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Functionals of Brownian and non-Brownian motions have diverse applications and attracted a lot of interest
among scientists. This paper focuses on deriving the forward and backward fractional Feynman-Kac equations
describing the distribution of the functionals of the space and time-tempered anomalous diffusion, belonging to
the continuous time random walk class. Several examples of the functionals are explicitly treated, including the
occupation time in half-space, the first passage time, the maximal displacement, the fluctuations of the occupation
fraction, and the fluctuations of the time-averaged position.
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I. INTRODUCTION

Normal diffusion describes the Brownian dynamics char-
acterized by a large number of small events, e.g., the motion of
pollen grains in water. However, in many cases, the (rare) large
fluctuations result in the non-Brownian motion, anomalous
diffusion, being carefully studied in physics [1,2], finance [3],
hydrology [4], and many other fields. In particular, based on
the continuous time random walk (CTRW) model, the corre-
sponding fractional Fokker-Planck or diffusion equations are
derived (see the review article [1] and numerical methods [5]).

Tempered anomalous diffusion describes the very slow
transition from anomalous to normal diffusion, and it has many
applications in physical, biological, and chemical processes
[6–11]; for numerical methods see Refs. [12,13]. In some
cases, the transition even does not appear at all in the
observation time because of the finite lifespan of the particles
or the finite observation time of the experimentalist. As a
generalization of the Brownian walk, the CTRW model allows
the incorporation of the waiting time distribution ψ(t) and the
general jump length distribution η(x). The CTRW model de-
scribes the normal diffusion if ψ(t) has bounded first moment
and η(x) bounded second moment, e.g., ψ(t) is an exponential
distribution and η(x) is a Gaussian distribution. Anomalous
diffusion is characterized by the CTRW model with the waiting
time distribution ψ(t) having divergent first moment and/or
the jump length distribution η(x) having divergent second mo-
ment, e.g., ψ(t) � t−α−1 (0 < α < 1) and/or η(x) � |x|−β−1

(0 < β < 2). Sometimes the more reasonable or physical
choice for ψ(t) is to make it have finite first moment; similarly,
sometimes the bounded physical space implies that η(x) should
have finite second moment. These can be realized by truncating
the heavy tail of the power-law distribution [14]. The tempered
anomalous diffusion is described by the CTRW model with
truncated power-law waiting time and/or jump length distri-
bution(s). In this paper, we use the exponentially truncated
stable distribution (ETSD) [15,16] waiting time ψ(t,λ), and
exponentially truncated jump length η(x). The exponential
tempering offers technical advantages since the tempered
process is still an infinitely divisible Lévy process [17].

It is well known that many physical quantities are used
to describe the motion features of a Brownian particle. An
example of one, Brownian functionals, is defined as A =

∫ t

0 U [x(τ )] dτ , where U (x) is a prescribed function and x(t)
is a trajectory of a Brownian particle. Here A is a random
variable since x(t) is a stochastic process. Functionals of
diffusion motion have diverse applications and have been
well studied, including functionals of Brownian motion [18]
and non-Brownian motion [19–21]. In particular, based on
the subdiffusive CTRW, a widely investigated process being
continually used to characterize the motion of particles in
disordered systems [22–24], the fractional Feynman-Kac
equation is derived [19]. Taking the tempered power-law
function ψ(t,λ) as the waiting time distribution in the CTRW
model, in this paper we derive the forward and backward
Feynman-Kac equations governing the distribution of the
functionals of the tempered anomalous diffusion; and the
tempered fractional substantial derivative [25] is used in the
equations. The derivations include several cases: random walk
on lattice, random walk on lattice with forces, power-law
jump distribution, and tempered power-law jump distribution.
After deriving the equations, several concrete examples of
the functionals of the tempered anomalous diffusion are
analytically and explicitly analyzed, covering the occupation
time in half-space [26], the first passage time, the maximal
displacement, the fluctuations of the occupation fraction, the
fluctuations of the time-averaged position, and the ergodic
behavior of the particle.

The paper is organized as follows. In Sec. II we derive the
forward and backward fractional Feynman-Kac equations for
the functionals of the tempered anomalous diffusion with dif-
ferent jump length distributions. In Sec. III we present the so-
lutions of the equations for a few functionals of interest of free
particles. Then we discuss the occupation time in half-space,
the first passage time, the maximal displacement, and the fluc-
tuations of the occupation fraction with the obtained solutions.
In Sec. IV we investigate the fluctuations of the time-averaged
position. The paper is concluded with some comments.

II. DERIVATION OF THE EQUATIONS

A. Model

We use the CTRW model with tempered power-law waiting
time distribution as the underlying process leading to tempered
anomalous diffusion, which characterizes the slow transition
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FIG. 1. Trajectories of 30 particles, moving on the lattice with the
tempered waiting times, where a = 0.01, Kα = 1/2, and λ = 0.01,
and 0.1.

from the anomalous to normal diffusion, which is controlled
by the parameter λ (see Fig. 1). First, we consider the
CTRW on a lattice; i.e., a particle is placed on an infinite
one-dimensional lattice with spacing a and is allowed to jump
to its nearest neighbors only. The probabilities of jumping
left L(x) and right R(x) depend on F (x), the force at x (see
Sec. II C for a derivation of these probabilities). If F (x) = 0,
then R(x) = L(x) = 1/2. Waiting times between jump events
are independent identically distributed (i.i.d.) random vari-
ables with exponentially truncated stable distribution (ETSD)
ψ(t,λ) and are independent of the external force. This ETSD is
useful for rigorous analysis of diffusion behavior because it is
an infinitely divisible distribution, and thus its distribution or
characteristic function can be explicitly derived. The Laplace
transform for ψ(t,λ) is given by [27]

eφ̂(s,λ) =
∫ +∞

0
ψ(t,λ)e−st dt,

where φ̂(s,λ) = −Bα(λ + s)α + Bαλα . Hence, the Laplace
transform (for small s and λ) of ETSD ψ(t,λ) results in

ψ̂(s,λ) =e−Bα (λ+s)α+Bαλα

� 1 − Bα(λ + s)α + Bαλα. (1)

The process starts at x = x0, and the particle waits at x0

for time t drawn from ψ(t,λ) and then jumps to either x0 + a

[with probability R(x0)] or x0 − a [with probability L(x0)],
after which the process is renewed. Furthermore, we consider
the more general cases; i.e., instead of being a fixed number,
the step sizes are random variables, subject to power-law or
tempered power-law distribution.

B. A random walk on a one-dimensional lattice

We now consider the CTRW on a lattice with R(x) =
L(x) = 1/2. Let G(x,A,t) be the joint probability density
function (PDF) of finding the particle at position x and
time t with the functional value A. Here the functional A =∫ t

0 U [x(t)] dt as usual, and G(k,p,s) is the Fourier transfor-
mation x → k, and Laplace transformation t → s, A → p of
G(x,A,t). In this subsection, based on the CTRW model with
ETSD describing the tempered anomalous diffusion, we derive
the forward and backward tempered fractional Feynman-Kac
equations governing G(x,p,t).

1. Derivation of the forward tempered fractional Feynman-Kac
equation from the random walk on a lattice

For a random walk on a lattice with a general given waiting
time PDF ψ(t,λ), the following formal solution was obtained
by Carmi et al. (see the Appendix) [19]:

G(k,p,s) = 1 − ψ̂
[
s + pU

( − i ∂
∂k

)
,λ

]
s + pU

( − i ∂
∂k

) ·

× 1

1 − cos(ka)ψ̂
[
s + pU

( − i ∂
∂k

)
,λ

] , (2)

where U (x) is a prescribed function. Recently Cairoli and
Baule [28] derived a generalized Feynman-Kac equation for
CTRW functionals; one of our goals is to now show that this
equation can be directly derived from Eq. (2), thus hopefully
clarifying better the meaning of the latter equation given in
Ref. [19]. Note that in Eq. (2), cos(ka) is the Fourier transform
of the jump length distribution, which on a lattice is a sum of
two delta functions of step sizes ±a.

Substituting Eq. (1) into Eq. (2) and using cos(ka) � 1 −
a2k2

2 for the long wavelength k → 0 corresponding to large x

(or the continuous limit a → 0) as is well known, then

G(k,p,s) � Bα

[
λ + s + pU

( − i ∂
∂k

)]α − Bαλα

s + pU
( − i ∂

∂k

)
× 1

a2k2

2 + Bα

[
λ + s + pU

( − i ∂
∂k

)]α − Bαλα
.

(3)

After some rearrangements to Eq. (3), we have{
a2k2

2Bα

[
λ + s + pU

(
− i

∂

∂k

)]1−α

+
[
λ+s + pU

(
− i

∂

∂k

)]

−λα

[
λ + s + pU

(
− i

∂

∂k

)]1−α}
G(k,p,s) − 1

= λ − λα
[
λ + s + pU

( − i ∂
∂k

)]1−α

s + pU
( − i ∂

∂k

) . (4)

Inverting to the space-time domain k → x and s → t , from the
well-known Fourier transformationF{xf (x); k} = −i ∂

∂k
f̂ (k);

the operator U (−i ∂
∂k

) on the right-hand side of Eq. (4)
is operating on 1, which means that we use the Taylor
expansion U (−i ∂

∂k
) = ∑∞

n=0 cn(−i ∂
∂k

)
n
, and thus we consider

the analytical functions U (x). Note that the order of the terms
is important: for instance, k2 does not commute with U (−i ∂

∂k
);

thus we finally find the tempered fractional Feynman-Kac
equation:

∂

∂t
G(x,p,t) = [

λαD1−α,λ
t − λ

]
[G(x,p,t) − e−pU (x)t δ(x)]

−pU (x)G(x,p,t) + Kα

∂2

∂x2
D1−α,λ

t G(x,p,t),

(5)
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with the initial condition G(x,A,t = 0) = δ(x)δ(A) or
G(x,p,t = 0) = δ(x), where δ(·) is the Dirac delta function
and

Kα = a2

2Bα

, (6)

with units m2/ secα , is finite for a → 0,Bα → 0. Equation
(6) is a generalized Einstein relation for tempered motion. In
Laplace space, D1−α,λ

t → [λ + s + pU (x)]1−α; and in t space,
the tempered fractional substantial derivative

D1−α,λ
t G(x,p,t) = 1

�(α)

[
λ + pU (x) + ∂

∂t

]

×
∫ t

0

e−(t−τ )·(λ+pU (x))

(t − τ )1−α
G(x,p,τ )dτ. (7)

Thus, due to the long waiting times, the evolution of G(x,p,t)
is non-Markovian and depends on the entire history. Through-
out the paper, the operator D

1−α,λ
t is defined as in Eq. (7).

(a) With the case that λ is finite but α = 1, the equation
leads to

∂

∂t
G(x,p,t) = K1

∂2

∂x2
G(x,p,t) − pU (x)G(x,p,t).

This is simply the famed Feynman-Kac equation [18]; namely,
exponentially truncation has no effects on normal diffusion. As

is well known the Feynman-Kac equation is the imaginary time
Schrödinger equation, where U (x) serves as the potential field.

(b) When λ = 0, Eq. (5) reduces to the imaginary time
fractional Schrödinger equation [19], namely, the fractional
Feynman-Kac equation:

∂

∂t
G(x,p,t) = Kα

∂2

∂x2
D1−α

t G(x,p,t) − pU (x)G(x,p,t).

(8)
(c) Furthermore, if p = 0, Eq. (8) turns into the fractional
diffusion equation [1]:

∂

∂t
G(x,t) = Kα

∂2

∂x2
D1−α

RL,tG(x,t),

where D1−α
RL,t is the Riemann-Liouville fractional derivative

operator.
(d) When p = 0 and λ is finite, Eq. (5) becomes

∂

∂t
G(x,t) = [

λαD1−α,λ
t − λ

]
[G(x,t) − δ(x)]

+Kα

∂2

∂x2
D1−α,λ

t G(x,t), (9)

where

D1−α,λ
t G(x,t) = 1

�(α)

[
λ + ∂

∂t

] ∫ t

0

e−(t−τ )λ

(t − τ )1−α
G(x,τ ) dτ.

This is a diffusion equation for tempered CTRW processes.

2. Another formulation for Eq. (5)

Rearranging Eq. (3) leads to[
s + pU

(
− i

∂

∂k

)]
G(k,p,s) − 1 = −a2k2

2Bα

[
s + pU

(
− i

∂

∂k

)]
G(k,p,s)

�̂
[
s + pU

(−i ∂
∂k

)
,λ

] , (10)

where �̂(s,λ) = (λ + s)α − λα . Inverting to the time-space domain s → t and k → x, from the well-known Fourier
transformation F{g1(x)g2(x); k} = ĝ1(−i ∂

∂k
)ĝ2(k), the tempered fractional Feynman-Kac equation is obtained as

∂

∂t
G(x,p,t) + pU (x)G(x,p,t) = Kα

∂2

∂x2

[
∂

∂t
+ pU (x)

] ∫ t

0
K(t − τ,λ)e−pU (x)(t−τ )G(x,p,τ ) dτ, (11)

with the initial condition G(x,A,t = 0) = δ(x)δ(A) or G(x,p,t = 0) = δ(x), where the memory kernel is related to � by
K̂(s,λ) = �̂(s,λ)−1 and given by K(t,λ) = e−λt tα−1Eα,α[(λt)α]. Here Eα,α(·) is the Mittag-Leffler function. It can be noted that
Eq. (11) is exactly the same as Eq. (15) of Ref. [28].

3. Derivation of the backward tempered Feynman-Kac equation from the random walk on a lattice

Now we derive a backward equation which turns out to be very useful. In some cases we may be just interested in the
distribution of A, so integrating G(x,A,t) over all x is necessary. Therefore, it would be convenient to obtain an equation for
Gx0 (A,t), which is the PDF of the functional A at time t for a process starting at x0. According to the CTRW model, the particle
starts at x = x0; after its first jump at time τ , it is at either x0 + a or x0 − a. Alternatively, the particle doesn’t move at all during
the measurement time (0,t). Translating this process to an equation, there exists [19]

Gx0 (A,t) =
∫ t

0
dτψ(τ,λ)

1

2

{
Gx0+a[A − τU (x0),t − τ ] + Gx0−a[A − τU (x0),t − τ ]

} + W (t,λ)δ[A − tU (x0)], (12)

where τU (x0) is the contribution to A from the pausing time on x0 in the time interval (0,τ ); the last term on the right-hand side
of Eq. (12) shows motionless particles, for which A(t) = tU (x0); and W (t,λ) = 1 − ∫ t

0 ψ(τ,λ) dτ is the probability that particle
remained motionless on its initial location. The Laplace transform of W (t,λ) follows from the form for the Laplace transform of
an integral [29] and reads Ŵ (s,λ) = 1−ψ̂(s,λ)

s
; here ψ̂(s,λ) is also given by Eq. (1). Taking the Laplace transform t → s,A → p

032151-3



XIAOCHAO WU, WEIHUA DENG, AND ELI BARKAI PHYSICAL REVIEW E 93, 032151 (2016)

and Fourier transforms x0 → k, we have

Gk(p,s) = ψ̂

[
pU

(
− i

∂

∂k

)
+ s,λ

]
cos(ka)Gk(p,s) + Ŵ

[
pU

(
− i

∂

∂k

)
+ s,λ

]
δ(k)

=
{

1 − Bα

[
λ + pU

(
− i

∂

∂k

)
+ s

]α

+ Bαλα

}
cos(ka)Gk(p,s) + Bα

[
λ + pU

( − i ∂
∂k

) + s
]α − Bαλα

pU
( − i ∂

∂k

) + s
δ(k). (13)

Rearranging the expressions and taking approximation k → 0, cos(ka) � 1 − a2k2

2 in the last equation we find[
λ + pU

(
− i

∂

∂k

)
+ s

]1−α
a2k2

2Bα

Gk(p,s) +
{[

λ + pU

(
− i

∂

∂k

)
+ s

]
− λα

[
λ + pU

(
− i

∂

∂k

)
+ s

]1−α}
Gk(p,s) − δ(k)

= λ − λα
[
λ + pU

( − i ∂
∂k

) + s
]1−α

pU
( − i ∂

∂k

) + s
δ(k). (14)

Inverting to the space-time domain k → x0 and s → t similar to that used in the derivation of the forward equation, in the
continuum limit, we get the backward tempered fractional Feynman-Kac equation

∂

∂t
Gx0 (p,t) = [

λαD1−α,λ
t − λ

][
Gx0 (p,t) − e−pU (x0)t

] − pU (x0)Gx0 (p,t) + KαD1−α,λ
t

∂2

∂x2
0

Gx0 (p,t). (15)

The initial condition is Gx0 (A,t = 0) = δ(A), or in Laplace space Gx0 (p,t = 0) = 1, where δ(·) is also the Dirac delta function.
The symbol D

1−α,λ
t is the tempered fractional substantial derivative, defined as Eq. (7). Notice that here this operator appears

to the left of the Laplacian ∂2

∂x2
0

in Eq. (15), in contrast to the forward equation (5). When λ = 0, Eq. (15) turns to the backward

fractional Feynman-Kac equation [19]:

∂

∂t
Gx0 (p,t) = KαD1−α

t

∂2

∂x2
0

Gx0 (p,t) − pU (x0)Gx0 (p,t).

C. A one-dimensional lattice random walk with forces

This subsection still considers the CTRW on lattice but with forces, which means the probabilities of jumping left (L(x))
and right (R(x)) are no longer equal. Assume the system is coupled to a heat bath at temperature T and detailed balance; i.e.,
L(x) exp [−V (x)

kBT
] = R(x − a) exp [−V (x−a)

kBT
], where a is the spacing of the lattice. For small a, expanding R(x), L(x), and the

exponential function leads to

R(x) � 1

2

[
1 + aF (x)

2kBT

]
, L(x) � 1

2

[
1 − aF (x)

2kBT

]
,

where F (x) = −V ′(x) [21].

1. Derivation of the forward tempered fractional Feynman-Kac equation with forces

Using cos(ka) � 1 − a2k2

2 and sin(ka) � ka for the long wavelength k → 0 and following Eq. (18) in Ref. [21],

G(k,p,s) � 1 − ψ̂
[
s + pU

( − i ∂
∂k

)
,λ

]
s + pU

( − i ∂
∂k

) · 1

1 − [
1 − a2k2

2 + i(ka)
aF (−i ∂

∂K
)

2kbT

]
ψ̂

[
s + pU

( − i ∂
∂k

)
,λ

] . (16)

Substituting ψ̂(s,λ) Eq. (1) into Eq. (16) and rearranging the equation, we obtain

a2

2Bα

{
k2 − ik

F
( − i ∂

∂k

)
kbT

}[
λ + s + pU

(
− i

∂

∂k

)]1−α

G(k,p,s) +
[
λ + s + pU

(
− i

∂

∂k

)]
G(k,p,s)

−λα

[
λ + s + pU

(
− i

∂

∂k

)]1−α

G(k,p,s) − 1 = λ − λα
[
λ + s + pU

( − i ∂
∂k

)]1−α

s + pU
( − i ∂

∂k

) . (17)

Inverting k → x, s → t , then

∂

∂t
G(x,p,t) = [

λαD1−α,λ
t − λ

]
[G(x,p,t) − e−pU (x)t δ(x)] − pU (x)G(x,p,t) + Kα

[
∂2

∂x2
− ∂

∂x

F (x)

kbT

]
D1−α,λ

t G(x,p,t). (18)
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Similarly, we can obtain another equation as follows:

∂

∂t
G(x,p,t) + pU (x)G(x,p,t) = Kα

[
∂2

∂x2
− ∂

∂x

F (x)

kbT

][
∂

∂t
+ pU (x)

] ∫ t

0
K(t − τ,λ)e−pU (x)(t−τ )G(x,p,τ ) dτ. (19)

If F (x) = 0, then Eq. (18) is the same as Eq. (5). If λ = 0, Eq. (18) becomes the same as Eq. (22) given in Ref. [21],

∂

∂t
G(x,p,t) = Kα

[
∂2

∂x2
− ∂

∂x

F (x)

kbT

]
D1−α

t G(x,p,t) − pU (x)G(x,p,t).

2. Derivation of the backward tempered fractional Feynman-Kac equation with forces

As mentioned above, if we are just interested in the distribution of the functional A, the backward equation should be useful
and convenient. For Gk(p,s), the following formal equation holds [21]:

Gk(p,s) � Ŵ

[
pU

(
− i

∂

∂k

)
+ s,λ

]
δ(k) + ψ̂

[
pU

(
− i

∂

∂k

)
+ s,λ

][
cos(ka) − aF

( − i ∂
∂k

)
2kbT

i sin(ka)

]
Gk(p,s). (20)

Substituting Ŵ (s) = [1 − ψ̂(s,λ)]/s and ψ̂(s,λ) [given in Eq. (1)] into Eq. (20), and using cos(ka) � 1 − k2a2

2 and sin(ka) � ka

as ak → 0 and small s (Bα → 0) approximation, after some rearrangements, we have

a2

2Bα

[
λ + pU

(
− i

∂

∂k

)
+ s

]1−α[
k2 + F

( − i ∂
∂k

)
kbT

(ik)

]
Gk(p,s) +

[
λ + pU

(
− i

∂

∂k

)
+ s

]
Gk(p,s)

−λα

[
λ + pU

(
− i

∂

∂k

)
+ s

]1−α

Gk(p,s) − δ(k) = λ − λα
[
λ + pU

( − i ∂
∂k

) + s
]1−α

pU
( − i ∂

∂k

) + s
δ(k). (21)

Taking inversion in the above equation, k → x0 and s → t , we get

∂

∂t
Gx0 (p,t) = [

λαD1−α,λ
t − λ

][
Gx0 (p,t) − e−pU (x0)t

] − pU (x0)Gx0 (p,t) + KαD1−α,λ
t

[
∂2

∂x2
0

+ F (x0)

kbT

∂

∂x0

]
Gx0 (p,t). (22)

If F (x) = 0, then Eq. (22) is exactly the same as Eq. (15). For λ = 0, Eq. (22) reduces to the one given in Ref. [21]:

∂

∂t
Gx0 (p,t) = KαD1−α

t

[
∂2

∂x2
0

+ F (x0)

kbT

∂

∂x0

]
Gx0 (p,t) − pU (x0)Gx0 (p,t).

D. Tempered CTRW with power-law jump length distribution

Instead of discussing the tempered CTRW on a lattice, we further analyze the tempered CTRW with a power-law jump length
distribution, η(x) � |x|−1−β , 0 < β < 2, and the Fourier transform of η(x) is [1]

η(k) = exp(−Cβ |k|β) � 1 − Cβ |k|β. (23)

Tempering of the jump length will be considered in the next subsection.

1. Derivation of the forward tempered fractional Feynman-Kac equation with power-law jump length distribution

From the CTRW model, the main Eq. (2) is modified according to

G(k,p,s) = 1 − ψ̂
[
s + pU

( − i ∂
∂k

)
,λ

]
s + pU

( − i ∂
∂k

) 1

1 − η(k)ψ̂
[
s + pU

( − i ∂
∂k

)
,λ

] . (24)

Compared with Eq. (2) where the random walk is on a lattice, hence the Fourier transform of jump length PDF was cos(ka), now
we replace it with the more general form η(k). Substituting the approximation of η(k) [given in Eq. (23)] and ψ̂(s,λ) [given in
Eq. (1)] into Eq. (24) leads to

G(k,p,s) � Bα

[
λ + s + pU

( − i ∂
∂k

)]α − Bαλα

s + pU
( − i ∂

∂k

) 1

1 − (1 − Cβ |k|β)
{
1 − Bα

[
λ + s + pU

( − i ∂
∂k

)]α + Bαλα
} . (25)

Rearranging Eq. (25) and taking k → 0, we obtain the following equation:

Cβ

Bα

|k|β
[
λ + s + pU

(
− i

∂

∂k

)]1−α

G(k,p,s) +
[
λ + s + pU

(
− i

∂

∂k

)]
G(k,p,s) − 1

− λα

[
λ + s + pU

(
− i

∂

∂k

)]1−α

G(k,p,s) = λ − λα
[
λ + s + pU

( − i ∂
∂k

)]1−α

s + pU
( − i ∂

∂k

) . (26)

032151-5



XIAOCHAO WU, WEIHUA DENG, AND ELI BARKAI PHYSICAL REVIEW E 93, 032151 (2016)

Taking k → x,s → t in the above equation results in the forward Feynman-Kac equation:

∂

∂t
G(x,p,t) = [

λαD1−α,λ
t − λ

]
[G(x,p,t) − e−pU (x)t δ(x)] − pU (x)G(x,p,t) + Cβ

Bα

∇β
x D1−α,λ

t G(x,p,t), (27)

where the Riesz spatial fractional derivative operator ∇β
x and the fractional Laplacian operator −(−x)β/2 are equivalent [31].

In Fourier x → k space ∇β
x → −|k|β [20]; and in x space,

∇β
x f (x) = − 1

2 cos βπ

2

[
−∞Dβ

x f (x) + xD
β
+∞f (x)

]
,

where (n − 1 < β < n):

−∞Dβ
x f (x) = 1

�(n − β)

dn

dxn

∫ x

−∞

f (ξ )

(x − ξ )β+1−n
dξ, (28)

xD
β
+∞f (x) = (−1)n

�(n − β)

dn

dxn

∫ +∞

x

f (ξ )

(ξ − x)β+1−n
dξ. (29)

And the symbol D
1−α,λ
t is defined as before. If taking β = 2, Eq. (27) reduces to Eq. (5); letting λ = 0 leads to ∂

∂t
G(x,p,t) =

Cβ

Bα
∇β

x D1−α
t G(x,p,t) − pU (x)G(x,p,t), which is the same as the one obtained in Ref. [20].

2. Derivation of the backward tempered Feynman-Kac equation with power-law jump length distribution

Following [30] and replacing cos(ka) with η(k) in Eq. (13) corresponding to the general jump lengths, there exists

Gk(p,s) = ψ̂

[
pU

(
− i

∂

∂k

)
+ s,λ

]
η(k)Gk(p,s) + Ŵ

[
pU

(
− i

∂

∂k

)
+ s,λ

]
δ(k). (30)

Substituting the approximation of η(k) [given in Eq. (23)], Ŵ (s,λ) = [1 − ψ̂(s,λ)]/s, and ψ̂(s,λ) [given in Eq. (1)] into Eq. (30),
taking k → 0, and rearranging the terms, we find[

λ + pU

(
− i

∂

∂k

)
+ s

]1−α
Cβ

Bα

|k|βGk(p,s) +
{[

λ + pU

(
− i

∂

∂k

)
+ s

]
− λα

[
λ + pU

(
− i

∂

∂k

)
+ s

]1−α}
Gk(p,s) − δ(k)

= λ − λα
[
λ + pU

( − i ∂
∂k

) + s
]1−α

pU
( − i ∂

∂k

) + s
δ(k). (31)

Taking the inverse transforms k → x0,s → t , we get

∂

∂t
Gx0 (p,t) = [

λαD1−α,λ
t − λ

][
Gx0 (p,t) − e−pU (x0)t

] − pU (x0)Gx0 (p,t) + Cβ

Bα

D1−α,λ
t ∇β

x0
Gx0 (p,t). (32)

If taking β = 2, Eq. (32) reduces to Eq. (15); while λ = 0, it reduces to Eq. (21) in Ref. [30] as expected.

E. Tempered CTRW with tempered power-law jump length distribution

Now we are going to discuss the tempered power-law jump length distribution η(x) � Aβ

|�(−β)|e
−γ |x||x|−β−1, where 0 < γ, 0 <

β < 2; and the asymptotic form (with small k) of the Fourier transform of η(x) is [16]

η(k) � 1 − Aθ
β(γ 2 + k2)β/2 + 2Aβγ β, (33)

where θ = arg(γ + ik), Aθ
β = 2Aβ cos(βθ ).

1. Derivation of the forward tempered fractional Feynman-Kac equation with tempered power-law jump length distribution

Similar to the above analysis, substituting the approximation of η(k) [given in Eq. (33)] and ψ̂(s,λ) [given in Eq. (1)] into
Eq. (24), we get

G(k,p,s) � Bα

[
λ+s+pU

(−i ∂
∂k

)]α − Bαλα

s + pU
( − i ∂

∂k

) · 1

1−[
1−Aθ

β(γ 2 + k2)β/2 + 2Aβγ β
]{

1 − Bα

[
λ + s + pU

( − i ∂
∂k

)]α + Bαλα
} .

(34)
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Taking k → 0 makes Aθ
β → 2Aβ . Rearranging Eq. (34), we have{

Kα,β(γ 2 + k2)β/2

[
λ + s + pU

(
− i

∂

∂k

)]1−α

− Kα,βγ β

[
λ + s + pU

(
− i

∂

∂k

)]1−α}
G(k,p,s)

+
[
λ + s + pU

(
− i

∂

∂k

)]
G(k,p,s) − λα

[
λ + s + pU

(
− i

∂

∂k

)]1−α

G(k,p,s) − 1

= λ

s + pU
( − i ∂

∂k

) − λα
[
λ + s + pU

( − i ∂
∂k

)]1−α

s + pU
( − i ∂

∂k

) , (35)

where Kα,β = 2Aβ

Bα
. Taking the inversion transforms k → x and s → t results in

∂

∂t
G(x,p,t) = [

λαD1−α,λ
t − λ

]
[G(x,p,t) − e−pU (x)t δ(x)] − pU (x)G(x,p,t) + Kα,β

(∇β,γ
x + γ β

)
D1−α,λ

t G(x,p,t). (36)

The tempered fractional Riesz derivative (TFRD) operator ∇β,γ
x is defined in Fourier x → k space as ∇β,γ

x → −(γ 2 + k2)β/2;
and in x space, the operator is defined as (for more details, see the Appendix):

∇β,γ
x f (x) = − 1

2 cos
(

βπ

2

) [
−∞Dβ,γ

x f (x) + xD
β,γ
+∞f (x)

]
. (37)

When γ = 0, Eq. (36) becomes Eq. (27) as expected.

2. Derivation of the backward tempered fractional Feynman-Kac equation with tempered power-law jump length distribution

Again following Ref. [30] and inserting the approximation of η(k) [given in Eq. (33)], Ŵ (s,λ) = [1 − ψ̂(s,λ)]/s, and ψ̂(s,λ)
[given in Eq. (1)] into Eq. (30), we have

Gk(p,s) = ψ̂

[
pU

(
− i

∂

∂k

)
+ s,λ

]
η(k)Gk(p,s) + Ŵ

[
pU

(
− i

∂

∂k
+ s

)
,λ

]
δ(k)

�
{

1 − Bα

[
λ + pU

(
− i

∂

∂k

)
+ s

]α

+ Bαλα

}[
1 − Aθ

β(γ 2 + k2)β/2 + 2Aβγ β
]
Gk(p,s)

+ Bα

[
λ + pU

( − i ∂
∂k

) + s
]α − Bαλβ

pU
( − i ∂

∂k

) + s
δ(k). (38)

Letting k → 0 makes Aθ
β → 2Aβ . Rearranging the last equation leads to[

λ + pU

(
− i

∂

∂k

)
+ s

]1−α[
Kθ

α,β (γ 2 + k2)β/2 − Kα,βγ β
]
Gk(p,s)

+
{[

λ + pU

(
− i

∂

∂k

)
+ s

]
− λα

[
λ + pU

(
− i

∂

∂k

)
+ s

]1−α}
Gk(p,s)

= λδ(k)

pU
( − i ∂

∂k

) + s
− λα

[
λ + pU

( − i ∂
∂k

) + s
]1−α

pU
( − i ∂

∂k

) + s
δ(k) + δ(k), (39)

where Kθ
α,β = Aθ

β

Bα
, Kα,β = 2Aβ

Bα
. Taking the inverse Laplace and Fourier transformations, s → t and k → x, there exists

∂

∂x
Gx0 (p,t) = [

λαD1−α,λ
t − λ

][
Gx0 (p,t) − e−pU (x0)t

] − pU (x0)Gx0 (p,t) + Kα,βD1−α,λ
t

(∇β,γ
x0

+ γ β
)
Gx0 (p,t). (40)

Notice that D
1−α,λ
t is on the left of ∇β,γ

x0 in Eq. (40), in contrast to the forward equation Eq. (36). When γ = 0, Eq. (40) reduces
to Eq. (32) as expected.

III. SOLUTIONS TO THE DERIVED EQUATIONS

In this section, we present the distributions of four concrete
functionals of the paths of particles performing tempered
anomalous dynamics. We search for the distribution of the
functional of x(t) called A. In principle, one could get PDF
of A and x and then integrate over x, leaving a solution for

the PDF of A, which depends on the initial condition x0, but
this integration step is not needed if we treat from the first
step the backward equation. So like in many problems (e.g.,
occupation time and first passage time) the backward equation
is very useful. And the following derivations are based on the
backward equation.
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A. Occupation time in half-space

In probability theory, an important object of interest is the
occupation time, i.e., the time spent by a Brownian motion
above the origin within a time window of size t . Thus define
the occupation time in x > 0 as T + = A = ∫ t

0 �[x(τ )] dτ ,
i.e., U (x) = �(x) = 1 for x � 0 and is zero otherwise. The
occupation time of a particle in half-space is also widely used
in physics [26,33,34] and mathematics [35]. For example,
for Brownian motion the PDF of T + is the famous Arcsine
distribution. In order to find the PDF of the occupation
time, here we consider the backward fractional Feynman-Kac
equation (15) with regular jump length in Laplace s space:

−Kα(λ + s)1−α ∂2

∂x2
0

Gx0 (p,s) + (λ + s)Gx0 (p,s) − 1

= λα(λ + s)1−αGx0 (p,s) + λ − λα(λ + s)1−α

s
,x0 < 0.

(41)

−Kα(λ + s + p)1−α ∂2

∂x2
0

Gx0 (p,s)+(λ + s + p)Gx0 (p,s)−1

= λα(λ + s + p)1−αGx0 (p,s)

+λ − λα(λ + s + p)1−α

s + p
,x0 > 0. (42)

Hence here the tempering is in time only and Kα is given in
Eq. (6). Rewriting the above equations leads to

Gx0 (p,s) =
{

Kα
1

(λ+s)α−λα
∂2

∂x2
0
Gx0 (p,s) + 1

s
, x0 < 0;

Kα
1

(λ+s+p)α−λα
∂2

∂x2
0
Gx0 (p,s) + 1

s+p
, x0 > 0.

(43)
They both are second order, ordinary differential equations
in x0. Solving the equations in each half-space individually,
requiring that Gx0 (p,s) is finite for |x0| → ∞,

Gx0 (p,s) =

⎧⎪⎪⎨
⎪⎪⎩

C0 exp
(
x0

√
(λ+s)α−λα

Kα

) + 1
s
, x0 < 0;

C1 exp
( − x0

√
(λ+s)α−λα

Kα

) + 1
s+p

,

x0 > 0.

(44)

The particle can never arrive at x > 0 for x0 → −∞;
thus Gx0 (T +,t) = δ(T +) and Gx0 (p,s) = 1

s
, in conformity to

Eq. (44). Likewise, for x0 → +∞, the particle is never at
x < 0 and thus Gx0 (T +,t) = δ(T + − t) and Gx0 (p,s) = 1

s+p
,

as expected in Eq. (44). Then demanding that Gx0 (p,s) and
its first derivative are continuous at x0 = 0, yields a pair of
equations about C0,C1:

C0 + 1

s
= C1 + 1

s + p
(45)

C0

√
(λ + s)α − λα = −C1

√
(λ + s + p)α − λα.

By solving these equations, we get

C0 = − p
√

(λ + s + p)α − λα

s(s + p)(
√

(λ + s + p)α − λα + √
(λ + s)α − λα)

C1 = p
√

(λ + s)α − λα

s(s + p)(
√

(λ + s + p)α − λα + √
(λ + s)α − λα)

.

(46)

Assume that the particle starts at x0 = 0. Substituting x0 = 0
in Eq. (44), then G0(p,s) = C0 + 1

s
= C1 + 1

s+p
:

G0(p,s) = s
√

(λ+s + p)α−λα+(s + p)
√

(λ + s)α−λα

s(s + p)(
√

(λ + s + p)α−λα+√
(λ + s)α−λα)

,

(47)
which describes the PDF of T + and is valid for all times.
However, it seems difficult to invert Eq. (47) analytically.
We’ll soon analyze the moments of this equation in the
following discussion. Specially, if α = 1, then G0(p,s) =
s−1/2(s + p)−1/2, this can be inverted to give the equilibrium
PDF of ε ≡ T +/t , or the occupation fraction,

G(ε) = 1

π
√

ε(1 − ε)
,

which is the arcsine law of Lévy [34].

B. First passage time

As well known, the first passage time (FPT) is defined as
the time Tf that takes a particle starting at x0 = −b(b > 0) to
hit x = 0 for the first time [37] and is widely applied in physics
and other disciplines. A relationship between the distribution
of first passage time and the occupation time functional was
put forward by Kac [38]:

Pr{Tf > t} = Pr

{
max

0�τ�t
x(τ ) < b

} = lim
p→∞ Gx0 (p,t),

where Gx0 (p,t) is the Laplace transform of the PDF of the
functional T + = ∫ t

0 �[x(τ )] dτ . Since Pr{max0�τ�t x(τ ) <

b} = Pr{T + = 0} = limT +→0
∫ T +

0 Gx0 (A,t) dA, the second
equality of the above equation can be obtained from the initial
value theorem of Laplace transform:

Pr{T + = 0} = lim
p→∞ p L

{∫ T +

0
Gx0 (A,t) dA

}

= lim
p→∞

{
p

Gx0 (p,t)

p

}
= lim

p→∞ Gx0 (p,t);

so Pr{max0�τ�t x(τ ) < b}=Pr{T +=0}= limp→∞ Gx0 (p,t).
For x0 = −b and p → ∞, according to Eqs. (44) and (46),
we have

lim
p→∞ G−b(p,s)

= 1

s
− lim

p→∞
p
√

(λ+s+p)α−λα

s(s+p)[
√

(λ+s+p)α−λα+√
(λ+s)α−λα]

× exp

[
− b

√
(λ + s)α − λα

Kα

]

= 1

s
− 1

s
exp

[
− b

√
(λ + s)α − λα

Kα

]
. (48)

In accordance with the definition of the first passage time, its
PDF satisfies

f (t) = ∂

∂t
(1 − Pr{Tf > t}) = − ∂

∂t
lim

p→∞ G−b(p,t). (49)
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FIG. 2. Behavior of f (t) [Laplace inversion of Eq. (50)] with
different values of the parameter α, and lattice spacing a = 0.01,
starting point b = 0.05, λ = 0.01, and diffusion constant Kα = 1/2.
The solid dotted (green) line is the asymptotic estimation with the
slope of −3/2 for long time, confirming that the standard Sparre
Andersen scaling also holds for the tempered subdiffusion.

Hence, in Laplace space, we have

f (s) = −s lim
p→∞ G−b(p,s) + 1

= exp

[
− b

√
(λ + s)α − λα

Kα

]
. (50)

The inversion of Eq. (50) is done numerically [36]; see Figs. 2,
3, and 4.

Expanding Eq. (50) in small s,

f (s) � 1 − b

√
αλα−1s

Kα

.

Taking inverse Laplace transform for long times, s → t , we
have

f (t) � b∣∣�( − 1
2

)∣∣
√

αλα−1

Kα

t−
3
2 , (51)

for all α, which coincides with the famous t−
3
2 decay law of

a one-dimensional random walk [37,39] and decreases with
increasing λ, being confirmed in Figs. 2 and 3. Hence,

Pr{Tf > t} =
∫ ∞

t

f (Tf ) dTf � b√
π

√
αλα−1

Kα

t−1/2, (52)

the last equation is exactly the result given in Ref. [40] and is
illustrated in Figs. 5 and 6.

FIG. 3. Behavior of f (t) [Laplace inversion of Eq. (50)] with
different values of the tempering parameter λ and a = 0.01,b =
0.05,α = 0.6,Kα = 1/2. The solid dotted (green) lines represent the
asymptotic estimations with slope of −3/2 for long times.

FIG. 4. Behavior of f (t) [Laplace inversion of Eq. (50)] with
different values of the parameter α, and a = 0.01,b = 0.05,Kα =
1/2. The solid dotted (green) lines represent the slope of −(1 + α/2)
for short but not too short times.

However, if s → ∞, corresponding to small t , from
Eq. (50), we have

f (s) � exp

(
− b√

Kα

s
α
2

)
.

In t space, the above equation tends to be the one-sided Lévy
laws Lα/2(t). Hence f (t) decays very fast to zero when t →
0 and behaves as t−1−α/2 for short but not too short times;
corresponding probability Pr is illustrated in Fig. 6; this is
expected, that the particle cannot reach the origin when t → 0
and shows Lévy behavior for short but not too short times.

When λ = 0, then waiting times show as power-law
distributed. Equation (50) becomes

f (s) = exp

(
− b√

Kα

s
α
2

)
. (53)

In t space, Eq. (53) is the one-sided Lévy laws Lα/2(t). Then
f (t) decays very fast to zero when t → 0. For t → ∞, f (t)
behaves as t−(1+α/2), which is in agreement with the results
given in Refs. [20,41], indicating that 〈t〉 is infinite for all α.

C. Maximal displacement

Now we develop another application of Eq. (44). The
maximal displacement of a diffusing particle is a random
variable, which has been studied in recent years [42,43]. In
order to get the distribution of this variable, we have Gx0 (p,t)
describing the functional A = ∫ t

0 U [x(τ )] dτ with U (x) = 1
for x > 0, otherwise, U (x) = 0. Let xm ≡ max0�τ�t x(τ ); and
then Pr{xm < b} = limp→∞ Gx0 (p,t). From the last subsec-

FIG. 5. Simulations of f (t) (PDF of the first passage time)
defined in Eq. (49) with a = 0.01,b = 0.1,Kα = 1/2 ended at t =
103, and α = 0.6.
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FIG. 6. Behaviors of Pr{Tf > t} generated by 6 × 104 trajectories. For short but not too short times behaves as slope of −α/2 (Fig. 4) and
large times behaves as slope of −1/2 [Eq. (52)] with a = 0.01,b = 0.05,Kα = 1/2.

tion we have, for x0 = −b [Eq. (48)],

Pr{xm < b} = 1

s
− 1

s
exp

[
− b

√
(λ + s)α − λα

Kα

]
.

Then the PDF of xm is

p(xm,s) = 1

s

√
(λ + s)α − λα

Kα

exp

[
− xm

√
(λ + s)α − λα

Kα

]
.

When λ = 0, the above equation becomes

p(xm,s) == 1

s

√
sα

Kα

exp

(
− xm

√
sα

Kα

)
.

Inverting s → t , xm > 0, we have [32]

p(xm,t) =
√

8

α2Kα

t(
xm

√
2

Kα

)1+ 2
α

L α
2

[
t(

xm

√
2

Kα

) 2
α

]
.

The PDF is in agreement with the recent result of Ref. [43],
derived via a renormalization group method.

D. Fluctuations of occupation fraction

In this subsection, we introduce a new variable ε which is
defined as ε ≡ T +

t
or called the occupation fraction [26,44].

As said above, G0(p,s) describing the occupation time
functional in Eq. (47) seems hard to be inverted analytically.
Consequently, we would like to use the following method to
calculate the first few moments

〈(T +)n〉s = (−1)n
∂n

∂pn
G0(p,s)|p=0.

The first moment is:

〈T +〉s = − ∂

∂p
G0(p,s)|p=0 = 1

2s2
.

Performing the inversion, we have 〈T +〉 = t
2 or 〈ε〉t = 1

2 being
the same as the case of λ = 0 [20]; namely, exponential
tempering has no influence on the first moment of the
occupation time as expected from symmetry. For the second
moment,

〈(T +)2〉s = ∂2

∂p2
G0(p,s)|p=0 = 1

s3
− α(s + λ)α−1

4s2[(s + λ)α − λα]
.

(54)

Inverting Eq. (54), we get [45]

〈(T +)2〉 � t2

2
− α

4
t ∗ e−λtEα,1[λαtα], (55)

where the symbol ∗ describes the convolution operator f (t) ∗
g(t) = ∫ t

0 f (t − τ )g(τ ) dτ ; and we used the Laplace transform
relation [46] ∫ ∞

0
e−stEα,1(atα) dt = sα−1

sα − a
,

and Eα,1(z) is the Mittag-Leffler function, defined as

Eα,1(z) =
∞∑

n=0

zn

�(1 + αn)
.

D.1 As s → ∞, i.e., t → 0, λ can be ignored in Eq. (54),
then we obtain 〈(T +)2〉s � 4−α

4s3 . Hence, 〈(T +)2〉 � 4−α
8 t2. In

fact, this result can also be derived in a different method. When
s → ∞, namely, t → 0, we have Eα,1(λαtα) � 1 + λαtα

�(1+α) .
Hence we set

t ∗ e−λtEα,1(λαtα) �
∫ t

0
(t − τ )e−λτ

[
1 + λατα

�(1 + α)

]
dτ

= e−λt + λt − 1

λ2
+ e−λt tα+1λα−1

�(α + 1)

+ tλα − (α + 1)λα−1

�(α + 1)

∫ t

0
e−λτ τ α dτ.

(56)

As t → 0, the second and the third terms are zero, meanwhile,
e−λt � 1 − λt + λ2t2

2 . Therefore,

t ∗ e−λtEα,1(λαtα) � t2

2
.

Substituting the above result into Eq. (55), we get the same
consequence

〈(T +)2〉 � t2

2
− α

8
t2 = 4 − α

8
t2.

Dividing by t2, we obtain the fluctuations of the occupation
fraction, 〈(�ε)2〉t = 〈ε2〉t − 〈ε〉2

t ,

〈(�ε)2〉t � 1 − α/2

4
.
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This is the expected result [21]. The reason is that for short
times (λ has no effect on the process) the PDF equation (47)
is Lamperti’s with index α/2.

D.2 As s → 0, i.e., t → ∞, expanding Eq. (54) in small s,
we have

〈(T +)2〉s � 1

s3
− 1

4s3
= 3

4s3
.

Taking inverse Laplace transform of the last equation, we find

〈(T +)2〉 � 3
8 t2.

Then

〈(�ε)2〉t � 1
8 .

For 0 < α < 1,t → ∞, 〈(�ε)2〉t is always positive and is the
same as the result we obtained in D.1 when α = 1.

IV. FLUCTUATIONS OF THE TIME-AVERAGED POSITION

We analyze the time-averaged position, x(t) =∫ t

0 x(τ ) dτ/t = A
t

, or in other words, taking U (x) = x,
for a tempered subdiffusive particle in a harmonic potential,
V (x) = mω2x2

2 . Then we treat the problem of the fluctuations
of the time average of position,

〈(�x)2〉t = 〈A2〉/t2, (57)

where x0 = 0 is assumed such that 〈x〉 = 0 at all times
due to symmetry. Hence, define the Fokker-Planck operator
as Lfp = Kα( ∂2

∂x2 + ∂
∂x

mω2x
kbT

), and Eq. (18) is still valid in
a harmonic potential as long as one replaces F (x) with
−V ′(x) = −mω2x. We define the second moment in thermal
equilibrium as 〈x2〉th = kbT /(mω2). Since A isn’t necessarily
positive, p here is the Fourier pair of A and Eq. (18) can be
rewritten as

∂

∂t
G(x,p,t) + pU (x)G(x,p,t)

= LfpD1−α,λ
t G(x,p,t)

+[
λαD1−α,λ

t − λ
]
[G(x,p,t) − e−pU (x)t δ(x)]. (58)

In Laplace space, Eq. (58) becomes

sG(x,p,s) − δ(x) − ipxG(x,p,s)

= Kα

[
∂2

∂x2
+ ∂

∂x

mω2x

kbT

]
(λ + s − ipx)1−αG(x,p,s)

+[λα(λ + s − ipx)1−α − λ]

[
G(x,p,s) − δ(x)

s − ipx

]
.

(59)

The following relationships will be used in the following
calculations:

〈A2〉s =
∫ +∞

−∞
(−i)2

(
∂2

∂p2
G(x,p,s)

)∣∣∣∣
p=0

dx,

〈Ax〉s =
∫ +∞

−∞
(−i)x

(
∂

∂p
G(x,p,s)

)∣∣∣∣
p=0

dx,

〈x2〉s =
∫ +∞

−∞
x2G(x,p = 0,s) dx,∫ +∞

−∞
G(x,p = 0,s) dx = 1

s
.

To get 〈A2〉s , operating on both sides of Eq. (59) with − ∂2

∂p2 ,
letting p = 0, and integrating over all x, we have, in s space,

s〈A2〉s = [2 − 2λα(1 − α)(λ + s)−α]〈Ax〉s
+ [λα(λ + s)1−α − λ]〈A2〉s
− λαα(1 − α)(λ + s)−α−1〈x2〉s , (60)

where we used the fact that the integral over the Fokker-Plank
operator vanishes, since xnG(x,p = 0,s) and xn ∂G(x,p=0,s)

∂x
are

zero for |x| → ∞. To get 〈Ax〉s , operating on both sides of
Eq. (59) with ∂

∂p
, substituting p = 0, multiplying by −ix, and

integrating over all x, we obtain, in s space,

s〈Ax〉s =
[
λα(λ + s)1−α − λ −

Kα
mω2

kbT

(λ + s)α−1

]
〈Ax〉s

+
[

1 − λα(1 − α)

(λ + s)α
+

Kα
mω2

kbT
(1 − α)

(λ + s)α

]
〈x2〉s .

To get 〈x2〉s , letting p = 0, multiplying by x2, and integrating
over all x, we have, in s space,

s〈x2〉s = 2Kα(λ + s)1−α

s
+ [λα(λ + s)1−α − λ]〈x2〉s

− 2Kα

mω2

kbT
(λ + s)1−α〈x2〉s . (61)

From Eq. (61), we get

〈x2〉s = 2Kα

s
[
(λ + s)α + 2Kα

mω2

kbT
− λα

] .

Then there exists

〈Ax〉s = τα(λ + s)α + (1 − α)(1 − ταλα)

τα(s + λ)α + (1 − ταλα)

× 2〈x2〉th

s(s + λ)[τα(s + λ)α + 2 − ταλα]
, (62)

where we defined the relation time τα = kbT /(Kαmω2) =
〈x2〉th/Kα . Next, we can obtain 〈A2〉s with the results of 〈Ax〉s
and 〈x2〉s ,

〈A2〉s = 2〈x2〉th

s(s + λ)2

2τα[(s + λ)α − λα]2 + [(3α + α2)λατα + 2 − 2α][(s + λ)α − λα] + 2α2λ2ατα + α(1 − α)λα

[(s + λ)α − λα][τα((s + λ)α − λα) + 2][τα((s + λ)α − λα) + 1]
.

(63)
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To find the long-times behavior of the fluctuations (57), we
expand Eq. (63) for small s, invert, and divide by t2 [for another
derivation based on Eq. (19), see the Appendix],

〈(�x)2〉t � 2αλατα + 1 − α

λ

〈x2〉th

t
. (64)

Similarly, for short times,

〈(�x)2〉t � 4〈x2〉th

�(3 + α)

(
t

τ

)α

. (65)

Noting that 〈x2〉th/τ
α = Kα , we can rewrite Eq. (65) as

〈(�x)2〉t � 4Kα

�(3+α) t
α , which is, as expected, equal to the results

in Refs. [21,30].

V. SUMMARY

Since 1949 the distribution of the functionals of the path
of a Brownian particle has attracted the interests of scientists.
Anomalous diffusion is found to be ubiquitous in nature and
has been well studied in recent decades. More recently, the
fractional Feynman-Kac equations were derived to describe
well the functional distribution of the anomalous diffusive
paths. The CTRW model, constituting of the random variables
of waiting time and jump length, plays central role in charac-
terizing anomalous diffusion. Because of the finite life span of
biological particles and the boundedness of physical spaces,
sometimes the more reasonable choice for the distributions
of the waiting time and jump length is tempered power-law

instead of power-law. In this paper, we use the general Carmi-
Barkai formula [Eq. (3)] for the functionals of CTRW paths
to obtain the equation recently proposed by Cairoli and Baule
[28], who also present a nice application of the theory in the
context of stochastic calculus. We further derive the tempered
fractional Feynman-Kac equations with the power-law jump
length distribution and the tempered power-law jump length
distribution. And the case involving external potential is also
considered. The tempered fractional Feynman-Kac equations
describe the functional distribution of the paths of tempered
anomalous dynamics. We present several applications of the
tempered fractional Feynman-Kac equations. In the force-free
system, we discuss a few functionals of interest, including the
occupation time in half-space, the first-passage time and the
maximal displacement. For a particle in a harmonic field, we
calculate the fluctuations of the time-averaged position under
the limit condition.

As pointed out by the anonymous reviewer, obtaining the
analytical results of the governing equation of the functional
distribution for the case of (tempered) power-law jumps would
be an interesting topic for future research.
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APPENDIX

1. Derivation of Eq. (2)

For a particle to be at (x,A) at time t , according to the model, it must have been at [x,A − τU (x)] at time t − τ when the last
jump was made. Let Y (x,A,t)dt be the probability of the particle to jump into (x,A) in the time interval [t,t + dt]. We obtain
[21]

G(x,A,t) =
∫ t

0
W (τ,λ)Y [x,A − τU (x),t − τ ] dτ, (A1)

where W (τ,λ) = 1 − ∫ τ

0 ψ(τ ′,λ) dτ ′ is the probability for not moving in a time interval (t − τ,t). Assume that U (x) � 0 for all
x and thus A � 0. Laplace transforming Eq. (A1) A → p, t → s by the shift property and convolution theorem, and taking the
Fourier transform by the well-known Fourier transformation F{xf (x); k} = −i ∂

∂k
f̂ (k), we have

G(k,p,s) = Ŵ

[
s + pU

(
− i

∂

∂k

)
,λ

]
Y (k,p,s). (A2)

The symbol U (−i ∂
∂k

) corresponds the original function U (x), but with −i ∂
∂k

as its argument. To compute Y , we notice that to
reach at (x,A) at time t , the particle must jump from [x − a,A − τU (x − a)] or [x + a,A − τU (x + a)] after the waiting time
τ with probability 1/2 for each event. Therefore,

Y (x,A,t) = δ(x)δ(A)δ(t) +
∫ t

0
ψ(τ,λ)

1

2
Y [x + a,A − τU (x + a),t − τ ]dτ +

∫ t

0
ψ(τ,λ)

1

2
Y [x−a,A−τU (x − a),t − τ ]dτ.

(A3)
The term δ(x)δ(A)δ(t) is the initial condition, which means that at t = 0, A = 0 and the particle is at x = 0. Taking Laplace
transforms, A → p, t → s, and Fourier transform x → k of Eq. (A3), we find

Y (k,p,s) = 1 + 1

2
e−ika

∫ ∞

−∞
eikxψ[s + pU (x),λ]Y (x,p,s) dx + 1

2
eika

∫ ∞

−∞
eikxψ[s + pU (x),λ]Y (x,p,s) dx

= 1 + cos(ka)ψ̂

[
s + pU

(
−i

∂

∂k

)
,λ

]
Y (k,p,s). (A4)
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Notice that the order of the terms is important, since the cos(ka) does not commute with ψ̂[s + pU (−i ∂
∂k

),λ]. This order of
operators is natural, because in CTRW we first wait and then make a jump. Rearranging Eq. (A4), then substituting into Eq. (A2),
we have

G(k,p,s) = Ŵ

[
s+pU

(
−i

∂

∂k

)
,λ

]
1

1− cos(ka)ψ̂
[
s + pU

(−i ∂
∂k

)
,λ

]
= 1 − ψ̂

[
s + pU

(−i ∂
∂k

)
,λ

]
s + pU

( − i ∂
∂k

) 1

1 − cos(ka)ψ̂
[
s + pU

( − i ∂
∂k

)
,λ

] ,

where we used the fact that Ŵ (s,λ) = [1 − ψ̂(s,λ)]/s.

2. TFRD operator ∇β,γ
x

Now we give the exact expression of the TFRD operator ∇β,γ
x . For 0 < β < 1,∫ +∞

−∞
(eikx − 1)

βAβ

�(1 − β)
e−γ |x||x|−β−1 dx = −Aθ

β(γ 2 + k2)β/2 + 2Aβγ β. (A5)

Multiplying both sides of Eq. (A5) by f (k), we get[
Aθ

β(γ 2 + k2)β/2 − 2Aβγ β
]
f (k) = 2Aβ cos(βθ )(γ 2+k2)β/2f (k)−2Aβγ βf (k)

=
∫ +∞

−∞
[f (k)−eikyf (k)]

βAβ

�(1−β)
e−γ |y||y|−β−1 dy. (A6)

Then using the shift property
∫

eikxf (x − y) dx = eikyf (k) of the Fourier transform leads to

−2 cos

(
βπ

2

)
∇β,γ

x f (x) − 2γ βf (x) = β

�(1 − β)

∫ +∞

−∞

f (x) − f (x − y)

|y|β+1
e−γ |y| dy. (A7)

From Eq. (A7), we have

∇β,γ
x f (x) = − 1

2 cos
(

βπ

2

)[
β

�(1 − β)

∫ +∞

−∞

f (x) − f (x − y)

|y|β+1
e−γ |y| dy + 2γ βf (x)

]

= − 1

2 cos
(

βπ

2

)[
β

�(1 − β)

∫ x

−∞

f (x) − f (y)

(x − y)1+β
e−γ (x−y) dy + γ βf (x)

+ β

�(1 − β)

∫ +∞

x

f (x) − f (y)

(y − x)1+β
e−γ (y−x) dy + γ βf (x)

]

= − 1

2 cos
(

βπ

2

) [−∞Dβ,γ
x f (x) + xD

β,γ
+∞f (x)]; (A8)

for 1 < β < 2, repeating the process above leads to

∇β,γ
x f (x) = − 1

2 cos
(

βπ

2

)[
β(β − 1)

�(2 − β)

∫ +∞

−∞

f (x − y) − f (x) + yf ′(x)

|y|β+1
e−γ |y| dy + 2γ βf (x)

]

= − 1

2 cos
(

βπ

2

)[
β(β − 1)

�(2 − β)

∫ x

−∞

f (y) − f (x) + (x − y)f ′(x)

(x − y)1+β
e−γ (x−y) dy + γ βf (x)

+ β(β − 1)

�(2 − β)

∫ +∞

x

f (y) − f (x) + (x − y)f ′(x)

(y − x)1+β
e−γ (y−x) dy + γ βf (x)

]

= − 1

2 cos
(

βπ

2

) [
−∞Dβ,γ

x f (x) + xD
β,γ
+∞f (x)

]
, (A9)

where −∞Dβ,γ
x and xD

β,γ
+∞ are Riemann-Liouville tempered fractional derivative operators [47]. When γ = 0, the operator

∇β,γ
x f (x) reduces to ∇β

x f (x) = − 1
2 cos( βπ

2 )
[−∞D

β
x f (x) + xD

β
+∞f (x)].

3. Another derivation of Eq. (64) based on Eq. (19)

In this section, we derive the fluctuations of the time-averaged position from Eq. (19). Let us write the forward equation in
(p,s) space for the functional A = xt = ∫ t

0 x(τ ) dτ and x0 = 0. Since A is not necessarily positive, replacing p with −ip in
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Eq. (19) leads to

sG(x,p,s) − δ(x) − ipxG(x,p,s) = Kα

[
∂2

∂x2
+ ∂

∂x

mω2x

kbT

]
(s − ipx)

G(x,p,s)

(λ + s − ipx)α − λα
. (A10)

Using the equations between Eq. (59) and (60), we have

s〈A2〉s = 2〈Ax〉s ,

s〈Ax〉s − 〈x2〉s = Kαmω2

kbT

[(λ + s)α − λα] − sα(λ + s)α−1

[(λ + s)α − λα]2
〈x2〉s − Kαmω2

kbT

s

[(λ + s)α − λα]
〈Ax〉s ,

s〈x2〉s = 2Kα

(λ + s)α − λα
− 2Kαmω2

kbT

s

(λ + s)α − λα
〈x2〉s .

From the last three equations, we get

〈A2〉s = 4〈x2〉th

s3

τα[(s + λ)α − λα]2 + (s + λ)α − λα − sα(λ + s)α−1

{(s + λ)α − λα][τα[(s + λ)α − λα] + 2}[τα{(s + λ)α − λα] + 1} . (A11)

To find the long-times behavior of the fluctuations (57), we expand Eq. (A11) for small s, invert, and divide by t2,

〈(�x)2〉t � 2αλατα + 1 − α

λ

〈x2〉th

t
,

which is the same as Eq. (64).
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