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Marginal chimera state at cross-frequency locking of pulse-coupled neural networks
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We consider two coupled populations of leaky integrate-and-fire neurons. Depending on the coupling strength,
mean fields generated by these populations can have incommensurate frequencies or become frequency locked.
In the observed 2:1 locking state of the mean fields, individual neurons in one population are asynchronous with
the mean fields, while in another population they have the same frequency as the mean field. These synchronous
neurons form a chimera state, where part of them build a fully synchronized cluster, while other remain scattered.
We explain this chimera as a marginal one, caused by a self-organized neutral dynamics of the effective circle map.
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I. INTRODUCTION

Studies of the dynamics of globally coupled populations
of oscillators, pioneered more than 40 years ago by Winfree
and Kuramoto [1], are the focus of current research due
to numerous applications in diverse fields from physics
to neuroscience, but also due to striking effects such as
synchronization, collective chaos, and chimera states [2].

While typically ensembles of identical oscillators either
fully synchronize or desynchronize, depending on whether
the coupling is attractive or not, there are situations where
oscillators produce a macroscopic mean field without full
synchrony; such aregime is called partial synchronization [3,4]
(see Ref. [5] for its experimental observation). Remarkably,
partial synchronization can be explained within a simplest
setup of one-dimensional oscillators, described either by their
phase dynamics [4] or as integrate-and-fire units [3].

Quite recently, chimera states in populations of coupled
oscillators attracted large interest. In the pioneering work by
Kuramoto and Battogtokh [6] a coexistence of coherent and
incoherent states in a lattice of nonlocally coupled oscillators
has been reported, which can be understood as a symmetry
breaking (where coherent, synchronized state is the symmetric
one). A simpler setup for such a symmetry breaking has been
suggested by Abrams et al. [7], who reported on chimera states
in two coupled populations of identical units, where coupling
inside and between populations was different. Generally, in
this model quasiperiodic chimera states are observed [8],
where one subpopulation is partially synchronized and another
is completely synchronous. In Refs. [7,8] one-dimensional
phase oscillators have been considered, similar to the original
Kuramoto-Battogtokh example. In Ref. [9], two identical
populations of one-dimensional leaky integrate-and-fire units,
very similar to that introduced in Ref. [3], have been studied,
and chimera states very similar to that in Ref. [7] have been
observed: one population was fully synchronized while the
other one was partially synchronous. For a recent review of the
subject see Ref. [10]. Chimera states can be observed also in
globally coupled, identical and identically driven units (how-
ever, not for one-dimensional phase models but in oscillators
described by equation having order higher than one) [11].

Itis instructive to compare symmetry properties of different
setups where chimera states have been observed. The model
of Kuramoto and Battogtokh [6] is formulated as a homo-
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geneous one-dimensional lattice, symmetric with respect to
spatial shifts 6y — 6. It possesses a spatially homogeneous
synchronous state, and the chimera state can be considered
as breaking of the spatial homogeneity. In setups treated in
Refs. [7,9], one considers two subpopulations oV , 9,52) with
different internal and mutual couplings. The system possesses
symmetry with respect to exchange of subpopulations 1 < 2;
it is also symmetric with respect to exchange of any two units
inside each subpopulation 9,&1’2) <~ 9](.1'2). There is, however, no
symmetry with respect to exchange of units between subpop-
ulations. The chimera state here corresponds to breaking the
symmetry between subpopulations 1 <> 2, while the symmetry
inside each subpopulation is unbroken (all the units in one
subpopulation are synchronous, all the units in the other
subpopulation are asynchronous and have the same properties).
The driving forces acting on two subpopulations are different
in the chimera state. The situation considered in Refs. [11]
is a setup of globally coupled identical units. It is symmetric
with respect to exchange of any two units x; <> x;. Here in
the chimera state, one part of a unique, single population of
identical oscillators synchronize and form a cluster, while the
other remains asynchronous. Because of common driving, this
regime requires self-induced bistability in the ensemble of
identical, identically coupled oscillators. To the best of our
knowledge, symmetry breaking within one single population
of identical, identically coupled one-dimensional units (like
phase oscillators and integrate-and-fire units) has not been
reported.

In this paper we study mutual coupling of two populations
of partially synchronous integrate-and-fire oscillators and find
a surprising chimera state in this system: at mutual 2:1
locking of two macroscopic mean fields, elements of one
ensemble form a cluster and a marginally stable scattered
group. This means that nontrivial chimeras can happen in
populations of identical, identically forced one-dimensional
units (in previously observed chimeras [7,9] units where not
identically forced). The main objective of our paper is to
show this state and to explain how the mean field dynamics,
yielding effective bistability in such ensembles, appears in a
self-consistent way.

Before proceeding to description of the model, we mention
that mutual influence of two or several populations of os-
cillators, generating macroscopic mean fields at significantly
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different frequencies, has been studied recently in the context
of phase dynamics of Kuramoto model type [12]. Here we
extend these studies to realistic neural models of integrate-
and-fire neurons, which is applicable for explanation of
cross-relations between brain waves. Indeed, in the brain
one observes macroscopic oscillations in different frequency
ranges [13], and these relatively regular mean fields are not
related to exact synchrony of individual neurons, but rather to
a temporal organization of their firing events. Thus, the model
of partial synchronization we consider below appears more
adequate for the neural dynamics than the Kuramoto model of
phase oscillators.

II. THE MODEL

Our consideration of two neural populations is based on the
model of globally coupled leaky integrate-and-fire oscillations,
a prototypical example of generation of nontrivial mean fields
due to partial synchronization [3]. One such population has
been thoroughly studied in Refs. [3,14,15]. The potential x; of
each neuron (here 1 < k < N, N is the size of the population)
is described by the following equation:

xkza—xk+gE, (1)

where the mean field E is composed by contributions from all
the neurons,

2
E +20E + o?E = “N 380 — 1) )
k,j

The potential of neuron k grows from O to the threshold
value 1, governed by the suprathreshold input current a > 1
and the excitatory action from the field £ [Eq. (1)]. When
this potential reaches 1 at a time instant #;,, the neuron
fires, contributing a §-function pulse to the field E [Eq. (2)],
and is reset to 0. Linear Eq. (2) describes thus sequences
of so-called o pulses created by the spiking neurons. As
the analysis of system Egs. (1) and (2) has shown (see
Refs. [3,14,15] for details), for large values of the coupling
parameter g (at given «) the neurons are desynchronized: the
time intervals #; , — fx_1, between successive firing events
of two neurons are constant (do not depend on k), and the
field E is nearly a constant (with small variations ~N ).
At some critical value of coupling g this regime becomes
unstable, and the neurons start to form a group with a smaller
interval between firings, as a result the mean field E(¢)
demonstrates macroscopic nearly periodic variations [3,14].
This state is called partial synchronization because neurons
never synchronize fully (never fire simultaneously). In fact,
in this state the dynamics is, strictly speaking, quasiperiodic,
because frequency of spiking of a neuron w (it is the same for
all neurons because they are identical) is incommensurate to
the frequency of the macroscopic mean-field oscillations €2.
In this paper we consider two interacting populations of
neurons of the described type. Contrary to Ref. [9], where
two identical populations have been considered, we study
two different populations (while inside each population all
the neurons are identical), therefore we use slightly changed
notations: membrane potentials of the neurons in the popu-
lations will be denoted as x; and yj, while the mean fields
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generated by them as X and Y, respectively. Interaction is due
to a mixture of the mean fields: on neurons x acts the field
E, = (1 — &)X + ¢, while on neurons y acts the field £, =
(1 — &)Y 4 ¢X. Parameter ¢ describes the coupling between
populations. Equivalently, one can consider this setup as one
with two acting mean fields (E,, E,), which are fed by spikes
from two populations: each spike of a neuron x contributes a §
kick with amplitude (1 — ¢) to the field E,, and a § kick with
amplitude ¢ to the field Ey, and similarly for neurons y. The
physical interpretation behind introducing parameter ¢ and
considering two fields acting on two populations, is that the
two populations of neurons are spatially separated, thus action
inside each of them differs from the mutual action (fore < 1/2
interpopulation action is weaker than the intrapopulation one).
We will assume that both populations have equal number of
neurons N. The equations of the model thus read

Xk = ay — xp + g [(1 — )X + €Y1, (3)
Yk = ay — e + gy[(1 — )Y +eX], “)
. . 2 052
X420 X +aix =2 ;a(z — ten,)s ®
. . O{2
Y+ 2a,Y +o3Y = Nv";a(r—n{,n_‘,). (6)

Integration of these equations can be performed semiana-
lytically (cf. Ref. [15]). Between the firings, equations for
X, Y are linear and the solution can be written explicitly;
substitution of these solutions to Eqs. (3) and (4) allows also
for an analytic representation of xi (), yx(¢). This results in
transcendent equations for determining the next firing time,
which is solved numerically using the Newton’s method.

III. CROSS-FREQUENCY LOCKING

In this section we focus on the effect of cross-frequency
locking in two interacting populations. As has been already
mentioned, one neural population demonstrates macroscopic
mean-field oscillations with frequency €2; two noninteracting
populations will have generally different macroscopic frequen-
cies 2, 2,. We demonstrate now that the interaction can lead
to a rather nontrivial regime of locking of these macroscopic
oscillations (regimes of 1:1 locking of two symmetric popu-
lations of leaky integrate-and-fire units have been reported in
Ref. [9]). In Fig. 1 we report on the frequencies of two neural
populations for a, = 1.5, g, =0.35, a, =1.21, g, = 0.09,
ay = o, =10, N = 50. The figure shows the ratio of two
macroscopic frequencies €2, /€2, as a function of the coupling
constant . One clearly sees an interval of cross-frequency 2:1
locking for ¢ € [0.25; 0.33], here 2, = 2Q2,. Outside of the
resonant (locking) zone, a macroscopic quasiperiodic regime
with an irrational ratio €2,/€2, is observed as illustrated by
the phase portraits projections on plane (X, Y) in Fig. 2.
One clearly distinguishes the locked state at ¢ = 0.3 from
the quasiperiodic states at € = 0.2 and ¢ = 0.4 on these
Lissajous-type curves. Furthermore, outside of the resonant
zone both populations x and y are partially synchronized: the
states of all neurons are different, but distributed nonuniformly,
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FIG. 1. Frequency ratios €2,/ €2,(solid line) and w,/w, (dashed
line). The 2:1 locking is observed for ¢ € [0.25; 0.33], but in this
case w,/w, is not equal to 2.

producing macroscopic mean fields. Noteworthy, the state at
e = 0.5, where the same fields acts on two subpopulations, is
also quasiperiodic.

The frequency locking of the mean fields X, Y does not
mean that the individual neurons in two populations are also
mutually locked. We illustrate the dynamics of individual
neurons in Fig. 3 for ¢ = 0.3. Here we plot stroboscopic
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FIG. 2. Projections of the phase portraits on plane (X, Y) for
e =0.2(a),e =0.3(b),and e = 0.4 (¢).
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FIG. 3. Stroboscopic observations of the states of two oscillators
in two populations, taken at X (tj’.‘) = 1.5, X > 0. Red circles, values
x(z;‘); blue squares, values y(#7)- Not all points are depicted for better

visibility.

observations of one neuron from the population, at moments
of time when X = 1.5 and X > 0. One can easily compare
the locking properties of two populations. In population x the
states of the neuron are different, what indicates that its firing
frequency w, is incommensurate with the frequency €2, of the
mean field X (¢). In contradistinction to this, in population y
all the states are the same (they take two values because, due
to 2:1 locking, the mean-field X demonstrates two oscillations
within one oscillation of the mean field Y) what means that
neurons in this population are locked by the mean field Y (¢) and
fire with the same period as the period of Y (¢), i.e., 2, = w,.
This property explains the behavior of the ratio of firing rates
of neurons plotted in Fig. 1: in the whole region where one
observes locking 2:1 of the mean fields X, Y, the ratio w, /w,
of the firing rates of the neurons remains also a constant,
although not equal to 2, but slightly exceeds this value due to
a small difference between w, and €2,.

IV. MARGINAL CHIMERA STATE

Locking of the neuron states in ensemble y by the mean field
acting on these neurons, at ¢ = (.3, allows one to expect that
these neurons form a fully synchronized cluster. Surprisingly,
this is not the case. In Fig. 4(a) we plot the states of all neurons
in two populations at a certain moment of time, in the locked
regime ¢ = 0.3. In population x all the states are different,
what corresponds to the fact that they are in a quasiperiodic
mode of partial synchronization. Neurons in population y are
in a chimera state: a part of them build a fully synchronized
cluster y; = y» = ... = y,, while all the neurons y;, k > m,
are distributed in some range.

Existence of a cluster manifests itself in a specific pattern
of firing events in two populations. We illustrate it in Fig. 5,
where we compare the situation with chimera [Fig. 5(b)] with
the usual partial synchronization [Fig. 5(a)]. One can see
that population y in the chimera state produces a “burst” of
firing events, at the end of which all units in the cluster fire
simultaneously (this happens at times ¢t & 1.44 and ~ 2.98;
because the spikes overlap one cannot distinguish them on
the figure). It is worth noting that here an ensemble of firing
neurons operates as a “burster,” contrary to the usual bursting

032202-3



M. 1. BOLOTOV, G. V. OSIPOV, AND A. PIKOVSKY

LTk, Yk

O | ooy 1 1
1 T T

T
----o.o...o.o.--c..o...o"'"‘....QOQUEOOO--0.0..
o

()

o
DDDD

o
soo
soooooeoERE0E

ooeEo

0 1 1 1
0 0.2 0.4 0.6 0.8 1

k/N

) sopBBEE
o

FIG. 4. Snapshots of states x; (red open squares) and y; (blue
filled circles) in the 2:1 locked state for ¢ = 0.3 and different pop-
ulation sizes and transient times Ty: (a) N = 500, T, = 4.19x108%;
(b) N =200, T, = 1.67x10%; (c) N = 50, T, = 1.67x10°. While
all values of x; are different, in population y part of the population
forms a cluster.
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FIG. 5. Fields E, (full line) and E, (dashed line) and the firing
events in both populations, for N = 50 and two values of coupling
e: (a) ¢ = 0.2, quasiperiodic nonlocked state without chimera; (b)
& = 0.3 locked state with chimera.
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FIG. 6. Relative cluster size N, /N vs. the ensemble size N, for
the same parameters as described in the caption of Fig. 4. The
oscillators have been attributed to a cluster, if their states after
transient time 5x 10° were closer than 10~'° to each other.

where one neuron operating in a mixed-mode state produces
patches of spikes interrupted by silent stages.

To check that this state is robust and not a transient, we have
performed simulations with different ensemble sizes (from
50 to 500) and different integration times (up to 1.67x10°),
and in all cases observed the marginal chimera state. Two
examples for N = 200 and N = 500 are presented in Figs. 4(b)
and 4(a). Moreover, the same regime is observed if the sizes
of populations x and y are different. Remarkably, the chimera
state can be observed also for very small population sizes,
starting from N = 3. For this minimal size for which chimera
can be defined, in population y there are two units with equal
states y; = y», and one unit different from them y; # yj 2;
in population x all three units are different. In Fig. 6 we
show that the chimera states occur for all 3 < N < 100, and
the size of the synchronized cluster N, varies in the range
2/3 < Ng/N < 4/5. Furthermore, we have observed such
a chimera state in the regime of 3:1 locking, at parame-
ter values a, = 1.5, g, = 0.36, a, = 1.07, g, = 0.05, a, =
ay =10, € = 0.35.

At first glance, a chimera state in a population of identical
oscillators described by first-order equations [like Egs. (3)
and (4) of our model] is impossible. Indeed, in the case of
a periodic forcing by mean fields (X(¢), Y (¢)), Eq. (4) for a
neuron in population y reduces to a one-dimensional circle
map, if a stroboscopic map is constructed from this first-order
equation. This map is the same for all neurons in population y.
According to general theory of one-dimensional circle maps,
all neurons have the same frequency (because the rotation
number of one-dimensional maps does not depend on initial
conditions). Moreover, for general one-dimensional maps one
has a dichotomy [16]: (i) either there is an equal number of
unstable and stable periodic orbits, the latter attract all the
points of the circle except for those lying exactly on unstable
orbits; (ii) or the dynamics is quasiperiodic and reduces
according to Denjoy’s theorem to a shift on the circle, here
all initially different states remain different. This dichotomy
allows for quasiperiodic (partial synchronization) and fully
synchronized regimes, but seemingly excludes chimera states.

In the dynamics of our two coupled populations we see, that
the population y violates the dichotomy above. To clarify this
point, we constructed a stroboscopic map y(fg) — y(to + T),
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FIG. 7. (a) The stroboscopic map y(¢) — y(t 4+ T) for neurons
in population y in the 2:1 locked regime for ¢ = 0.3. For the chosen
phase of the mean field, in the region 0.25 < y < 0.45 the map is
nearly identity. This region is resolved in panel (b), where we plot
values y(tp + T) — y(tp) vs. y(ty) for different choices of #,. Small
vertical shifts are due to a tiny degree of qusiperiodicity in the fields
X(@), Y(1).

where T is period of the field Y (¢) (Fig. 7) and 0 < y(#p) < 1.
One can see that this map is not of general smooth type, as
it has an interval (we call it marginal domain) where y(ty +
T) = y(tp) with high accuracy. This can be seen in Fig. 7(b),
where the marginal domain is enlarged. Here the deviations
y(t + T) — y(t) are of order 1073. Moreover, these deviations
fluctuate in sign, if the stroboscopic map is built at different
phases o of the mean fields X(#y), Y (fy). These fluctuations
are due to the fact, that the fields Y (¢) is, strictly speaking,
not exactly periodic. Indeed, due to quasiperiodicity of the
population x, the fields X (¢), Y (¢) are quasiperiodic, although
deviations from the pure periodicity are extremely small and
are not seen in Fig. 2. This quasiperiodicity can, e.g., be seen
if one at a given value of Y plots values of Y, these are spread
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in a small interval. Due to this small spreading, the deviations
from identity map fluctuate in the marginal domain.

Existence of the marginal domain, together with a com-
plementary interval where y(fy + T') # y(fy), explains the ob-
served chimera state: those neurons that have initial conditions
in the nonmarginal domain are attracted to one state and form
a cluster, while those in the marginal domain remain scattered
and form a “cloud.” Noteworthy, the described nongeneral
properties of the dynamics are not prebuilt to the system, but
appear in a self-consistent manner, because the fields X, Y
are composed from the contributions from individual neurons.
Quite unexpectedly, these mean fields are self-organized in
such a manner that one population is purely quasiperiodic,
while another one combines properties of stable and marginal
dynamics that results in a chimera.

V. CONCLUSION

In this paper we considered two populations of integrate-
and-fire oscillators having definitely different frequencies of
the generated mean fields. First we showed that due to mutual
coupling, a 2:1 locking of the mean fields can be observed,
without synchronization between the individual neurons.
Noteworthy, neurons in two populations behave differently
in the locked state: while in one population they are not
synchronized by the mean field and have a different frequency,
in another population the period of firings is the same as the
basic period of the mean field. However, this synchronous state
is rather nontrivial, and this is our second main result: identical
neurons in the synchronous population build a chimera; one
part of them forms an identical cluster, while other oscillators
do not join this cluster and remain scattered. We explain this
regime as a self-sustained marginal dynamics of the driven
neurons: the corresponding stroboscopic one-dimensional map
has a domain where this map is practically an identity. This
marginality is possibly the only way to achieve a bistability in a
one-dimensional map, as the period here must be independent
of initial conditions. This is another peculiarity of the marginal
chimera: in other cases where chimera has been observed in
identical units, the frequencies of a cluster and a scattered
populations were different [11].
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