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Rogue waves of the Kundu-Eckhaus equation in a chaotic wave field
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In this paper we study the properties of the chaotic wave fields generated in the frame of the Kundu-Eckhaus
equation (KEE). Modulation instability results in a chaotic wave field which exhibits small-scale filaments with
a free propagation constant, k. The average velocity of the filaments is approximately given by the average group
velocity calculated from the dispersion relation for the plane-wave solution; however, direction of propagation
is controlled by the β parameter, the constant in front of the Raman-effect term. We have also calculated the
probabilities of the rogue wave occurrence for various values of propagation constant k and showed that the
probability of rogue wave occurrence depends on k. Additionally, we have showed that the probability of rogue
wave occurrence significantly depends on the quintic and the Raman-effect nonlinear terms of the KEE. Statistical
comparisons between the KEE and the cubic nonlinear Schrödinger equation have also been presented.
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I. INTRODUCTION

Rogue (freak) wave studies have become extensive in recent
years [1,2]. These studies have great importance for the safety
of marine travel and offshore operations, as it is important to
avoid rogue waves in the open ocean. Rogue wave studies are
also crucial for many other fields such as optics, dynamics of
superfluids, and finance just to name a few [3]. Researchers
working in various areas want to understand the physics behind
the rogue wave phenomenon.

The research has naturally started with the investigation
of one of the simplest nonlinear mathematical models, which
is the nonlinear Schrödinger equation (NLSE) [4]. Discovery
of the unexpected rogue wave solutions, even for this well-
known equation resulted in seminal studies of rogue wave
dynamics, such as [5]. However, the NLSE has limitations due
to the assumptions and approximations used in its derivation.
Deriving or extending the solutions to more general dynamic
equations will be the next step in rogue wave research.

The Kundu-Eckhaus equation (KEE) is one of the integrable
extensions of the NLSE. It contains extension terms to
the NLSE, namely, the quintic and Raman-effect nonlinear
terms [3]. One of the versions of the KEE can be written in the
form of

iψt + ψxx + 2|ψ |2ψ + β2|ψ |4ψ − 2βi(|ψ |2)xψ = 0, (1)

where x,t are the spatial and temporal variables, i denotes the
imaginary number, and ψ is complex amplitude [3]. β is a
real constant and β2 is the coefficient of the quintic nonlinear
term which model the effects of higher order nonlinearity.
The last term represents the Raman effect which accounts for
the self-frequency shift of the pulses [3]. A KEE equation
can adequately model the propagation of ultrashort pulses in
nonlinear and quantum optics, which can possibly be used to
describe the optical properties of the femtosecond lasers and
can be used in femtochemistry studies. Also in mechanics, a
KEE is capable of examining the stability of Stokes waves in
weakly nonlinear dispersive media.
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II. PLANE-WAVE SOLUTION

Analytical rogue wave solutions always retain on a plane-
wave background since the plane waves serve as an energy
source for the rogue waves [4]. Thus it is important to study
the plane-wave solution of the KEE. The KEE given in Eq. (1)
admits a plane-wave solution in the form of

ψo = exp (i[kx − ωt]) = exp (i[kx − (k2 − β2 − 2)t]). (2)

This solution has two free parameters β and k. Using this
plane-wave solution it can be easily deduced that the phase
velocity of the plane wave is given by

vph = ω

k
= k − (β2 − 2)/k. (3)

On the other hand, the group velocity becomes

vgr = ∂ω

∂k
= 2k. (4)

It is easy to check that if k �
√

2 − β2, then vgr � vph; or
else vgr < vph. The dependence of the velocities on the wave
number, k, is shown in Fig. 1 for β = 0. In order to avoid
evanescent modes and analyze the propagation dynamics of
waves we select real k values. The velocities of ultrashort
pulses are higher than those of long pulses, as Fig. 1 confirms.
This property of the KEE frame is important to study the
propagation dynamics of ultrashort pulses in optics.

III. ANALYTICAL ROGUE WAVE FIELDS

Setting β = 0, the KEE reduces to the cubic NLSE for
which the rogue wave solutions become obvious [5]. For the
cubic NLSE, the first order rational rogue wave solution is
given by Peregrine in 1979 [6]. A similar first order rational
rogue wave solution for the KEE is recently presented in [7].
Second and the higher order rational solutions of the KEE
and a hierarchy of obtaining those rational solutions based on
Darboux transformations are given in [3]. They are basically
skewed rogue waves obtained by the gauge transforming the
rogue wave solutions of the NLSE. For the sake of brevity
we are not repeating their explicit formula here. However, in
order to present an illustration of the quintic and Raman-effect
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FIG. 1. Group (—) and phase ( - -) velocities of the plane wave
for β = 0.

terms we present contour plots of the first order rational soliton
solutions in Fig. 2 for various β values.

In Fig. 2, the contour plot of the first order rogue wave
solution of the KEE is presented for various β values. We can
see that quintic and Raman-effect nonlinear terms produce an
important skew angle relative to the ridge of the rogue waves.
As also described in [3], the sign of the β parameter determines
the sign of the skew angle relative to the ridge of the rogue
wave. If β = 0, then there is no skew angle and the rogue
wave solution of the KEE is no different than the Peregrine
soliton solution of the NLSE. If β > 0 the skew angle is in
the counterclockwise direction. If β < 0 it is in the clockwise
direction [3,8]. Additionally as the magnitude of the β gets
larger, the skew angle gets larger as well [3]. Illustration of this
behavior for various values of β helps us analyze the behavior
of the chaotic wave field, as described in the next section.

IV. CHAOTIC WAVE FIELDS

Although the processes governed by the KEE are very
complicated, they are still governed by a partial differential
equation. Therefore they can be predicted once an initial
condition is specified. Thus compared to the completely unpre-
dictable true stochastic processes, the processes described in
the frame of KEE in this study can be named as “chaotic” [4].

In order to analyze chaotic wave fields in the frame of
the KEE we use a numerical framework. We start the rogue
wave simulations using a constant amplitude wave with an
additive small chaotic perturbation. Such a state is unstable
and it evolves into a full-scale chaotic wave field similar with
the numerical simulations described in [2,5,9]. The chaotic
wave field modeled by the KEE with this starter evolves into a
wave field which exhibits many amplitude peaks, with some of
them becoming rogue waves. In order to model such a chaotic
wave field we use the initial condition

ψ(x,t = 0) = ψ0(x,0) + μa(x), (5)

where ψ0 is initial plane-wave solution given by Eq. (2), and
a(x) is a uniformly distributed random complex function with
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FIG. 2. Contour plots of the first order rogue wave solution of the
KEE (a) for β = 0, (b) for β = 1, and (c) for β = −1.
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real and imaginary parts having random values in the interval
of [−1,1]. The actual water surface fluctuation for this initial
condition would be given by the real part of |ψ | exp [iωt]
where ω is some carrier wave frequency. Following [2], a
value of μ = 0.2 is selected. It is possible to add perturbations
with a characteristic length scale Lpert, by multiplying the
second term of Eq. (5) by a factor of exp(i2π/Lpertx). Or it
is also possible to add perturbations with different wavelength
scales using Fourier analysis. However, in the present study,
for illustrative purposes we do not use such a scale.

For the numerical solution of the KEE we propose and
implement a split-step Fourier method (SSFM) as described
below. In SSFM schemes, the spatial derivatives are evaluated
using spectral techniques. Some of the applications of the
spectral techniques can be seen in [10–12] and more detailed
discussions can be seen in [13]. In spectral techniques the
spatial derivatives are calculated by making use of the or-
thogonal transforms. The most popular choice for the periodic
domains is the Fourier transform [2]. The time integration of
the governing equation is performed using schemes such as
Adams-Bashforth, Runge-Kutta, etc. [13–15]. However, for
SSFM, exponential time stepping is used for time integration.

SSFM relies on the idea of splitting the equation into two
parts: the nonlinear and the linear part [16–20]. For the KEE,
the advance in time due to the nonlinear part can be written as

iψt = −(2|ψ |2 + β2|ψ |4 − 2iβ[|ψ |2]x)ψ (6)

which can be exactly solved as

ψ̃(x,t0 + �t) = ei(2|ψ0|2+β2|ψ0|4−2iβ[|ψ0|2]x )�tψ0, (7)

where ψ0 = ψ(x,t0) is the initial condition, and �t is the time
step. It is possible to evaluate the spatial derivatives using the
Fourier series so that we can write

ψ̃(x,t0 + �t) = ei(2|ψ0|2+β2|ψ0|4−2iβF−1{ikF [|ψ0|2]})�tψ0, (8)

where k is the Fourier transform parameter and F and F−1

denote the forward and inverse Fourier transforms [2]. The
linear part of the KEE can be written as

iψt = −ψxx. (9)

Using the Fourier series it is possible to write that

ψ(x,t0 + �t) = F−1{e−ik2�tF [ψ̃(x,t0 + �t)]}, (10)

where k is the Fourier transform parameter. Therefore com-
bining Eqs. (8) and (10), the complete form of the SSFM can
be written as

ψ(x,t0 + �t)

= F−1{e−ik2�tF [ei(2|ψ0|2+β2|ψ0|4−2iβF−1{ikF [|ψ0|2]})�t ψ0]}
(11)

Starting from the chaotic initial condition described above
by Eq. (5), the numerical solution of the KEE is obtained for
later times by the SSFM. This form of the SSFM requires
four fast Fourier transform (FFT) operations per time step.
The number of spectral components is selected as N = 4096
in order to make use of the FFTs efficiently. The time step
is selected as low as dt = 10−4, which does not cause any
stability problem in all runs.

x

t

0 12.5 25 37.5 50

7.5

5.0

2.5

FIG. 3. A typical example of a chaotic wave field created by the
KEE for β = 0.67 starting with modulation instability. The filaments
are propagating to the left with average group velocity vgr ≈ −6.5.

Modulation instability started by the noise formulated
above creates a chaotic wave field that starts from the initial
plane wave. An example of a wave field generated this way
for k = 0.1 is shown in Fig. 3 for β = 0.67 and in Fig. 4 for
β = −0.67. Checking the filaments in these figures, we can
see that quintic and Raman-effect nonlinear terms produce
an important skew angle relative to the ridge of the high
waves in these chaotic fields. If β > 0 this skew angle is in
the counterclockwise direction, or else if β < 0 it is in the
clockwise direction similar to the purely analytical results.

The filaments are propagating to the right with average
group velocity |vgr| ≈ 6.5 in Fig. 4, however, they are
propagating to the left |vgr| ≈ 6.5 in Fig. 3. The different
orientation for the skewed shape of the field is due to opposite
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FIG. 4. A typical example of a chaotic wave field created by
the KEE for β = −0.67 starting with modulation instability. The
filaments are propagating to the right with average group velocity
vgr ≈ 6.5.
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signed β values controlled by the Raman-effect term. Although
the group velocity formula for the plane wave can predict the
magnitude of the velocity of the filaments, it deems insufficient
to characterize propagation direction since the Raman effect on
the plane-wave dispersion relation drops out in its derivation.
However, one can realize that KEE is invariant under the
transformation β → −β and x → −x, therefore filaments
propagate in the opposite direction when the sign of the β

parameter changes. These properties of the KEE may be used
to model and predict the skewed shape of the rogue waves
encountered in practice.

The initial part of the field (0 < t < 2.5) is not shown in
these figures as the deviations from the plane-wave solutions
are very small and thus field amplitude is very close to 1 for
all x values. In contrast to the cubic NLSE case, the filaments
of the KEE have a preferential direction of propagation with
nonzero velocity, similar to other extensions of the NLSE, i.e.,
the Sasa-Satsuma equation [4,21]. This is due to the fact that
the group velocity of the waves is not the same as the phase
velocity [4].

V. STATISTICS OF BIG WAVES

The probability distribution of amplitudes (|ψ |) in the
chaotic field provides important information about the wave
field and about the rogue waves in particular. Therefore we
obtain the probability density functions (PDFs) for various
scenarios. We numerically solve the KEE and simulate the
chaotic field for a spatial domain of [−1000,1000]. We
discarded the initial modulation instability stages in our runs
and used long spatial and temporal intervals to get statistical
convergence. We have divided the range of amplitudes, |ψ |,
into 200 bins in order to obtain relatively smooth curves
and counted the number of maxima in each bin. Then by
normalization we have obtained the PDFs. For each of the PDF
plots, the data we have analyzed includes approximately 106

maxima, which allows us to obtain relatively smooth PDFs.
As Figs. 5–7 confirm, the PDFs for various values of

the initial plane-wave number (k) show that smaller values
of k result in higher probability of high-amplitude waves.
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FIG. 5. PDF of the KEE ( —) vs PDF of the cubic NLSE (-. -)
for k = 0.1.
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FIG. 6. PDF of the KEE ( —) vs PDF of the cubic NLSE ( -. -)
for k = 0.8.

Additionally, the comparison of PDFs of the KEE and
NLSE fields show that for the smaller wave numbers,
more waves emerge in the KEE field than the NLSE
field in the amplitude interval of approximately [1,2.2].
However, the chaotic NLSE field produces significantly more
waves in the amplitude interval of approximately [2.2,5].
Therefore it is possible to conclude that the chaotic KEE
field is less likely to produce rogue waves than the chaotic
NLSE field. One possible explanation for this behavior is the
contributions of the Raman-effect term. Although the KEE
includes an additional quintic nonlinear term compared to the
NLSE, the contribution of the Raman-effect term suppresses
the contribution of the quintic nonlinear term. Phase velocities
of ultrashort waves are faster than longer waves, therefore the
shorter waves contribute less as energy sources for the rogue
wave emergence in the field. However, as the initial plane-wave
number gets bigger, there is no significant difference between
the PDFs of the KEE and NLSE fields as Fig. 7 confirms.
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FIG. 7. PDF of the KEE (—) vs PDF of the cubic NLSE (-. -) for
k = 3.2.
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These behaviors are quite similar to the results obtained for
the Sasa-Satsuma equation in [4].

We investigate the effect of the sign of the β parameter on
the probability of rogue wave formation in Fig. 8. It is clear
that both the positive and negative β values lead to similar
PDFs, thus it is possible to conclude that the sign of the β

parameter controls only the skewed shape of wave field and
does not alter the probability of rogue wave occurrence.

Next, we analyze the contribution of the Raman-effect
term of the KEE on the probability of rogue wave formation.
For this purpose we compare the PDF of the quintic NLSE,
which can be obtained by removing the Raman-effect term of
the KEE, and the PDF of the KEE in Fig. 9. The quintic
NLSE equation leads to a higher probability of amplitude
occurrence in the interval of approximately [2.2,5], which is
significantly higher in the interval of approximately [2.2,3.1].
It is possible to conclude that the Raman-effect term leads
to a lower probability of rogue wave formation. A possible
explanation for the underlying physical mechanism is that the
self-frequency shifts due to Raman-effect term and the faster
propagation of ultrashort pulses than long pulses prohibits the
energy acquisition of the rogue waves from shorter pulses,
therefore rogue waves are less likely to develop.
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FIG. 9. PDF of the KEE (—) vs PDF of the quintic NLSE (-. -).

VI. CONCLUSION

In this paper, we studied the properties and statistics of the
chaotic wave fields generated by the Kundu-Eckhaus equation.
We have found that filaments of the chaotic fields generated by
the modulation instability propagate with a velocity close to
the magnitude of the average group velocity calculated from
the dispersion relation for the plane-wave solution, however,
their propagation direction is controlled by the sign of the β

parameter. The calculation of the probability density functions
for various values of the initial wave number showed that
smaller values of k result in a higher probability of high-
amplitude waves. Our results have also demonstrated that the
quintic nonlinear term in the evolution equation lead to higher
probabilities of rogue wave occurrence in a chaotic wave
field, however, the Raman-effect term in the Kundu-Eckhaus
equation reduces the probability of rogue wave occurrence.
Our results can provide an explanation for the skewed shape
of the rogue waves which may be observed in practice and can
be used to study the generation or dissipation of rogue waves of
different optical fields in the frame of KEE, with many possible
applications on femtosecond lasers and femtochemistry.
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