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Universality of efficiency at unified trade-off optimization
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We calculate the efficiency at the unified trade-off optimization criterion (the so-called maximum � criterion)
representing a compromise between the useful energy and the lost energy of heat engines operating between two
reservoirs at different temperatures and chemical potentials, and demonstrate that the linear coefficient 3/4 and
quadratic coefficient 1/32 of the efficiency at maximum � are universal for heat engines under strong coupling
and symmetry conditions. It is further proved that the conclusions obtained here also apply to the ecological
optimization criterion.
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I. INTRODUCTION

It is well known that the Carnot efficiency ηC = 1 − Tc/Th

determines the upper bound of the efficiency for any heat
engine operating between two reservoirs at temperatures Th

and Tc (Tc < Th). However, the Carnot efficiency is too
high to be practical for real heat engines [1,2]. Additional
practical, meaningful work is to find useful optimization
criteria to describe the performance of real heat engines.
One method widely used in determining such criteria is to
determine the efficiency at maximum power (EMP) originating
from the work of Curzon and Ahlborn [3]. Curzon and
Ahlborn proposed an endoreversible model of the Carnot
cycle and found that the EMP is given by the Curzon-
Ahlborn (CA) efficiency [4,5] ηCA = 1 − √

Tc/Th. Since then,
various theoretical models have been established for both
cyclic [6–11] and steady state [12–16] heat engines, ranging
from mesoscopic (stochastic) heat engines [12–14,17,18] to
microscopic (quantum) heat engines [15,19–21]. Tu [12]
investigated Feynman’s ratchet as a heat engine and obtained
an analytic expression for its EMP. Later, the same result
was derived by Van den Broeck et al. [13] for the EMP
in a simple model of classical particle transport. Schmiedl
and Seifert [15] calculated the EMP for a large class of
one-dimensional stochastic Brownian heat engines performing
a Carnot-like cycle driven by a time-dependent harmonic
potential. Recently, Esposito et al. [16] evaluated the EMP of a
nanothermoelectric engine consisting of a single quantum level
embedded between two reservoirs at different temperatures
and chemical potentials and gave the expansion of the EMP
in the regime of small ηC . Interestingly, it is found that the
EMPs of many models agree with ηCA up to quadratic order in
ηC , i.e., ηmP = ηC/2 + η2

C/8 + o(η3
C). In the region of linear

response, it was proven that the EMP is exactly equal to half of
the Carnot efficiency for the strong coupling condition [22]. In
the nonlinear region, Esposito et al. [23] constructed a general
model of heat engines and verified that the EMP is indeed
universal up to quadratic order in ηC for the strong coupling
system in the presence of a symmetry condition. Subsequently,
Uzdin and Kosloff [24] studied hot quantum Otto engines
and identified the universal features in the efficiency at the
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maximum work output. Sheng and Tu [18] applied the generic
nonlinear constitutive relation and finite-time thermodynamics
to obtain the universality of the EMP for tight-coupling heat
engines. Cleuren et al. [25] investigated the EMP in a general
setting for energy conversion machines and demonstrated how
symmetries and constraints at the microscopic level, combined
with the fluctuation theorem, emerge at the macroscopic level
via the expression for the EMP.

Besides maximum efficiency and power criteria, a unified
trade-off optimization criterion (the so-called � criterion) for
energy converters has been proposed by Hernández et al. [26].
The � criterion is defined as a compromise between the useful
energy and the lost energy of heat engines, i.e. [27],

� = (2η − ηmax)P

η
, (1)

where η and P are the efficiency and power output of a heat
engine, respectively, and ηmax is the maximum efficiency. For
the endoreversible Curzon-Ahlborn model of heat engines, the
efficiency at the maximum � criterion was given by [27]

ηCA
m� = 1 −

√
(1 − ηC)(2 − ηC)

2
= 3ηC

4
+ η2

C

32
+ · · · . (2)

This result was first derived by Angulo-Brown by applying the
so-called ecological optimization criterion [28]. An important
feature of the maximum � criterion is that it gives an optimized
efficiency lying between the maximum efficiency and the EMP,
i.e., ηCA � ηCA

m� � ηC . Angulo-Brown et al. [29,30] first dis-
cussed the possibility of thermodynamic optimization in some
biochemical reactions by means of finite-time thermodynam-
ics, and gave some optimization criteria for biological systems
in linear irreversible thermodynamics. Recently, some explicit
applications for different heat engines, such as classical heat
engines [31], stochastic Brownian heat engines [27], Feynman
ratchet heat engines [27], quantum dot heat engines [27],
low-dissipation heat engines [32], and minimally nonlinear
irreversible heat engines [33], and others [34–37], have been
reported. These works display a common feature for the
efficiency at the maximum � criterion up to quadratic order
in ηC , i.e., ηm� = 3ηC/4 + η2

C/32 + o(η3
C). Thus, the relevant

questions in relation to the universality of efficiency at unified
trade-off optimization arise again. Is the efficiency at the
maximum � criterion of a general nature? What conditions can
achieve universal efficiency at the maximum � criterion? In
this paper, we will solve these problems and further discuss the
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unified trade-off optimization [26] and ecological optimization
criteria [28].

II. MODEL AND THEORY

We consider a system exchanging energy and particles
with two reservoirs ν (= h,c) with chemical potentials μν

and temperatures Tν , respectively. The states of the system
with energy εi and number of particles ni are denoted i.
The occupation probability of finding the system in state i is
denoted pi(t). The time evolution of the occupation probability
pi(t) is described by the master equation [38,39]

ṗi(t) =
∑

j

[�ijpj (t) − �jipi(t)], (3)

where the first term on the right-hand side is the rate of gain
in state i due to transitions from other states j , the second
term is the rate of loss from state i due to transitions to other
states j , and �ij is the transition rate from state j to state i.
Since transitions between the system states are triggered by
the reservoirs, the transition rates are expressed as the sums of
independent contributions from the two reservoirs, i.e., �ij =∑

ν �ν
ij . The average matter currents J ν

M and energy currents
J v

E entering the system from the reservoir ν are given by

J ν
M (t) =

∑
i,j

�ν
ijpj (t)(ni − nj ) (4)

and

J ν
E(t) =

∑
i,j

�ν
ijpj (t)(εi − εj ). (5)

Thus, the average heat flows from the reservoir ν into the
system are given by

Q̇ν(t) = J ν
E(t) − μνJ

ν
M (t). (6)

From now on we will focus on nonequilibrium steady state
situations, with particular focus on the situation of the device
operating as a heat engine in which a heat flow from a hot to a
cold reservoir is used to drive particles uphill from low to high
chemical potential. For this purpose, a simple analysis can
be done assuming that Th > Tc and μh < μc. Regarding the
matter of current conservation at steady state, the absence of an
accumulation of particles inside the system implies that J h

M =
−J c

M ≡ JM is obvious, while for energy current conservation,
J h

E = −J c
E ≡ JE is a consequence of the time-independent

steady state solution pi of the master equation, (3). The average
power output of the heat engine, being the amount of the net
chemical energy produced, is given by

P = (μc − μh)JM. (7)

The efficiency, defined as the ratio of the power output P to
the heat flow Q̇h extracted from the hot reservoir, is given by

η = P

Q̇h

= μc − μh

JE/JM − μh

. (8)

According to nonequilibrium thermodynamics, the entropy
production rate can be written in the traditional bilinear

force-flux form as [40,41]

Ṡ = −Q̇c

Tc

− Q̇h

Th

= JMXM + JEXE, (9)

where XM = μh/Th − μc/Tc and XE = 1/Tc − 1/Th are the
standard expressions for the thermodynamic forces.

In the case of strong coupling between the energy current
and the matter current, this condition implies that energy is
exclusively transported by particles of a given energy ε and
defined as [23]

JE = εJM ≡ εJ. (10)

Equation (9) can be further simplified as

Ṡ = JX. (11)

Hence, the two fluxes and forces in Eq. (9) collapse into a
single flux J and a single corresponding thermodynamic force
X, respectively [23]. The thermodynamic force X = xc − xh

can be expressed in terms of two parameters, xc = (ε − μc)/Tc

and xh = (ε − μh)/Th. Thus, Eqs. (7) and (8) can be rewritten
as

P = (Thxh − Tcxc)J = Th(ηCxc − X)J (12)

and

η = 1 − (1 − ηC)
xc

xh

= 1 − (1 − ηC)
xc

xc − X
. (13)

According to the theory of irreversible thermodynamics,
Eq. (9) shows that for the case of the equilibrium state,
Ṡ = 0 and JMXM + JEXE = 0. In such a case, there only
exist two situations. (i) The thermodynamic fluxes and forces
JM , XM , JE , and XE are not equal to zero simultaneously,
the thermodynamic forces XM and XE may balance each
other, and, consequently, X = 0 [42]. (ii) The thermodynamic
fluxes and forces JM , XM , JE , and XE are equal to zero
simultaneously so that X = 0. Equation (11) shows that when
X = 0, J = 0. When the system is near the equilibrium state,
the thermodynamic flow J may be expanded into a Taylor
series with respect to the thermodynamic force X as

J = LX + MX2 + o(X3), (14)

where L = −J ′
1(xc,xc) and M = J ′′

11(xc,xc)/2 are the expan-
sion coefficients [23] and subscripts 1 and 11 represent the
first- and second-order partial derivatives with respect to the
first independent variable.

III. MAXIMUM � OPTIMIZATION

In the present paper, ηmax = ηC . By using Eqs. (12)
and (13), Eq. (1) can be expressed as

� = (2η − ηC)P

η
= Th[ηCxc − (2 − ηC)X]J. (15)

Using Eq. (15) and its extremal conditions, we have

∂�

∂X
= Th

{
−(2 − ηC)J + [ηCxc − (2 − ηC)X]

∂J

∂X

}
= 0

(16)
and

∂�

∂xc

= Th

{
ηCJ + [ηCxc − (2 − ηC)X]

∂J

∂xc

}
= 0. (17)
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When ηC goes to zero, X has to be equal to zero, and,
consequently, the thermodynamic force can be expanded as

X = aηC + bη2
C + o

(
η3

C

)
, (18)

where a and b are two expansion coefficients to be determined.
Substituting Eqs. (14) and (18) into Eq. (16), we obtain

(xc − 4a)LηC + (2aL − 4bL − 6a2M + 2aMxc)η2
C + o

(
η3

C

)
= 0. (19)

It can be found from Eq. (19) that

a = xc

4
(20)

and

b = 4Lxc + Mxc
2

32L
. (21)

Next, substituting Eqs. (14) and (18) into Eq. (17), we obtain

a

(
L + xc

∂L

∂xc

− 2a
∂L

∂xc

)
η2

C + o
(
η3

C

) = 0. (22)

From Eqs. (20) and (22), it is found that

xc = − 2L

∂L/∂xc

. (23)

Substituting Eqs. (18), (20), (21), and (23) into Eq. (13)
yields the efficiency at the maximum � criterion valid up to
quadratic order in ηC , i.e.,

ηm� = 3

4
ηC +

(
1

16
+ M

16 ∂L/∂xc

)
η2

C + o
(
η3

C

)
. (24)

In the symmetry condition, the switching of temperatures and
chemical potentials leads to inversion of the flux [23], i.e.,
J (xc,xh) = −J (xh,xc), from which we have J ′′

12(xc,xc) = 0.
Using the relation ∂L/∂xc = −J ′′

11(xc,xc) − J ′′
12(xc,xc), we

obtain 2M = −∂L/∂xc, and, consequently, Eq. (24) is
simplified as [27,31–33]

ηm� = 3

4
ηC + 1

32
η2

C + o
(
η3

C

)
. (25)

Equation (25) shows clearly that the linear coefficient 3/4
holds universally for heat engines with the strong coupling
condition (Appendix) and the quadratic coefficient 1/32
is also universal for strong coupling heat engines with the
symmetry condition.

IV. DISCUSSION

For the so-called ecological criterion [28,43–45], which
represents the best compromise between the power output
and the product of entropy production and the cold reservoir
temperature of heat engines, i.e., E = P − TcṠ, where TcṠ

is called “loss power” (the environment temperature is equal
to the cold temperature). In two reservoir systems, the total
entropy production is given by Ṡ = Q̇c/Tc − Q̇h/Th and Q̇h =
P + Q̇c. The ecological function E can be further rewritten as

E = P − TcṠ = P − Q̇c + Tc

Th

Q̇h

= 2P − ηCQ̇h = (2η − ηC)P

η
= �. (26)

Equation (26) clearly shows that the objective function E

is identical to �, i.e., the two criteria of unified trade-off
optimization and ecological optimization are equivalent to
each other, and, consequently, the efficiency at maximum
ecological optimization [28,43] is also given by Eq. (25).

V. CONCLUSIONS

We have investigated the efficiency of nonequilibrium heat
engines based on the master equation model of heat engines,
and verified that the efficiency at the maximum � criterion
exhibits universality up to quadratic order in the deviation from
equilibrium for the strong coupling system in the presence of
a symmetry condition. This condition is in agreement with
that of the universal efficiency at maximum power. It has
been proved the � criterion is equivalent to the ecological
optimization criterion. Thus, the conclusions obtained from
the maximum � criterion also apply to the ecological opti-
mization. The results obtained here are meaningful for the
optimal design and manufacture of bio- and nano-heat engines
in experiments and actual applications in the future.
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APPENDIX: UNIVERSALITY OF EFFICIENCY
AT MAXIMUM � CRITERION IN

LINEAR-RESPONSE REGION

Within the linear-response region of Th ≈ Tc, Eq. (9) can
be rewritten as

Ṡ ≈ JMXM + JEXE − μhJM

(
1

Tc

− 1

Th

)

= JMXM + Q̇hXE ≡ JMXM + JQXE, (A1)

Where JQ = Q̇h. The power output and the efficiency can
be given by P = −JMXMTc and η = P/Q̇h = P/JQ, respec-
tively. According to the linear irreversible thermodynamics,
the relationship between the thermodynamic fluxes JM and JQ

and the thermodynamic forces XM and XE can be expressed
as [40,41]

JM = L11XM + L12XE,

JQ = L21XM + L22XE,
(A2)

where Lij are the Onsager coefficients with the symmetry
relation L12 = L21. The entropy production rate Ṡ � 0 leads
to the restriction on the Onsager coefficients L11 � 0, L22 � 0,
and L11L22 − L2

12 � 0. Equation (1) can be expressed as

� = (2η − ηC)P

η
= −2L11TcX

2
M − 3L12ηCXM − L22ηCXE.

(A3)

Using the extremal condition (∂�/∂XM )XE
= 0 and Eq. (A3),

one can find that when

XM� = −3L12ηC

4L11Tc

, (A4)
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the efficiency at maximum � is given by

ηm� = 3

4
ηC

q2

4 − 3q2
, (A5)

where q = L12/
√

L11L22 is the dimensionless coupling
strength and obeys −1 � q � 1 [22]. Equation (A5) was
first derived by applying the so-called ecological optimization
criterion [46]. For strongly coupled systems, |q| = 1 and the
efficiency is exactly 3/4 of the Carnot efficiency.
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