x; r0,pη,H,σ ) = lim
k→0

ϑg,1(kx; r0,pη/k,H/k2,σ ),

(20b)

and the limit g → 0 needs to be consistent with (17).

For the cubic NLSE the functions R±1,±1(x; r0,pη,H,σ )
and ϑ±1,±1(x; r0,pη,H,σ ) can be expressed explicitly in terms
of Jacobi elliptic functions (see Appendix A). For general ν

we could not express the integrals (16a) and (16b) in terms
of any known special functions. The qualitative behavior of
these solutions follows straightforwardly from the form of the
effective potential Veff(r). While this is all well known, it is
useful in the present context to summarize the various cases.
We do this in the rest of this section, adding some remarks
related to their use in nonlinear quantum graphs.

1. The repulsive case g > 0

It is sufficient to consider g = 1 and μ = ±1. The solutions
R1,±1(x; r0,pη,H,σ ) and ϑ1,±1(x; r0,pη,H,σ ) depend mainly
on the two parameters H and pη, i.e., the Hamiltonian energy
and the angular momentum in the auxiliary central potential
dynamics in the plane. The dependence on r0 and σ is just
a matter of shifting the origin x �→ x − x0, i.e., translating
a solution. For the qualitative discussion we consider the
effective potential

Veff(r) = p2
η

2r2
± r2

2
− 1

2ν + 2
r2ν+2 (21)

of the radial motion, where the sign is chosen positive
(negative) for μ = 1 (μ = −1). Figure 2 shows the effective
potential for various values of the angular momentum pη.
For positive chemical potential μ > 0 we see the following
different types of solutions.

(i) For |pη| < pcrit ≡ ( ν
ν+2 )1/2( 2

ν+2 )
1/ν

the effective poten-
tial has a local minimum and a local maximum at energies
H = Emin(pη) and H = Emax(pη) (see Fig. 2). For energies

0 0.5 1 1.5
r

−0.1

0

0.1

0.2

0.3

0.4

V
eff

(r
)

0 0.2 0.4 0.6
r

−0.2

0

0.2

0.4

V
eff

(r
)

FIG. 2. The effective potential Veff (r) for the radial motion in the auxiliary dynamical system with repulsive nonlinear coupling g = 1 and
ν = 1. In the left graph the chemical potential is μ = 1; in the right graph μ = −1. The curves in each graph correspond to different values
of the flow (angular momentum of auxiliary dynamics) pη = (0,0.01,0.05,0.1,0.2,0.3,0.4). Graphs for different values of the exponent ν look
qualitatively similar.
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FIG. 3. The amplitude functions R1,1(x) (left) and R1,−1(x) (right) for local solutions of the NLSE with repulsive interaction. The parameters
H , pη have been varied and r0 such that minimal amplitude is obtained for x = 0. For R1,1(x) bounded and unbounded solutions are shown.
The plotted functions are for ν = 1 (ν �= 1 leads to qualitatively similar solutions).

between these two energies Emin � H � Emax, there is a
bounded solution where r1 � R1,1(x) � r2 and an unbounded
solution R1,1(x) > r3 (see Fig. 2).

For the bounded solutions the amplitude is a periodic
function R1,1(x) = R1,1(x + �1,1) with period

�1,1(H,pη) = 2
∫ r2

r1

(
2H − p2

η

r2
− r2 + 1

ν + 1
r2ν+2

)−1/2

dr.

(22)

This period tends to infinity when H → Emax(pη) from below.
In that case the amplitude R1,1(x) tends to the constant value
rmax(pη) for x → ±∞ and has a single minimum at a finite x

value. Because of the corresponding dip in the amplitude, such
solutions are known as dark stationary solitons [46] though
this name is sometimes reserved to the case pη = 0 where
the intensity vanishes at one point. Figure 3 shows plots for
the amplitude R1,1(x)2 for various parameters including dark
solitons.

The phase function ϑ1,1(x) is an increasing (decreasing)
function if pη > 0 (pη < 0). In general, �ϑ = ϑ1,1(x +
�1,1) − ϑ1,1(x) is not a rational multiple of π , so the
corresponding wave functions φ(x) = R1,1(x)eiϑ1,1(x) are, in
general, not periodic functions of x. The wave function
φ(x) = R1,1(x)eiϑ1,1(x) is real if and only if pη = 0. The phase
does not change as long as the amplitude is positive. When
R1,1(x) = 0 the wave function has a nodal point and changes
its sign; i.e., ϑ1,1(x) changes by π . Indeed, it is clear from the
form of Veff(r) that pη = 0 if φ(x) has nodal points. It can be
shown explicitly that expression (16b) for the phase shows a
discontinuous jump by ±π in the limit pη → 0.

(ii) For |pη| < pcrit and either H > Emax or H < Emin all
solutions are unbounded.

(iii) For |pη| > pcrit the local extrema of the effective
potential have disappeared and it becomes a strictly decreasing
function. In this case only unbounded solutions exist.

For negative chemical potential μ < 0 the effective poten-
tial is a decreasing function and only unbounded solutions
exist.

The bounded solutions for positive chemical potential can
be extended to global solutions on the infinite line straight-
forwardly. All unbounded solutions develop a singularity at a

finite value xsing, where amplitude R1,±1(x; r0,pη,H,σ ) di-
verges like 1/|x − xsing|1/ν as can be checked by inserting a
wave function with that kind of singularity in the stationary
NLSE. Physically, such singularities indicate a breakdown of
the model as the NLSE is usually an effective description of a
physical system that is valid only for sufficiently small ampli-
tudes. Moreover, for 0 < ν � 2 the corresponding wave func-
tions are not square integrable over a finite interval containing
the singularity (

∫ xsing+�x

xsing
|	(x)|2dx ∼ ∫ �x

0 x−2/νdx diverges).
For a Bose-Einstein condensate (ν = 1) this implies infinitely
many particles in a small interval around the singularity which
is also not physical. One is tempted to focus just on the globally
bounded solutions. However, in the present setting we want to
use local solutions on finite intervals to construct solutions on a
graph; in that setting the globally unbounded solutions cannot
be excluded as they may still describe bounded solutions on
an edge of finite length (the singularity may only develop on a
larger distance). It is not difficult to construct global bounded
solutions on a chain or ring graph which involve any of the
local solutions discussed above.

2. The attractive case g < 0

Here it is sufficient to consider g = −1 and μ = ±1. The
effective potential is

Veff = p2
η

2r2
± r2

2
+ 1

2ν + 2
r2ν+2. (23)

Figure 4 shows the effective potential for various values of
pη. Stationary solutions in the attractive case always remain
bounded with an amplitude r1 � R−1,±1(x) � r2 (where the
values of the turning points r1 and r2, depend on pη, H , and
the sign of μ = ±1). The amplitude is a periodic function
R−1,±1(x) = R−1,±1(x + �−1,±1) with period

�−1,±1(H,pη)

= 2
∫ r2

r1

(
2H − p2

η

r2
∓ r2 − 1

ν + 1
r2ν+2

)−1/2

dr. (24)

This period is finite unless pη = 0 and H = 0 for a negative
chemical potential μ < 0. The solution in this case consists
of a single peak at x = 0, which falls off exponentially on
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FIG. 4. The effective potential Veff (r) for the radial motion in the auxiliary dynamical system with attractive nonlinear coupling g = −1
and ν = 1. In the left graph the chemical potential is μ = 1; in the right graph it is μ = −1. The curves in each graph correspond to different
values of the flow (angular momentum of auxiliary dynamics) pη = (0,0.01,0.05,0.1,0.2,0.3,0.4). Graphs for different values of the exponent
ν look qualitatively similar.

both sides and then drops monotonically to zero as |x| → ∞.
This solution is known as a stationary soliton [46]. Figure 5
shows plots for the amplitude R−1,±1(x) for various parameters
including the soliton.

The phase function ϑ−1,±1(x) is again an increasing
(decreasing) function if pη > 0 (pη < 0) such that �ϑ =
ϑ−1,±1(x + �−1,±1) − ϑ−1,±1(x) is, in general, not a rational
multiple of π . In the attractive case the wave function φ(x) =
R−1,±1(x)eiϑ−1,±1(x) is real if and only if there are nodal points
on the infinite line (which is equivalent to pη = 0).

C. Stationary states for a closed graph
as a nonlinear eigenproblem

Let us now assume that we have a finite (connected) closed
graph with E = B < ∞ edges all of which are bonds. For
the linear Schrödinger equation on such a graph (i.e., if the
nonlinear coupling constants vanish on each edge, ge = 0 for
all e ∈ E) it is well known that stationary solutions only exist
for a discrete set of values μn of the chemical potential. In
the context of the linear Schrödinger operator these are the
energy eigenvalues of the system and the collection {μn}∞n=0
is the linear spectrum of the graph. Spectral theory for linear

quantum graphs is well developed [2–4]. Before developing the
approach to nonlinear quantum graphs, let us summarize how
the linear spectrum is characterized as the zero of an explicit
characteristic function ξ (k). Denoting a directed bond as a pair
(b,d), where b denotes the bond and d = ±1 is the direction
such that d = 1 (d = −1) is the direction in which xb increases
(decreases). For positive chemical potential μ = k2 > 0 the
characteristic function has the form

ξ (k) = det(1 − eik�S), (25)

where S is a unitary 2B × 2B matrix that contains
the quantum amplitudes to scatter from one directed
edge (b,d) into another directed edge (b′,d ′) and eik� =
diag(eik�1 , . . . ,eik�B ,eik�1 , . . . ,eik�B ) is a 2B × 2B diagonal
(unitary) matrix that contains the phases eik�b that a plane wave
acquires going from one end of an edge to the other. The matrix
S contains information about the connectivity and about the
matching conditions. Its matrix elements Sbd,b′d ′ vanish unless
the terminal vertex of the directed edge (b′,d ′) is the same as
the starting vertex of (b,d). The nonvanishing values Sbd,b′d ′

depend on the matching conditions. Equation (25) (or some
relative of it) can be used as the starting point for developing
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FIG. 5. The amplitude functions R−1,1(x) (left) and R−1,−1(x) (right) for local solutions of the NLSE with repulsive interaction. The
parameters H , pη have been varied and r0 chosen such that the minimum is at x = 0. The plotted functions are for ν = 1 (ν �= 1 leads to
qualitatively similar solutions).
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many tools of spectral theory, such as trace formulas which
express spectral functions (e.g., the number of states inside a
spectral interval) in terms of periodic walks on the graph [2].
In the linear case one may always normalize a solution such
that ‖	n(x)‖2 = 1.

Let us now come back to the nonlinear case where stationary
solutions can, in general, not be multiplied by scalars and
remain stationary solutions. Spectrum and eigenfunctions of
the linear quantum graph remain relevant for a nonlinear
quantum graph when the L2 norm

N = ‖	(x)‖2 (26)

is small, i.e., when we take N → 0 we expect to recover
the linear spectrum and the linear eigenfunctions (up to
normalization). For arbitrary values of N we see that stationary
solutions exist along one-parameter families of values for the
chemical potential μn(N ).

This can be seen by constructing global solutions on the
graph from local solutions and adding matching conditions
on the graph. If one first disregards any matching conditions,
one may take the values of the wave function φe(xe) and its
derivative at the point xe = 0 as free parameters. The local
solutions of the NLSE imply the local transfer operator that
allows us to find the corresponding values at the other end of
the edge xe = �e. This gives 4B independent real parameters
to which we now add the matching conditions. Continuity at
one vertex i of valency vi implies 2(vi − 1) real conditions;
adding over all vertices, this implies 4B − 2V independent
real conditions. Next we have the condition (4) for each vertex.
These give together 2V − 1 independent real conditions. Note
that one may have expected 2V conditions; however, the
imaginary part of the matching condition (4) refers to flux
conservation which is also conserved by the solutions along
the edge. So if the flux condition is met at V − 1 vertices, it will
automatically be conserved at the last vertex as well. On the
other side, we are free to choose an overall phase which adds
one more condition. Note that flux conservation is related to
this global gauge symmetry by Noether’s theorem, so in a sense
the “missing” condition we observed for flux conservation at
each vertex reappears in the form of one parameter that we
are free to choose. Altogether we have as many conditions
as free variables. So for given μ there will generically be
solutions for isolated points in the parameter space that solve
the problem. Each of these will have a definite value for the
norm N . If we fix N from the outside we have to leave μ

as a free parameter and will generically obtain solutions for
discrete values {μn(N )} of the chemical potential. As N is
changed the chemical potential of a given solution will change
and the corresponding wave function will deform. In principle,
bifurcations may occur when N is changed; i.e., solutions may
coalesce and disappear, or solutions may appear. In order to
define a generalized eigenvalue problem, one may fix N ; in that
case the nonlinear spectrum {μn(N )}∞n=0 will generally remain
a discrete set. Note that it is, in general, difficult to decide
whether a given set of generalized eigenvalues is the complete
spectrum. As long as N is sufficiently small, one may hope that
the spectra {μn(N )}∞n=0 and the linear spectrum {μn(0)}∞n=0 are
in one-to-one correspondence and that eigenvalues with the
same index n are continuously connected when N is changed
from a finite value to zero.

Above we have used the values of the wave function and
its derivatives at xe = 0 on each bond, altogether 4B real
parameters. The complexity of stating 4B equations for 4B

parameters can be reduced building in continuity at the vertices
from the start, e.g., by choosing a spanning tree and then
building up a continuous solution on the spanning tree first.
Further complexity reduction can be achieved by considering
the flux pη as a parameter on each edge; flux conservation
implies that it is sufficient to know the flux on some edges
(indeed just on the edges we took out to get a spanning tree)
to obtain the flux on other edges explicitly.

D. Stationary scattering states for an open graph

Large parts of the discussion in the previous chapter can be
extended to open graphs with a finite number of leads. We just
need to discuss proper conditions for the wave function φ�(x�)
on the leads � ∈ L as x� → ∞. It is instructive to first recall the
situation for an open linear quantum graph where ge = 0 for all
edges e ∈ E [8,9]. In this case, basically two types of solutions
exist: In the physics literature they are usually referred to as
bound states and scattering states. The former have a discrete
spectrum of eigenvalues and are square integrable; the latter
have a continuous spectrum and have a bounded amplitude on
the leads (implying that they are not square integrable over the
complete open graph).

1. Bound states

The bound state on a linear finite open graph have a discrete
spectrum of allowed values for the chemical potential. The
corresponding wave function is either decaying exponentially
φl ∝ e−κxl with a negative chemical potential μ = −κ2 < 0
(i.e., at the bottom of the spectrum), or the wave function
vanishes on all leads. In the latter case there is a known
topological mechanism that makes it possible to construct
wave functions with positive chemical potential μ > 0 which
are supported on finite closed subgraphs (topological bound
states). The topological bound states in a linear quantum graph
are not generic in the sense that they require rational ratios of
bond lengths.

In the nonlinear setting any bound states at the bottom of
the spectrum come in one-parameter families such that the
chemical potential depends on the number of particles (L2

norm) in complete analogy to the solutions in finite graphs.
The topological mechanism for bound states may also be

generalized to the nonlinear case; however, the number of
conditions one has to impose makes it clear that topological
bound states remain as nongeneric as they are for the linear case
(note that the condition of rational ratios of bond lengths needs
to be replaced with a nonlinear generalization). A detailed
understanding of topological bound states for open nonlinear
graphs is an interesting topic in its on right but not in the focus
of the present work, which is either on closed graphs or the
scattering states of open graphs.

2. Scattering states

Let us start again with a discussion of the scattering states
for a linear open quantum graph. These exist for any μ = k2 >

0 (the continuous spectrum of a graph). The wave function on
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the leads may be written as

φl(xl) = ale
−ikxl + ble

ikxl , (27)

where al is the incoming amplitude and bl the outgoing
amplitude along the lead l ∈ L. Physically, one may think
of the amplitudes al as being fixed in an experiment and the
outgoing amplitudes bl as the response of the system that is to
be measured. Indeed, if one satisfies all matching conditions
inside the graph the outgoing amplitudes are related to the
incoming by a linear transformation,

bl =
L∑

l′=1

S(k)ll′al′ , (28)

where S(k) is known as the scattering matrix. Total flux
conservation implies that S(k) is unitary. Explicitly, the
scattering matrix of an open linear graph is given by

S = σLL + σLB(1 − eik�σBB)−1eik�σLB, (29)

where eik� = diag(eik�1 , . . . ,eik�B ,eik�1 , . . . ,eik�B ) and the ma-
trices σXY are constructed from the vertex scattering matrices
as follows. The diagonal L × L matrix σLL contains all
direct backscattering amplitudes at the vertices adjacent to
the corresponding lead. The L × 2B matrix σLB contains the
scattering amplitudes for scattering from a directed bond to
an (outgoing) lead as the corresponding entry in the matrix
(matrix elements that are not consistent with the directed
edge connectivity vanish). Analogously, the 2B × L matrix
σBL contains the scattering amplitudes for scattering from a
lead (incoming) to a directed bond, and the 2B × 2B matrix
σBB contains the internal scattering from one directed bond to
another at some vertex.

The scattering matrix has a very clear physical interpreta-
tion in terms of an experiment where incoming waves are fixed
by the setting and reflected or transmitted waves are measured.
However, the incoming wave and the reflected wave can only
be characterized independently if the superposition principle
holds on the leads.

For μ = k2 > 0 this can only be achieved by setting gl = 0
on all leads l ∈ L. With this assumption Eq. (27) still describes
the wave function on the leads such that the coefficients al

are the amplitudes of the incoming wave which we assume
to be given by the experimenter (theoretically as boundary
conditions) and the coefficients bl describe the measured
response. In general, they are nonlinear functions,

bl = bl(a1, . . . ,aL), (30)

of the incoming amplitudes. For sufficiently small incoming
amplitudes |al|2 → 0 one expects that the leading term is given
in terms of the scattering matrix of the corresponding linear
graph (i.e., setting ge = 0 everywhere on the graph),

bl(a1, . . . ,aL) =
L∑

l′=1

Sll′ (k)al′ + O(|a1|2, . . . ,|aL|2). (31)

Transmission and reflection can be defined if we have a single
nonvanishing incoming amplitude on the lead l ∈ L. In that
case we may define the reflection coefficient as

Rl(al) = |bl(0, . . . ,0,al,0, . . . )|2
|al|2 (32)

and the transmission coefficient from lead l to lead l′ as

Tl′l(al) = |bl′ (0, . . . ,0,al,0, . . . )|2
|al|2 . (33)

Evaluating the functions bl′ and the resulting reflection and
transmission coefficients is one of the central theoretical
physical problems for an open nonlinear quantum graph.
Implicitly, they are given by the set of local solutions on the
edges with the matching conditions on the vertices as described
before.

Let us conclude this section with two remarks.
(i) The assumption gl = 0 on the leads is not a severe

restriction for μ > 0. Indeed, if we have a scattering solution
for a nonlinear open quantum graph where gl �= 0 for some
lead l ∈ L, then we may choose some point xl,0 � 0 on this
lead and replace the solution for xl > xl,0 with (27) such that
φl(xl) and φ′

l(xl) are continuous at xl = xl,0, while the solution
for xl < xl,0 and all other edges remains unchanged. While
the reflection and transmission amplitudes defined in this way
will depend explicitly on the choice of xl,0 (both the phase
and the absolute values), such a construction allows us to
discuss scattering solutions in analogy to linear wave scattering
solutions.

(ii) While for linear open graphs the continuous spectrum
is always μ � 0, it is possible to have scattering solutions
on nonlinear open graphs where μ < 0 (if gl < 0 on some
leads). In that case we may not just set gl = 0 on all leads
without changing the scattering solution on the bonds unless
we are ready to accept solutions that grow in absolute value
without bound along the leads. However, if we introduce a
constant negative potential −V0 < 0 along the leads such that
μ + V0 = k2 > 0, we may set gl = 0 in an analogous way and
then discuss scattering solutions in analogy to the case μ > 0.

III. HAMILTONIAN FORMALISM AND CANONICAL
PERTURBATION THEORY FOR THE NLSE

The framework presented in the previous section makes it
possible to reduce the problem of finding solutions to the NLSE
on graphs to a finite set of (generally nonlinear) algebraic
equations for a finite set of variables. Already for relatively
simple graphs the complexity of solving these equations
will not allow for explicit analytical solutions. Compared to
the corresponding problem of finding solutions to the linear
Schrödinger equations on graphs, also a numerical approach
is faced with a considerably increased complexity. In the
second paper [1] of this series we will apply the framework
to find some solutions for a few basic closed and open
graph structures. In the face of the rising complexity of the
problem when the number of edges grows we introduce an
approximation scheme that assumes small amplitudes and
allows for long edges �b � 1/k with a positive chemical
potential μ = k2 > 0. This approximation scheme is based
on standard canonical perturbation theory for the auxiliary
Hamiltonian dynamics, as described in textbooks [47,48]. We
start with formally defining exact action-angle variables for
the system. These depend formally on the nonlinear coupling
strength g. For g → 0 the action-angle variables reduce to
the well-known action-angle variables of a two-dimensional
isotropic harmonic oscillator. The exact action-angle variables
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at finite g can then be expressed as a formal expansion in g

using canonical perturbation theory. We derive explicitly to
lowest order in the cubic case ν = 1.

There are several advantages of the canonical perturbation
theory over a direct expansion of the wave function in the
NLSE. In such an approach one sets φ(x) = φ(0)(x) + δφ(x),
where φ(0)(x) is a solution of the linear Schrödinger equation
and δφ(x) = ∑∞

n=1 gnφ(n)(x) accounts for the perturbation.
Then one solves the equations order by order. In the most
naive variant it is well known from the standard textbook
example [48] that unphysical resonance effects increase the
amplitude of oscillations in δφ(x) effectively destroying the
applicability of the whole approach at a finite distance.
More sophisticated variants of this approach (e.g., by adding
formal expansion of other parameters, e.g., setting μ = μ(0) +∑∞

n=1 gnμ(n)) may improve this but will to lowest order always
keep the form φ(x) ≈ φ(0)(x) + gφ(1)(x) where gφ(1)(x) is
supposed to be a small perturbation of the leading term for
arbitrary (large) x.

The main root of the unphysical (and mathematically
unwanted) resonance effects lies in the fact that the wave num-
ber changes when the system is perturbed. The unperturbed
wave function is periodic and obeys φ(x) = φ(x + 2π/k).
The perturbed solutions are quasiperiodic with two (generally
incommensurate for finite g) wave numbers. Using action-
angle variables is the natural way to decouple these two
underlying periods. Moreover, this approach shows that the
perturbations lead to two different effects: They change the
local shape of the wave function and they change the wave
numbers. While tiny changes of the shape are locally confined,
even the most tiny shifts in the wave number lead to changes of
the corresponding phases that can add up over large distances
such that the wave function can no longer be written in the
form φ(x) ≈ φ(0)(x) + gφ(1)(x) in any consistent way. Indeed,
while we derive canonical perturbation theory formally as an
expansion in the nonlinear coupling strength g the approach
opens a number of asymptotic regimes in the cubic NLSE that
we discuss at the end of the section.

A. Hamiltonian formalism and action-angle variables

As we have described the auxiliary dynamics in the
Lagrangian approach, it is straightforward to perform the
standard Legendre transform and the corresponding change
of variables (r,η,dr/dx,dη/dx) �→ (r,η,pr,pη), where pr =
dr/dx is the conjugate momentum to the variable r and pη

defined in Eq. (11) is the angular momentum conjugate to η.
The Hamilton function is just the energy (12) expressed in
the canonical variables H = 1

2p2
r + Veff(pη,r). As this is an

integrable system the Hamiltonian equations of motion are
simplified by introducing action-angle variables. We assume a
positive chemical potential μ > 0 for the rest of this section.
This ensures oscillatory solutions for sufficiently small r and
pr . This is the region where we want to define action-angle
variables. In the attractive case g < 0 the approach is valid in
the whole phase space.

In the present context one action variable is the angular
momentum,

Iη ≡ pη, (34)

which can take any value in R. The second action variable can
be expressed as the integral

Ir (H,Iη) = 1

π

∫ r+(H,Iη)

r−(H,Iη)

√
2[H − Veff(Iη,r)]dr, (35)

which is expressed as a function of the angular momentum
and energy. Here r+(H,Iη) and r−(H,Iη) < r+(H,Iη) are the
turning points defined as solutions of Veff(Iη,r±) = H . Note
that (35) implies Ir � 0 and implicitly defines the energy as
a function of the action variables H = H (Ir ,Iη). Moreover,
by expressing H = p2

r /2 + Veff(pη,r), Eq. (35) also defines
the radial action as a function of the original phase space
coordinates, i.e., Ir = Ir (pr,pη,r).

This allows us to define a generating function for a
canonical transformation (r,pr,η,pη) �→ (αr,Ir ,αη,Iη). We
can write the generating function that depends on the original
(generalised position) variables r and η and the new action
variable Ir and Iη,

S(Ir ,r,Iη,η) = Iηη +
∫ r

r0

pr (Ir ,Iη,r
′)dr ′ + F (Ir ,Iη), (36)

where pr (Ir ,Iη,r) is defined implicitly by (35) and expressing
H = H (pr,Iη,r). The function F (Ir ,Iη) can be chosen arbi-
trarily as it only affects a shift of the angle variables. The lower
boundary r0 of the integral in Eq. (36) is an arbitrary constant
[in principle, one may incorporate the effect of F (Ir ,Iη) into
the lower boundary by letting it depend on the actions]. The
transformation is generated by taking derivatives of (36),

pr = ∂S

∂r
= pr (Ir ,Iη,r), (37a)

pη = ∂S

∂η
= Iη, (37b)

αr = ∂S

∂Ir

= ∂F (Ir ,Iη)

∂Ir

+
∫ r

r0

∂pr (Ir ,Iη,r
′)

∂Ir

dr ′, (37c)

αη = ∂S

∂Iη

= η + ∂F (Ir ,Iη)

∂Iη

+
∫ r

r0

∂pr (Ir ,Iη,r
′)

∂Iη

dr ′. (37d)

Here the first equation gives back (35) and the second gives
pη = Iη, as required. The third and fourth equations define the
two angle variables αr and αη.

The complexity of the transformation to action-angle
variables is accompanied by a corresponding simplification
of the equations of motion. By construction, the two action
variables are constants of motion and the angle variables
change linearly in time,

αr (t) = αr (0) + κr (Ir ,Iη)t and

αη(t) = αη(0) + κη(Ir ,Iη)t, (38)

where

κr = ∂H

∂Ir

and κη = ∂H

∂Iη

. (39)
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These two angular frequencies (or wave numbers in the
original context) may be given in a slightly more explicit way
as

κr = 1
∂Ir

∂H

and κη = −
∂Ir

∂Iη

∂Ir

∂H

(40)

in terms of the function Ir (H,Iη) as defined in Eq. (35). For
the cubic case ν = 1 we give exact expressions for ∂Ir/∂H

and ∂Ir/∂Iη in Appendix B.
While the Hamiltonian description in action-angle variables

does not seem to simplify the full solution of the problem, it
is a reformulation that will allow us to perform a systematic
expansion that, at least in low orders, offers closed analytic
expressions.

Our strategy will be to find approximate solutions to
the transformation (r,pr,η,Iη) �→ (αr,Ir ,αη,Iη) by formally
considering the nonlinear coupling constant g as a small
parameter. For this we write the original Hamiltonian as

H (pr,Iη,r) = H0(pr,Iη,r) − g
r2ν+2

2ν + 2
, (41)

where H0(pr,Iη,r) is the Hamilton function of the linear
problem. We start with transforming to action-angle variables
of the linear case and then use canonical perturbation theory to
treat the additional term g r2ν+2

2ν+2 . Such a perturbative treatment
is valid as long as the harmonic term in the effective potential
dominates the anharmonic perturbation, that is, k2 r2

2 � g r2ν+2

2ν+2
or

g
r2ν

(ν + 1)k2
� 1. (42)

As ν > 0 the perturbative expansion will only be valid for
small amplitudes and break down as soon as amplitudes are of
size r2 ∼ (k2/g)1/ν .

B. The linear case

If g = 0 the transformation to action-angle coordinates
can be performed explicitly. In order to distinguish the
action-angle variable for g = 0 from the exact action-angle
variable for g �= 0, we use the variables (βr,Jr ,βη,Jη) for
g = 0 and reserve (αr,Ir ,αη,Iη) for the exact action-angle
variables in the general case. With Jη = pη one may perform
the corresponding integral in Eq. (35) to obtain

Jr (H0,Jη) = H0

2k
− |Jη|

2
⇔ H0(Jr,Jη) = k(2Jr + |Jη|).

(43)

In the following we always consider H0 as a function of Jr and
Jη. The generating function (36) for the transformation can be
expressed explicitly as

S0(Jr,Jη,r,η) = Jηη + H0

2k

[
a
√

1 − u2 + arcsin(u)

−
√

1 − a2 arcsin

(
a + u

1 + au

)]
, (44)

where

a =
√

1 − J 2
η k2

H 2
0

= 2
√

Jr (Jr + |Jη|)
2Jr + |Jη| , (45a)

u =
k2r2

H0(Jr ,Jη) − 1

a
. (45b)

The resulting angle variables are

βr = arcsin(u), (46a)

βη = η − sη

2
arccos

[
1 − 2Jr (1 − u2)

(2Jr + |Jη|)(1 + au)

]
, (46b)

where sη = sgn(Jη) = Jη/|Jη|.
Hamilton’s equations in the action-angle variables leave the

action variables Jr and Jη constant, while the angles change
linearly,

βr (x) = 2kx + βr (0) and βη(x) = sηkx + βη(0). (47)

The wave function φ(x) = r(x)eiη(x) can be expressed via

r(x) =
√

2Jr + |Jη|
k

{1 + a sin[βr (x)]}, (48a)

η(x) = βη(x) + sη

2

× arccos

(
1 − 2Jr cos2[βr (x)]

(2Jr + |Jη|){1 + a sin[βr (x)]}
)

, (48b)

φ(x) = 1√
k

(
√

Jr + |Jη|eiβη(x) + isη

√
Jre

iβη(x)−isηβr (x)),

(48c)

in terms of action-angle variables. Using sη = ±1 and the
solutions (47) (with vanishing initial angles) the exponentials
in Eq. (48c) reduce to the well-known solutions eiβη(x) = e±ikx

and eiβη(x)−isηβr (x) = e∓isηkx . Note also that (48a) implies

(
√

Jr + |Jη| − √
Jr )2

k
� r(x)2 �

(
√

Jr + |Jη| + √
Jr )2

k

(49)

and r(x)2 = |φ(x)|2 oscillates betweens these bounds with a
wavelength π/k.

While (48c) seems a complicated way to write a quite trivial
solution, it is the starting point of the canonical perturbation
theory that will take into account the nonlinearity. In the regime
of weak nonlinearity, i.e., gr2ν � k2, we will see that the
accumulated effect of the nonlinearity over large distances can
be captured to leading order by keeping the form of the wave
function (48c) and replacing k in Eq. (47) with two perturbed
wave numbers κr (Jr,Jη) and κη(Jr,Jη), which will depend on
the action variables.
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C. Canonical perturbation theory

After having found action-angle variables (βr,Jr ,βη,Jη) for
the linear case, let us now write the full nonlinear Hamilton
function in terms of these action-angle variable

H (Jr,Jη,βr ) = H0(Jr,Jη) + gG0(Jr,Jη,βr ), (50)

where

G0(Jr,Jη,βr ) = − [2Jr + |Jη| + 2
√

Jr (Jr + |Jη|) sin(βr )]ν+1

kν+1(2ν + 2)
.

(51)

The perturbative parameter which is considered small in
the following is gr2ν/k2 � 1 [see (42)]. Using (49) this is
equivalent to requiring

g(Jr + |Jη|)ν
k2+ν

� 1 (52)

or g � k2+ν/(Jr + |Jη|)ν .
In nth order perturbation theory we want to find

transformed action-angle variables (α(n)
r ,I (n)

r ,α(n)
η ,I (n)

η ) such
that the Hamilton function expressed in new variables
becomes

H = H0(Jr,Jη) + gG0(Jr,Jη,βr )

≡ Hn

(
I (n)
r ,I (n)

η

) + gn+1Gn+1
(
I (n)
r ,I (n)

η ,βr

)
, (53)

where βr = βr (I (n)
r ,I (n)

η ,α(n)
r ). For n = 0 we set I (0)

r = Jr ,
I (0)
η = Jη, α(0)

r = βr , and α(0)
η = βη. To find the generat-

ing function of the canonical transformation, one uses the

ansatz

Sn

(
I (n)
r ,I (n)

η ,βr ,βη

)
= I (n)

r βr + I (n)
η βη +

n∑
m=1

gmFm

(
I (n)
r ,I (n)

η ,βr

)
, (54)

where the functions Fm(I (n)
r ,I (n)

η ,βr ) are periodic in βr and
found by the requirement that the generated transformation,

Jr = ∂Sn

∂βr

= I (n)
r +

n∑
m=1

gm ∂Fm

∂βr

, (55a)

Jη = ∂S

∂βη

= I (n)
η , (55b)

α(n)
r = ∂S

∂I
(n)
r

= βr +
n∑

m=1

gm ∂Fm

∂I
(n)
r

, (55c)

α(n)
η = ∂S

∂I
(n)
η

= βη +
n∑

m=1

gm ∂Fm

∂I
(n)
η

, (55d)

leads to the cancellation of all terms involving βr up to nth
order in Eq. (53). This can be done in an iterative manner
by expanding H0(I (n)

r + ∑n
m=1 gm ∂Fm

∂βr
,I (n)

η ) and G0(I (n)
r +∑n

m=1 gm ∂Fm

∂βr
,I (n)

η ,βr ) in orders of g and demanding that the
terms cancel order by order. If all Fm for m � n are found, one
can immediately proceed to the order n + 1 in the perturbation
theory where the known functions Fm may be kept and only
Fn+1 needs to be found.

In first order perturbation theory one finds

H0 + gG0 = k
(
2I (1)

r + |Iη|(1)) + 2gk
∂F1

∂βr

− g

kν+1(2ν + 2)

[
2I (1)

r + ∣∣I (1)
η

∣∣ + 2
√

I
(1)
r

(
I

(1)
r + ∣∣I (1)

η

∣∣) sin(βr )
]ν+1 + O(g2). (56)

This can be solved, in principle, for any ν > 0 by writing F1(I (1)
r ,I (1)

η ,βr ) = ∑∞
N=−∞ f1N (I (1)

r ,I (1)
η )eiβrN and requiring that

ikNf1N (I (1)
r ,I (1)

η ) cancels the corresponding Fourier coefficient of gG0.
Let us here focus on the most relevant case of the cubic nonlinearity (ν = 1), where (56) reduces to

H0 + gG0 = k
(
2I (1)

r + |Iη|(1)
) − g

4k2

(
6I (1)

r

2 + 6I (1)
r |I (1)

η | + I (1)
η

2)
+ 2gk

∂F1

∂βr

− g

2k2

[
2
(
2I (1)

r + ∣∣I (1)
η

∣∣)√I
(1)
r

(
I

(1)
r + ∣∣I (1)

η

∣∣) sin(βr ) − I (1)
r

(
I (1)
r + ∣∣I (1)

η

∣∣) cos(2βr )
] + O(g2), (57)

where the term in the second line cancels by choosing

F1 = − 1

2k3

(
2I (1)

r + ∣∣I (1)
η

∣∣)√I
(1)
r

(
I

(1)
r + ∣∣I (1)

η

∣∣) cos(βr ) − 1

8k3
I (1)
r

(
I (1)
r + ∣∣I (1)

η

∣∣) sin(2βr ), (58)

and the Hamilton function is H = H1(I (1)
r ,I (1)

η ) + g2G1(I (1)
r ,I (1)

η ,βr ), with

H1
(
I (1)
r ,I (1)

η

) = k
(
2I (1)

r + ∣∣I (1)
η

∣∣) − g

4k2

(
6I (1)

r

2 + 6I (1)
r

∣∣I (1)
η

∣∣ + I (1)
η

2)
. (59)

Neglecting quadratic orders in g, the original action-angle variables can be expressed in terms of the new ones as

Jr = I (1)
r + g

4k3

[
2
(
2I (1)

r + ∣∣I (1)
η

∣∣)√I
(1)
r

(
I

(1)
r + ∣∣I (1)

η

∣∣) sin
(
α(1)

r

) − I (1)
r

(
I (1)
r + ∣∣I (1)

η

∣∣) cos
(
2α(1)

r

)]
, (60a)

Jη = I (1)
η , (60b)

032204-11



SVEN GNUTZMANN AND DANIEL WALTNER PHYSICAL REVIEW E 93, 032204 (2016)

βr = α(1)
r + g

8k3

⎡
⎣16I (1)

r

2 + 16I (1)
r

∣∣I (1)
η

∣∣ + 2I (1)
η

2√
I

(1)
r

(
I

(1)
r + ∣∣I (1)

η

∣∣) cos
(
α(1)

r

) + (
2I (1)

r + ∣∣I (1)
η

∣∣) sin
(
2α(1)

r

)⎤⎦, (60c)

βη = α(1)
η + sη

g

8k3

⎡
⎣ 8I (1)

r

2 + 6I (1)
r

∣∣I (1)
η

∣∣√
I

(1)
r

(
I

(1)
r + ∣∣I (1)

η

∣∣) cos
(
α(1)

r

) + I (1)
r sin

(
2α(1)

r

)⎤⎦, (60d)

where sη = sgn(I (1)
η ).

The solution of the Hamiltonian dynamics in first order
perturbation theory leaves the action variables I (1)

r and I (1)
η

constant, while the conjugate angles increase as

α(1)
r (x) = κ (1)

r

(
I (1)
r ,I (1)

η

)
x + α(1)

r (0), (61a)

α(1)
η (x) = κ (1)

η

(
I (1)
r ,I (1)

η

)
x + α(1)

η (0), (61b)

where

κ (1)
r

(
I (1)
r ,I (1)

η

) = ∂H1

∂I
(1)
r

= 2k

[
1 − 3g

4k3

(
2I (1)

r + ∣∣I (1)
η

∣∣)],

(62a)

κ (1)
η

(
I (1)
r ,I (1)

η

) = ∂H1

∂I
(1)
η

= sηk

[
1 − g

2k3

(
3I (1)

r + ∣∣I (1)
η

∣∣)].

(62b)

Substitution of this solution into (48c) gives an approximate
local solution for the stationary NLSE to first order in
g(I (1)

r +|I (1)
η |)

k3 � 1.

D. The asymptotic regimes of the nonlinear transfer operator
in canonical perturbation theory

In order to understand the significance of the approximate
solutions to the NLSE in canonical perturbation theory to
lowest nontrivial order, let us consider the nonlinear transfer
operator along some edge of length � in the graph. For this
purpose it is not necessary to consider the full nonlinear
transfer operator in its most general form. It will be sufficient to
restrict the “initial” conditions at x = 0 to φ(0) = 0 (while the
derivative takes some real value) and only consider the wave
function at the other end of the edge. In first-order canonical
perturbation theory, this is given by

φ(�) = 2

√
Jr (�)

k
sin

[
βr (x)

2

]
, (63a)

Jr (�) = Ir − gI 2
r

4k3
{4 cos[αr (�)] − cos[2αr (�)]} + O

(
g2I 3

r

k6

)
,

(63b)

βr (�) = αr (�) + gIr

4k3
{8 sin[αr (�)] − sin[2αr (�)]} +O

(
g2I 2

r

k6

)
,

(63c)

αr (�) = κr�, (63d)

κr = 2k

[
1 − 3gIr

2k3
+ O

(
g2I 2

k6

)]
. (63e)

This is a real solution where only one action-angle pair is
relevant. While this special case does not show the dephasing
between the two degrees of freedom that are present for more
general initial conditions, the explicitly given error estimates
will be sufficient to identify the relevant asymptotic regimes
and these regimes remain unaltered in the general case. Equa-
tions (63) are justified for locally weak nonlinearity, which
really means that the dimensionless strength of nonlinearity

is negligible |g||φ|2
k2 ∝ gIr

k3 � 1. Equations (63) also reveal two
entirely different effects of a weak nonlinearity on a solution.
The first effect is a local deformation of the linear solution.
The second effect is a phase shift due to the nonlinear wave
numbers κr . Our approach assumed locally weak nonlinearity,
which implies that the local deformations (which are of relative
order |g|Ir

k3 ) are always small. However, the accumulated change

in the phase (which is of order |g|Ir �

k2 ) does not necessarily need
to be small.

One may identify three different asymptotic regimes that
are consistent with the canonical perturbation expansion. Each
may lead to additional consistent simplifications.

(R1) The low-intensity weakly nonlinear asymptotic

regime g|φ|2 → 0 at fixed (bounded) wave number k. This is
equivalent to either g → 0 or Ir → 0 (and Iη → 0 for general
initial conditions) when all other parameters are fixed. This
regime is weak in both the local and the global sense. For
the leading nonlinear effects one may expand the oscillatory
functions with respect to the small phase shifts (where this
leads to a simplification).

(R2) The short wavelength globally weak nonlinear

asymptotic regime k → ∞ with g|φ|2 fixed (bounded). This is
similar to the low-intensity regime in that it is weakly nonlinear
in both the local and the global sense. It leads to additional
simplifications as the dominant nonlinear effects all come from
the shift in the nonlinear wave number κr (and κη for general
initial conditions).

(R3) The short wavelength asymptotic regime with moder-

ately large intensities k → ∞ and g|φ|2
k2 → 0. This regime is

weakly nonlinear only in the local but not (necessarily) in the
global sense and the intensity is allowed to have moderately
large values. As in the globally weak short wavelength regime,
the leading effect is the shift of the nonlinear wave number κr

(and κη), which leads to phase shifts of order g�|φ|2
k

. As these
phase shifts may be large we may not expand the oscillatory
terms and the nonlinear effect in the wave function comes
in the leading order. If we are only interested in the leading
effect we may neglect all other deformations altogether. In
this regime the equations that describe the stationary states on
nonlinear quantum graphs simplify considerably in form but
remain nonlinear.
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The explicit leading order of the wave number shift is
consistent as long as the intensity is only growing moderately
as |φ|2 = O(k) (at fixed g and �). The regime, however, allows
a larger growth |φ|2 = o(k2) but this requires to calculate
the nonlinear wave number κr (and κη for general initial
conditions) to all orders which is done in Appendix B.

In Ref. [1] we will consider a number of simple graph
structures as case studies how these regimes can be explored
with our approach. To come back to the discussion we had
at the beginning of this section, let us compare again our
approach to any perturbation theory based on writing the wave
function in the form φ(x) = φ0(x) + δφ(x), where φ0(x) is
a solution of the corresponding linear equation and δφ(x)
a small perturbation. In the asymptotic regimes R1 and R2
consistency requires that Eqs. (63) are expanded further with
respect to small parameters which leads to the form φ(x) =
φ0(x) + δφ(x). So our approach contains standard perturbation
theory as a special case. As regimes R1 and R2 can be obtained
by linearization of the of the NLSE with respect to δφ(x) no
genuine nonlinear effects such as bifurcations or multistability
can be described. Regime R3, however, is not consistent with a
small perturbation of the wave function and cannot be obtained
by linearization of the NLSE in standard perturbation theory.
We will show that genuine nonlinear effects can be described in
this regime for sufficiently simple graph structures in Ref. [1].

If necessary, it is not conceptually difficult to obtain higher
order approximations in the canonical perturbation theory
though the expressions become more and more cumbersome;
using symbolic computer algebra software is the obvious
choice.

IV. CONCLUSION

In this paper we considered the stationary NLSE on open
and closed metric graphs, in short nonlinear quantum graphs
as a model that makes it possible to investigate topological
effects on nonlinear waves. The solutions consist of stationary
solutions of the one-dimensional NLSE on the edges (finite
intervals or half lines) that obey matching conditions at the
edges. We have given a complete qualitative description of all
local solutions, including solutions that may form singularities
when extended beyond the interval that represents a finite
edge (bond). Our qualitative analysis uses an exact equivalence
between the NLSE in one dimension and the dynamics of a
particle in two dimensions and a central potential where the
spatial variable x takes the role of the time. The chemical
potential (or energy) μ, nonlinear coupling constant g, and the
power of the nonlinearity ν characterize both the NLSE and
the corresponding central potential in the equivalent dynamics.
The Hamiltonian energy and the angular momentum are two
constants of motion for the equivalent dynamical system. They
characterize the trajectories and hence the local solutions of
the NLSE. Scaling properties make it possible to reduce the
analysis to μ = ±1 and g = ±1. For ν = 1 we compile the
complete set of analytic solutions in the Appendix; so far
these have been given explicitly only for solutions that remain
bounded on an infinite interval.

The knowledge of the solutions along each edge formally
reduces the problem of characterizing the solutions on a graph
to a finite set of nonlinear equations that follow from the

matching conditions and a nonlinear transfer operator that
expresses the wave function and its derivative at one end of
an edge in terms of the values at the other end. While these
equations may be solved numerically, complete analytical
solutions will generally be hard to find even for quite simple
graphs. In order to simplify the nonlinear transfer operator, we
have introduced a canonical perturbation theory for the NLSE
valid for small g (and arbitrary ν). This is a very powerful
tool. In contrast to diagrammatic approaches which only yield
corrections linear in g for quantities such as the wave function,
in the canonical perturbation theory g enters the wave function
in a nonlinear way.

We have here focused on the NLSE on quantum graphs.
Generalizations to other nonlinear wave equation can be
worked out in an analogous way. Such generalizations may
be necessary for physical applications of the framework.
For example, the NLSE appears in nonlinear optics in a
specific approximation where the envelope of an optical field
is considered. Backscattering from the vertices implies that
this approximation may break down and more general wave
equations (not necessarily for a scalar wave) need to be
considered. For the qualitative understanding of the combined
effect of nonlinear wave propagation and network topology
the nonlinear quantum graphs based on the simpler NLSE is
rich in complexity and may give already a lot of insight.

In the second paper of this series [1] we will analyze
some basic closed and open graph structures analytically and
numerically. Among other things we will show that using the
canonical perturbation theory described here allows for an
analytical description of genuine nonlinear effects. We will
also give an outlook on open questions.
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APPENDIX A: ANALYTIC LOCAL SOLUTIONS
ON A GIVEN EDGE FOR ν = 1 IN TERMS

OF JACOBI ELLIPTIC FUNCTIONS

The bounded stationary solutions for the cubic NLSE (ν =
1) on the infinite line or a ring are known and can be expressed
in terms of elliptic functions [49,50]. The construction of
stationary solutions on graphs requires the knowledge of
all local solutions including those that are unbounded when
continued to the infinite line. These can also be reduced to
elliptic functions. As we are not aware that these have been
discussed in the literature, we here give a complete overview
of all local solutions of the one-dimensional cubic stationary
NLSE. Due to the scaling laws (18) and (19) it is sufficient to
consider solutions

φ(x) = R±1,±1(x; r0,pη,H,σ )eiϑ±1,±1(x;r0,pη,H,σ )

for chemical potential μ = ±1 and nonlinear coupling g =
±1. We also state expressions for the integrated intensity
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(scaled number of particles),

N±1,±1(x; r0,pη,H,σ )

:=
∫ x

0
|φ(x ′)|2dx ′

=
∫ x

0
R±1,±1(x ′; r0,pη,H,σ )2dx ′, (A1)

over an interval [0,x].

1. Elliptic integrals and elliptic functions

We use the following definitions for elliptic integrals (the
Jacobi form)

F (x|m) :=
∫ x

0

1√
1 − u2

√
1 − m u2

du, (A2a)

K(m) := F (1|m), (A2b)

E(x|m) :=
∫ x

0

√
1 − m u2

√
1 − u2

du, (A2c)

�(x|a,m) :=
∫ x

0

1√
1 − u2

√
1 − m u2(1 − a u2)

du, (A2d)

where 0 � x � 1, m � 1, and a � 1. Note that our definition
allows m and a to be negative.

The notation in the literature is far from uniform. Our choice
seems the most concise for the present context and it is usually
straight forward to translate our definitions into the ones of any
standard reference on special functions. For instance, the NIST
Handbook of Mathematical Functions [49] defines the three
elliptical integrals F (φ,k), E(φ,k), and �(φ,α,k) by setting
x = sin(φ), m = k2, and a = α2 in our definitions above.

Jacobi’s elliptic function sn(x,m), the elliptic sine, is
defined as the inverse of F (u|m),

u = sn(x,m) ⇔ x = F (u|m). (A3)

This defines sn(x,m) for x ∈ [0,K(m)]. This is extended to a
periodic function with period 4K(m) by requiring sn(K(m) +
x,m) = sn(K(m) − x,m), sn(−x,m) = −sn(x,m) and sn(x +
4K(m),m) = sn(x,m). So, sn(x,m) is an elliptic generaliza-
tion of sin(x). The corresponding elliptic cosine cn(x,m) is
obtained by requiring that it is a continuous function satisfying

cn2(x,m) + sn2(x,m) = 1 (A4)

such that cn(0,m) = 1. It is useful to also define the non-
negative function

dn(x,m) :=
√

1 − m sn2(x,m). (A5)

At m = 0 and m = 1 the elliptic functions can be expressed as

sn(x,0) = sin x, sn(x,1) = tanh x, (A6a)

cn(x,0) = cos x, cn(x,1) = cosh−1 x, (A6b)

dn(x,0) = 1, dn(x,1) = cosh−1 x. (A6c)

Derivatives of elliptic functions can be expressed in terms
of elliptic functions

d

dx
sn(x,m) = cn(x,m)dn(x,m), (A7a)

d

dx
cn(x,m) = −sn(x,m)dn(x,m), (A7b)

d

dx
dn(x,m) = −m sn(x,m)cn(x,m). (A7c)

The first of these equations implies that u = sn(x,m) is a
solution of the first order ordinary differential equation

du

dx
=

√
1 − u2

√
1 − mu2. (A8)

2. Repulsive case with positive chemical potential

In the main text we have used the constants of motion pη

and H as parameters for the formal solutions for arbitrary
nonlinear exponent ν. For ν = 1 a different (equivalent) set
of real parameters that we denote by ρi (i = 1,2,3) are more
useful. For the repulsive case with positive chemical potential
(g = 1 and μ = 1) they are implicitly defined (given arbitrary
real values for pη and H ) by

ρ1 + ρ2 + ρ3 = 2, (A9a)

1

ρ1
+ 1

ρ2
+ 1

ρ3
= 2H

p2
η

, (A9b)

ρ1ρ2ρ3 = 2p2
η, (A9c)

or, equivalently, through the identity

P (R) := (R2 − ρ1)(R2 − ρ2)(R2 − ρ3)

= R6 − 2R4 + 4HR2 − 2p2
η (A10)

of real polynomials in R2. Note that the sign of pη does
not enter the definition of the parameters ρi . The differential
equation for the amplitude R1,1(x) then reduces to 2R2( dR

dx
)
2 =

P (R), where the left-hand side is non-negative. This implies
that the solutions will have amplitudes in the intervals where
P (R) > 0.

Note that (A10) defines P (R) as a real polynomial of order
three in R2. We thus expect that either all three ρi are real, or
two ρi are complex and one is real.

In the first case with three real ρi we may order them
as 0 � ρ1 � ρ2 � ρ3 � 2, where the first and last inequali-
ties follow straightforwardly from Eq. (A9). The motion is
either bounded with ρ1 � R1,1(x)2 � ρ2 or unbounded with
R1,1(x)2 > ρ3. If ρ2 = ρ3, then three solutions coexist: a
bounded dark soliton with ρ1 � R1,1(x)2 � ρ2, a constant
amplitude solutions R1,1(x)2 = ρ2 ≡ ρ3, and an unbounded
solution with R1,1(x)2 � ρ2 ≡ ρ3.

In the complex case we may choose ρ3 real and write
ρ1 = ξ + iχ and ρ2 = ξ − iχ . The motion is unbounded with
R1,1(x)2 > ρ3. Note that in either case r0 ≡ R1,1(0) has to be
chosen consistently with the inequalities valid for R1,1(x).
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a. Bounded solutions: ρ1 � R1,1(x)2 � ρ2 � ρ3

With the initial conditions R(0) = r0 and ϑ(0) = 0 the
bounded solution with real ρi is given by

R1,1(x) =
√

ρ1 + (ρ2 − ρ1)u(x)2, (A11a)

ϑ1,1(x) = pη

σβρ1
[2n�(1| − a,m) + (−1)n�(u(x)| − a,m)

−�(u0| − a,m)], (A11b)

N1,1(x) = ρ3x − ρ3 − ρ1

σβ
[2nE(1|m) + (−1)nE(u(x)|m)

−E(u0|m)], (A11c)

u(x) = sn(y0 + σβx,m), (A11d)

where m = ρ2−ρ1

ρ3−ρ1
, a = ρ2−ρ1

ρ1
, β =

√
ρ3−ρ1

2 , u0 =
√

r2
0 −ρ1

ρ2−ρ1
,

y0 = F (u0|m), and n ∈ Z such that | y0+σβx

K(m) − 2n| � 1. The
first line (A11a) is the substitution that reduces the ordinary
differential equation 2R2( dR

dx
)
2 = P (R) for R1,1(x) to (A8)

for u(x).
For ρ2 = ρ1 this reduces to a constant amplitude solution

R1,1(x; r0,pη,H,σ ) = √
ρ1, (A12a)

ϑ1,1(x; r0,pη,H,σ ) = pη

ρ1
x, (A12b)

N1,1(x; r0,pη,H,σ ) = ρ1x. (A12c)

b. Unbounded solutions: ρ1 � ρ2 � ρ3 � R1,1(x)2

The unbounded solution for real ρi is given by

R1,1(x; r0,pη,H,σ ) =
√

ρ2 + (ρ3 − ρ2)
1

1 − u(x)2
, (A13a)

ϑ1,1(x; r0,pη,H,σ ) = pη

ρ2
x − pη(ρ3 − ρ2)

σβρ2ρ3
[2n�(1|a,m) + (−1)n�(u(x)|a,m) − �(u0|a,m)], (A13b)

N1,1(x; r0,pη,H,σ ) =
⎧⎨
⎩ρ3x − ρ3−ρ1

σβ
[E(u(x)|m) − E(u0|m)] + ρ3−ρ1

σβ

[
u(x)

√
1−mu(x)2

1−u(x)2 − u0

√
1−mu2

0

1−u2
0

]
if n = 0;

∞ if n �= 0.

(A13c)

u(x) = sn(y0 + σβx,m) (A13d)

where m = ρ2−ρ1

ρ3−ρ1
, a = ρ2

ρ3
, β =

√
ρ3−ρ1

2 , u0 =
√

r2
0 −ρ3

r2
0 −ρ2

, y0 = F (u0|m), and n ∈ Z such that | y0+σβx

K(m) − 2n| � 1.

c. Special case: ρ1 < ρ2 = ρ3

Three solutions coexist: a bounded dark soliton solution, a constant amplitude solution, and an unbounded solution. The dark
soliton can be obtained from setting ρ2 = ρ3 in Eq. (A11), which then reduces to

R1,1(x; r0,pη,H,σ ) =
√

ρ1 + (ρ2 − ρ1)u(x)2, (A14a)

ϑ1,1(x; r0,pη,H,σ ) = pη

ρ2
x + pη

√
2

σρ2
√

ρ1
{arctan[

√
au(x)] − arctan(

√
au0)}, (A14b)

N1,1(x; r0,pη,H,σ ) = ρ2x − ρ2 − ρ1

σβ
[u(x) − u0], (A14c)

u(x) = tanh(y0 + σβx), (A14d)

where a = ρ2−ρ1

ρ1
, β =

√
ρ2−ρ1

2 , u0 =
√

r2
0 −ρ1

ρ2−ρ1
, and y0 = arctanh(u0). The constant amplitude solution is given by

R1,1(x; r0,pη,H,σ ) = √
ρ2, (A15a)

ϑ1,1(x; r0,pη,H,σ ) = pη

ρ2
x, (A15b)

N1,1(x; r0,pη,H,σ ) = ρ2x, (A15c)
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and the unbounded solution is

R1,1(x; r0,pη,H,σ ) =
√

ρ1 + (ρ2 − ρ1)u(x)−2, (A16a)

ϑ1,1(x; r0,pη,H,σ ) = pη

ρ2
x + pη

√
2

σρ2
√

ρ1

{
arctan

[
u(x)√

a

]
− arctan

(
u0√
a

)}
, (A16b)

N1,1(x; r0,pη,H,σ ) =
{

ρ2x + ρ2−ρ1

σβ

[
1

u(x) − 1
u0

]
if y0 − βσx > 0;

∞ if y0 − βσx � 0,
(A16c)

u(x) = tanh(y0 − σβx), (A16d)

where β =
√

ρ2−ρ1

2 , u0 =
√

r2
0 −ρ1

ρ2−ρ1
, and y0 = arctanh(u0). Equations (A15) and (A16) can be obtained from (A13) by performing

appropriate limits ρ2 → ρ3.

d. Unbounded solutions: R1,1(x)2 � ρ3 > 1, ρ1 = ξ + iχ = ρ∗
2

This is given by

R1,1(x; r0,pη,H,σ ) =
√

ρ3 + γ
u(x)2(1 − m u(x)2)

1 − u(x)2
, (A17a)

ϑ1,1(x; r0,pη,H,σ ) = pη

ρ3βσ (a − b)
{(1 − b)[2n�(1|b,m) + (−1)n�(u(x)|b,m) − �(u0|b,m)]

− (1 − a)[2n�(1|a,m) + (−1)n�(u(x)|a,m) − �(u0|a,m)]}, (A17b)

N1,1(x; r0,pη,H,σ ) =
⎧⎨
⎩(ρ3 + γ )x − 2γ

σβ
[E(u(x)|m) − E(u0|m)] + γ

σβ

[
u(x)

√
1−m u(x)2

1−u(x)2 − u0

√
1−m u2

0

1−u2
0

]
if n = 0,

∞ if n �= 0,

(A17c)

u(x) = sn(y0 + σβx,m), (A17d)

where γ =
√

(ρ3 − ξ )2 + χ2, m = γ−ρ3+ξ

2γ
, β = √

γ /2,

u0 =
√

γ+r2
0 −ρ3

γ−ρ3+ξ
+

√
( γ+r2

0 −ρ3

γ−ρ3+ξ
)
2 − 2(r2

0 −ρ3)
γ−ρ3+ξ

, y0 = F (u0|m),

a = ρ3−γ+
√

ξ 2+χ2

2ρ3
, b = ρ3−γ−

√
ξ 2+χ2

2ρ3
, and n ∈ Z such that

| y0+σβx

K(m) − 2n| � 1.

3. Repulsive case with negative chemical potential

For the solutions with g = 1 and μ = −1 the three
parameters ρi (i = 1,2,3) are defined by

ρ1 + ρ2 + ρ3 = −2, (A18a)

1

ρ1
+ 1

ρ2
+ 1

ρ3
= 2H

p2
η

, (A18b)

ρ1ρ2ρ3 = 2p2
η, (A18c)

or, equivalently

P (R) = (R2 − ρ1)(R2 − ρ2)(R2 − ρ3)

= R6 + 2R4 + 4HR2 − 2p2
η. (A19)

As in the previous case, either all three ρi are real, or two ρi

are complex and one is real.

In the first case with three real ρi we may order them as ρ1 �
ρ2 � 0 � ρ3 � 2, where the second and third inequalities can
be shown straightforwardly. In the complex case we may
choose ρ3 real and write ρ1 = ξ + iχ and ρ2 = ξ − iχ . In
both cases the motion is unbounded with R1,−1(x)2 > ρ3.

a. Unbounded solutions: ρ1 � ρ2 � 0 � ρ3 � R1,−1(x)2

These solutions obey the same formulas as the unbounded
motion (A13); note, however, that the parameters ρi have dif-
ferent restrictions. Analogously, the special case ρ2 = ρ3 = 0
can be obtained from (A16).

b. Unbounded solutions: R1,−1(x)2 � ρ3 > 1, ρ1 = ξ + iχ = ρ∗
2

These solutions obey the same formulas as the unbounded
motion (A17).

4. Attractive case with positive chemical potential

For the solutions with g = −1 and μ = 1 the three
parameters ρi (i = 1,2,3) are defined by

ρ1 + ρ2 + ρ3 = −2, (A20a)

1

ρ1
+ 1

ρ2
+ 1

ρ3
= 2H

p2
η

> 0, (A20b)

ρ1ρ2ρ3 = −2p2
η, (A20c)
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or, equivalently,

P (R) = (ρ1 − R2)(ρ2 − R2)(ρ3 − R2)

= −R6 − 2R4 + 4HR2 − 2p2
η. (A21)

The right-hand side defines P (R) as real polynomial in R2,
so either all ρi are real, or one is real and two are complex
conjugates. The latter case can, however, be excluded. Indeed,
the differential equation for the amplitude R−1,1(x) is of

the form 2R2( dR
dx

)
2 = P (R) � 0, which requires P (R) to be

positive. However, if ρ3 = ρ∗
2 , then ρ1 < 0 (because ρ1ρ2ρ3 =

ρ1|ρ2|2 = −2p2
η < 0) and P (R) = (ρ1 − R2)|ρ2 − R2|2 < 0

for all real values of R.
We are left with the case that all ρi are real and we may

order them as ρ1 � 0 � ρ2 � ρ3, where the first and second
inequalities can be shown straightforwardly. The solution is
bounded with ρ2 � R−1,1(x)2 � ρ3 and given by

R−1,1(x; r0,pη,H,σ ) =
√

ρ3 − (ρ3 − ρ2)
1 − u(x)2

1 − m u(x)2
=

√
ρ1 + (ρ2 − ρ1)

1

1 − m u(x)2
, (A22a)

ϑ−1,1(x; r0,pη,H,σ ) = pη

ρ1
x + pη(ρ1 − ρ2)

σβρ1ρ2
[2n�(1|a,m) + (−1)n�(u(x)|a,m) − �(u0|a,m)], (A22b)

N−1,1(x; r0,pη,H,σ ) = ρ1x + ρ2 − ρ1

σβ
[2n�(1|m,m) + (−1)n�(u(x)|m,m) − �(u0|m,m)], (A22c)

u(x) = sn(y0 + σβx,m), (A22d)

where m = ρ3−ρ2

ρ3−ρ1
, a = ρ1

ρ2
m, β =

√
ρ3−ρ1

2 , u0 =
√

1
m

r2
0 −ρ2

r2
0 −ρ1

,

y0 = F (u0|m), and n ∈ Z such that | y0+σβx

K(m) − 2n| � 1.

5. Attractive case with negative chemical potential

For the solutions with g = −1 and μ = −1 the three
parameters ρi (i = 1,2,3) are defined by

ρ1 + ρ2 + ρ3 = 2, (A23a)

1

ρ1
+ 1

ρ2
+ 1

ρ3
= 2H

p2
η

, (A23b)

ρ1ρ2ρ3 = −2p2
η, (A23c)

or, equivalently

P (R) = (ρ1 − R2)(ρ2 − R2)(ρ3 − R2)

= −R6 + 2R4 + 4HR2 − 2p2
η. (A24)

Analogously to the previous case, all ρi have to be real with
ρ1 � 0 � ρ2 � ρ3 � 2. The solution is bounded with ρ2 �
R−1,−1(x)2 � ρ3 and the formulas (A22) remain valid.

The special case of the soliton ρ2 = ρ1 = 0 (pη = 0 and
H = 0) deserves some attention as the expression (A22)
formally vanishes. The limit ρ2,ρ1 → 0 at fixed r0 is, however,
not trivial. This solution is given explicitly by

R−1,−1(x; r0,pη,H,σ ) =
√

2

cosh(y0 − σx)
, (A25a)

ϑ−1,−1(x; r0,pη,H,σ ) = 0, (A25b)

N−1,−1(x; r0,pη,H,σ ) = 2

σ
[tanh(y0) − tanh(y0 − σx)],

(A25c)

where y0 = arccosh(
√

2/r0).

APPENDIX B: EXACT EXPRESSIONS FOR THE
ANGULAR FREQUENCIES FOR THE CUBIC NLSE

The two angular frequencies κr and κη in Eq. (40) follow
from ∂Ir/∂H and ∂Ir/∂Iη, with Ir (H,Iη) defined in Eq. (35).
In the cubic case ν = 1 they are given explicitly by

∂Ir

∂H
= 1

π

∫ r+

r−

dr√(
4Hr2 − 2I 2

η ∓ 2r4 ± r6
)/

(2r2)
(B1)

and

∂Ir

∂Iη

= −Iη

π

∫ r+

r−

dr

r2
√(

4Hr2 − 2I 2
η ∓ 2r4 ± r6

)/
(2r2)

,

(B2)
with r− and r+ the two turning points of the dynamics that
obey the condition r− < r+. We calculate them here explicitly
for μ = ±1 and g = ±1. We include here the unbounded
solutions where r+ ≡ ∞.

1. Repulsive case with positive chemical potential

a. Bounded solutions: ρ1 � R1,1(x)2 � ρ2 � ρ3

Here the r variable in Eqs. (B1) and (B2) is restricted to
values between

√
ρ1 and

√
ρ2. Using the parametrization in

Eq. (A10) we can express the integral in Eq. (B1) as

∂Ir

∂H
= 1

π

∫ √
ρ2

√
ρ1

dr√
(r2 − ρ1)(r2 − ρ2)(r2 − ρ3)/(2r2)

(B3)

and the one in Eq. (B2) as

∂Ir

∂Iη

= −Iη

π

∫ √
ρ2

√
ρ1

dr

r2
√

(r2 − ρ1)(r2 − ρ2)(r2 − ρ3)/(2r2)
.

(B4)

The final result is

∂Ir

∂H
= 1

πβ
K(m) (B5)
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and
∂Ir

∂Iη

= − Iη

πβρ1
�(1|a,m), (B6)

with the functions K(m) and �(1|a,m) defined in Eq. (A2); m,
β and a are defined in terms of ρ1, ρ2, and ρ3 after Eq. (A11).

b. Unbounded solutions: ρ1 � ρ2 � ρ3 � R1,1(x)2

In this case the r dynamics is restricted by the condition
r � √

ρ3; we obtain

∂Ir

∂H
= 1

πβ
K(m) (B7)

and
∂Ir

∂Iη

= −Iη

π

[
1

ρ2β
K(m) − ρ3 − ρ2

ρ2ρ3β
�(1|a,m)

]
, (B8)

with m, β, and a as defined after Eq. (A13).

c. Special case: ρ1 < ρ2 = ρ = 3

Due to the singularity resulting from the term proportional
to (r2 − ρ2)

−1
, the considered quantities tend to infinity in this

case.

d. Unbounded solutions: R1,1 � ρ3 > 1, ρ1 = ξ + iχ = ρ∗
2

Here the motion takes place in the region r � √
ρ3, the

quantities of interest are given by

∂Ir

∂H
= 1

πβ
K(m) (B9)

and
∂Ir

∂Iη

= − Iη

πβ(a − b)
[(1 − b)�(1|b,m) − (1 − a)�(1|a,m)],

(B10)
with m, β, a, and b defined after Eq. (A17).

2. Repulsive case with negative chemical potential

Here unbounded motion is obtained, Eqs. (B3) and (B4)
remain valid, and the results from (1b) and (1d) remain
applicable.

3. Attractive case with positive chemical potential

Here Eqs. (B3) and (B4) are changed to

∂Ir

∂H
= 1

π

∫ √
ρ3

√
ρ2

dr√
(ρ1 − r2)(ρ2 − r2)(ρ3 − r2)/(2r2)

(B11)

and

∂Ir

∂Iη

= −Iη

π

∫ √
ρ3

√
ρ2

dr

r2
√

(ρ1 − r2)(ρ2 − r2)(ρ3 − r2)/(2r2)

(B12)

and finally result in

∂Ir

∂H
= 1

πβ
K(m) (B13)

and

∂Ir

∂Iη

= − Iη

ρ1βπ
K(m) − Iη(ρ1 − ρ2)

βρ1ρ2π
�(1|a,m), (B14)

with β, m, and a defined after Eq. (A22).

4. Attractive case with negative chemical potential

In this case the expressions from the last section remain
valid, in the special case ρ2 = ρ1 = 0, ∂Ir/∂H and ∂Ir/∂Iη

diverge due to the singularity of the r integral at zero.
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