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Nonisothermal fluctuating hydrodynamics and Brownian motion
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The classical theory of Brownian dynamics follows from coarse graining the underlying linearized fluctuating
hydrodynamics of the solvent. We extend this procedure to globally nonisothermal conditions, requiring only
a local thermal equilibration of the solvent. Starting from the conservation laws, we establish the stochastic
equations of motion for the fluid momentum fluctuations in the presence of a suspended Brownian particle. These
are then contracted to the nonisothermal generalized Langevin description of the suspended particle alone, for
which the coupling to stochastic temperature fluctuations is found to be negligible under typical experimental
conditions.
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I. INTRODUCTION

The microscopic equations of motion for strongly inter-
acting many-body systems are, in general, intractable. A
notable exception is provided by systems exhibiting a scale
separation that allows for major simplifications of these
equations, making them practically (and not only formally)
useful in a wide range of experimental and technological
applications. Of particular relevance is the so-called Brownian
motion of a reduced number of slow degrees of freedom,
for which the many fast degrees of freedom provide an
effective background noise. As Einstein realized early on [1],
the crucial simplification arises from the assumption that the
microscopic and Brownian degrees of freedom are in thermal
equilibrium, which allows for a universal characterization of
the noise dynamics without explicit microscopic calculations.
The corresponding theory of isothermal Brownian motion is
by now firmly established and usually additionally exploits
the fact that the mesoscopic degrees of freedom mediating
between the Brownian scale and the microscopic noise degrees
of freedom admit a coarse-grained hydrodynamic description,
without loss of generality. In particular, starting with early
work by Zwanzig [2], several papers have explicitly derived
(generalized) Langevin equations describing Brownian motion
as a contraction of the more detailed description of a fluid
governed by linear fluctuating hydrodynamics [3–5]. Among
the major outcomes of this inquiry there is the explanation of
the long-time tails in the Brownian velocity autocorrelation
function [6,7] and the robustness of the fluctuation-dissipation
theorem against variations of microscopic details and even
hydrodynamic specifications, such as the (in)compressibility
of the solvent [8,9] or its (no-)slip boundary condition at the
Brownian particle surface [10]. The necessary nanotechnolog-
ical tools to conduct quantitative experimental tests of these
ground-breaking theoretical developments have only become
available very recently [11–13] and vindicated the central
theoretical premise, i.e., the assumption of an underlying
isothermal fluctuating solvent hydrodynamics, with impres-
sive precision.
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Conversely, very little is known about Brownian motion
in nonequilibrium solvents where the validity of a Langevin
description is not a priori ensured and standard recipes
to leapfrog the microscopic dynamics using results from
equilibrium statistical mechanics, such as energy equipartition,
are not available. Yet microscale and nanoscale motion under
nonequilibrium (and in particular nonisothermal) conditions
are becoming increasingly relevant for innovative experimen-
tal and nanotechnological applications [14–16].

Linear fluctuating hydrodynamics, originally introduced
by Landau and Lifshitz to describe density, momentum, and
energy fluctuations of a fluid in a global equilibrium state
[17], was later extended to nonequilibrium conditions, e.g.,
when a temperature gradient is present [18–21]. The efficacy
of this nonequilibrium theory in describing fluid fluctuations
is testified by the equivalence of its predictions to those of
kinetic theory [22]—within its range of validity, i.e., for dilute
gases—and mode-coupling theory [22–24] and by the good
agreement with light-scattering experiments; see Ref. [25] for a
review. In view of this success, one may expect the theory to be
as effective in deriving reduced descriptions of the Brownian
dynamics in nonisothermal solvents as in the equilibrium case.

The aim of the present work is twofold: first, to establish
the fluctuating hydrodynamic equations of motion for a non-
isothermal solvent, and second, to derive the coarse-grained
description pertaining to a Brownian particle suspended
therein. Section II develops the fluctuating hydrodynamic
equations suitable for addressing the Brownian motion of
a submicron-sized particle in a simple nonisothermal fluid.
More precisely, the analysis of Sec. II shows that the coupling
between momentum, temperature, and density gives rise to
contributions that are at most proportional to ε1 ≡ �T αp,
where �T is the characteristic temperature variation in the
system and αp is the isobaric thermal expansion coefficient
of the solvent. To get a feeling for the numbers involved,
consider the paradigmatic example of a hot nanoparticle of
radius R � 100 nm in water [26]. The temperature variations
will usually be bounded by �T � 102 K, so αp � 10−3 K−1

and it is safe to assume that ε1 � 1. To leading order, one
can thus consider momentum and temperature fluctuations to
be independent and the fluid density to be constant. Based
on these findings, we construct the reduced description for
the nonequilibrium dynamics of the immersed Brownian
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particle by eliminating the dynamical equations for the
solvent fields, in Sec. III. The particle position R turns
out to evolve according to a generalized Langevin equation
with long-term memory, whose zero-mean Gaussian noise
satisfies a generalized fluctuation-dissipation theorem with a
tensorial frequency-dependent energy spectrum kBTij (R,ω)
that implicitly reflects the lack of homogeneity and isotropy
in the fluid. In Sec. IV we apply our theory to a simple yet
paradigmatic example, namely, a spherical particle in a linear
temperature field. Neglecting the temperature dependence
of the fluid viscosity, we obtain the appropriate Langevin
equation, showing that the noise temperature Tij reduces to the
local fluid temperature, as usually postulated [27,28]. We also
recall how such inhomogeneous noise translates into a ther-
modiffusion flux in the long-time limit and point out its relation
to the thermophoresis observed in experiments with colloidal
suspensions. Finally, in Sec. V, we summarize our results,
leaving a more thorough discussion of the consequences on the
level of the coarse-grained Langevin dynamics to Ref. [29].

II. FLUCTUATING HYDRODYNAMICS

The starting point for the following discussion is the deter-
ministic hydrodynamic equations describing the conservation
of mass, momentum, and energy in a compressible Newtonian
fluid in local thermal equilibrium, which occupies the volume
V around a suspended Brownian particle of arbitrary shape.
Expressing energy in terms of the fields T (local temperature)
and p (local pressure) by means of the local-equilibrium
version of the first law, we have [25,30]

d�

dt
= −�∇ · v, (1a)

�
dv

dt
= −∇p + ∇ · � − �g ẑ, (1b)

�cp

dT

dt
= −∇ · Q −

(
∂�

∂T

)
p

T

�

dp

dt
, (1c)

where � is the mass density, v the velocity, � the deviatoric
stress tensor, Q the heat flux, and cp the specific heat capacity
at constant pressure. The gravity force �g is directed along
the negative z axis. We defined the total derivative d

dt
≡ ∂t +

v · ∇ to simplify the notation and note that, in Eq. (1c), the
temperature variations caused by the viscous heating arising
from the fluid motion have been discarded as second order in
the fluxes and therefore are negligible in comparison with Q.
The constitutive relations for the deviatoric stress tensor and
the heat flux read

� = η[∇v + (∇v)T] + ηb(∇ · v)1, (2)

Q = −κ∇T , (3)

where η, ηb, and κ are the dynamical shear and bulk viscosities
and the heat conductivity, respectively. We also introduce the
kinematic viscosity ν = η/� and the heat diffusivity aT =
κ/�cp (the diffusion coefficients of momentum and heat), for
later convenience. We note that, at this stage, all transport
coefficients can be thought of as spatially varying functions
that would have to be specified, together with a material

law �(p,T ), to close the system of equations. Having highly
incompressible solvents such as water in mind, we simplify the
following discussion by demanding perfect incompressibility,
from the outset. Thereby, we forgo the opportunity to faithfully
discuss very fast processes (faster than the time a sound wave
needs to travel across a distance of about the particle size). By
moreover neglecting a possible temperature dependence of the
expansion coefficient αp, which is again justifiable for water,
the deterministic equations of motion for the solvent are closed
by the simple material relation

�(r,t) = �0[1 − αp(T (r,t) − T0)], (4)

where �0 ≡ �(T0) is the density corresponding to the reference
ambient temperature T0 and terms of O(ε2

1 ) are neglected.
The boundary condition associated with Eq. (1b), which

accounts for the momentum exchange with the suspended
Brownian particle, is the no-slip condition at the particle
surface S, i.e.,

v(r,t) = 〈V (t)〉 + 〈�(t)〉 × r on S, (5)

where 〈V 〉 and 〈�〉 are the deterministic translational and
angular velocities of the particle, respectively.1 The boundary
conditions for Eq. (1c), which describe the heat sources main-
taining the inhomogeneous temperature field, as well as the
particle’s equations of motion, are for the moment irrelevant.

Equations (1) provide the basis for describing the deter-
ministic evolution of the coarse-grained nonequilibrium state
of the fluid. Fluctuations about this average state can be
incorporated by adding stochastic terms to the stress tensor and
the heat flux by substituting � → δ� + τ and Q → δ Q + J ,
in order to represent the random exchange of momentum
and energy between the hydrodynamic and the omitted
microscopic degrees of freedom [17,25]. As a consequence,
the hydrodynamic fields also acquire stochastic contributions
according to v → v + δv, p → p + δp, and T → T + δT .
Consistency with the local-equilibrium hypothesis sets two
constraints. First, the probability densities of τ and J must be
Gaussian with mean zero and their variance obeying the local
fluctuation-dissipation theorem governed by the deterministic
local values of the temperature field. Second, the stochastic
equations obeyed by the fluctuating fields should be linearized,
since nonlinear contributions to the random fluxes are small by
construction. Namely, we wish to remain within the domain
of validity of nonequilibrium thermodynamics, in which the
dissipative fluxes are linear functions of the gradients of the
hydrodynamic fields. Thus, nonlinearities may only arise due
to the functional dependences of the transport coefficients
[31,32]. In typical colloidal experiments, only the viscosity
presents a meaningful temperature dependence, which we
retain a priori, and eventually is shown to be negligible.

We proceed as follows. First, we identify further
subleading-order terms in the deterministic hydrodynamic
equations, which we simplify accordingly. We then insert the
random contributions to the stress tensor and the heat flux to

1The time dependence of S will always be neglected in the
following. This amounts to moving to the particle frame and dropping
the advection terms.
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obtain the corresponding stochastic equations of motion. Our
analysis closely follows the one used in the Rayleigh-Bénard
problem leading to the linearized fluctuating Boussinesq
equations [25]. However, an important difference concerns the
characteristic length scale R in the two problems. Namely, in
our system the relevant length scale is set by the particle size,
which we assume to be at least several nanometers and less than
a micron, typically on the order of R � 10−7 m. On this scale,
advection is much less effective than diffusion in spreading
momentum and heat in the fluid. The relative magnitude of ad-
vection and diffusion terms in Eqs. (1b) and (1c) is estimated as

O

( |v · ∇v|
|ν∇2v|

)
� Re, O

( |v · ∇T |
|aT ∇2T |

)
� Pe, (6)

where Re ≡ vR/ν and Pe ≡ Reν/aT are the Reynolds and
Péclet numbers associated with the particle’s motion, respec-
tively. To remain consistent with the local equilibrium assump-
tion, the characteristic deterministic particle velocity (that sets
the order of magnitude of the fluid velocity v) must remain
bounded by the thermal velocity Vth ∼ √

kBT/�pR3, where R

and �p denote the radius and mass density of the particle, re-
spectively. In practice, deterministic particle velocities are usu-
ally much smaller. With �p � �0 this translates to Re � 10−3

and Pe � 10−2, which implies that advection can be neglected,
so the total derivative d/dt can be replaced by the partial
derivative ∂t when acting on v and T , in the above equations.

Under these conditions, after substituting Eq. (4) into the
balance equations (1a)–(1c) the deterministic equations of
motion for the solvent degrees of freedom become

αp∂tT = [1 − αp(T − T0)]∇ · v, (7a)

�0[1 − αp(T − T0)]∂tv = −∇p + ∇ · �

− �0[1 − αp(T − T0)]g ẑ, (7b)

�0cp[1 − αp(T − T0)]∂tT = −∇ · Q + αpT

1 − αp(T − T0)

dp

dt
.

(7c)

Notice that, in general, momentum and temperature do
not evolve independently. In order to understand the relative
importance of the different terms determining such coupling
we switch to dimensionless variables

r̃R ≡ r, t̃
R2

aT

≡ t, ṽ
aT

R
≡ v, (8)

T̃ �T ≡ T , �̃
�0a

2
T

R2
≡ �, Q̃

�0cpaT �T

R
≡ Q. (9)

For simplicity we have taken aT and cp constant here.
Equations (7) in dimensionless form are

ε1∂t̃ T̃ = [1 − ε1(T̃ − T̃0)]∇̃ · ṽ, (10a)

[1 − ε1(T̃ − T̃0)]∂t̃ ṽ = −∇̃(p̃ + ε2z̃) + ∇̃ · �̃ + ε1ε2 ẑ,

(10b)

[1 − ε1(T̃ − T̃0)]∂t̃ T̃ = −∇̃ · Q̃ + ε3T̃

1 − ε1(T̃ − T̃0)

dp̃

dt̃
.

(10c)

The magnitude of the various terms can be estimated
by checking the physical values of the dimensionless pa-
rameters ε1 ≡ αp�T , ε2 ≡ R3g/a2

T , and ε3 ≡ αpa2
T /cpR2,

which control the relative magnitude of temperature-induced
inhomogeneities in density, buoyancy, and pressure-driven
heat fluxes, respectively. Taking R and �T as above, we obtain
for water around standard conditions ε1 � 10−2, ε2 � 10−6,
and ε3 � 10−7. This implies that the limit ε1,ε2,ε3 → 0
reproduces the leading behavior of Eq. (10), while perturbative
corrections should follow by expanding the hydrodynamic
fields in series of these small parameters. To leading order,
Eq. (10) then read

∇̃ · ṽ = 0, (11a)

∂t̃ ṽ = −∇̃p̃ + ∇̃ · �̃, (11b)

∂t̃ T̃ = −∇̃ · Q̃. (11c)

The condition (11a) of a divergence-free velocity field
means that the fluid density can be treated as a constant.
Restoring the physical dimensions, we obtain our final set
of deterministic equations

∇ · v(r,t) = 0, (12a)

�0∂tv(r,t) = −∇ · [p(r,t)1 − �(r,t)], (12b)

∂tT (r,t) = −aT ∇2T (r,t), (12c)

where the temperature dependence of the viscosity η[T (r,t)]
in the deviatoric stress tensor �(r,t) is retained.

Now we turn to fluctuations and introduce the random stress
and heat flux into Eqs. (12b)–(12c). The resulting fluctuating
fields obey the equations

∇ · δv(r,t) = 0, (13a)

�0∂tδv(r,t) = −∇ · {δp(r,t)1 − η[T (r,t)][∇δv(r,t)

+∇δv(r,t)T]} + ∇ · τ (r,t), (13b)

∂t δT (r,t) = −aT ∇2δT (r,t) − ∇ · J(r,t). (13c)

Clearly, the boundary condition (5) becomes

δv(r,t) = δV (t) + δ�(t) × r on S, (14)

where δV and δ� are the stochastic components of the particle
velocities. The correlations of τ and J are prescribed by the
local-equilibrium fluctuation-dissipation relations

〈τij (r,t)τkl(r ′,t ′)〉 = 2η[T (r,t)]kBT (r,t)δ(r − r ′)

× δ(t − t ′)(δikδjl + δilδjk), (15a)

〈Ji(r,t)Jj (r ′,t ′)〉 = 2aT kBT (r,t)2δ(r − r ′)δ(t − t ′)δij ,

(15b)

〈τij (r,t)Jk(r ′,t ′)〉 = 0, (15c)
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containing only the deterministic part of the temperature field
[25]. Consistency with the no-slip boundary condition requires
that τ = 0 on S [4,10].2

Notice that in going from Eq. (12b) to Eq. (13b), we
have linearized the viscous stress. Indeed, direct insertion of
fluctuations in Eq. (12b) would produce

η[T + δT ]{∇(v + δv) + [∇(v + δv)]T}

�
(

η[T ] + ∂η

∂T
[T ]δT

)
[∇v + (∇v)T]

+ η[T ][∇δv + (∇δv)T]. (16)

Here we have expanded the viscosity up to first order in
δT and dropped the manifestly nonlinear fluctuation term
proportional to δT ∇δv. Equation (13b) follows by neglecting
the contribution due to temperature variations in the viscosity,
which is justified by the observation

O

( |(∂η/∂T )δT ∇v|
|η∇δv|

)
∼ �η

η

√
〈δT 2〉
�T

Vex

Vth
� 1. (17)

While the typical relative viscosity variation �η/η is of
the same order as the characteristic relative temperature
variation �T/T0, in any coarse-graining volume consisting of
N solvent molecules, the spontaneous nonequilibrium local
temperature fluctuations

√
〈δT 2〉 are small compared to T

and can be estimated to be of O(1/N1/6) [33]. Moreover,
the boundary conditions with the Brownian particle (5) and
(14) fix the order of magnitude of the deterministic and
fluctuating velocity fields to the typical particle velocity Vex

imposed by external forces and the particle thermal velocity
Vth, respectively. As noted above, Vex � Vth is required to
conform with the underlying local equilibrium assumption. In
typical applications Vex � 10−6 m s−1 is indeed substantially
smaller than the thermal velocity Vth � 10−2 m s−1.

We thus arrive at the important conclusion that momentum
and temperature are decoupled up to corrections of O(ε1) or
smaller. The reason is that only the deterministic temperature
T (r,t) appears in Eq. (13b), which is fully determined by
Eq. (12c).

It is interesting now to go back to the starting point of
the present analysis, i.e., the assumption of vanishing solvent
compressibility T = 0, which permits us to assume density
variations to arise from temperature heterogeneities alone.
A rough estimation of the relative density variation due to
pressure variations can be obtained as follows. According
to Eqs. (12a)–(12c), the fluid is divergence-free to leading
order. The typical magnitude of (stationary) velocity and
pressure variations can thus be approximated, employing the
fundamental solution of the stationary Stokes equation, by
Vth ∼ F/ηR and pth ∼ F/R2. Eliminating the thermal force
F exerted by the fluid, we arrive at pth ∼ ηVth/R � 1 N m−2.
Thus for water we get

O

(
d�

�

∣∣∣∣
T

)
� O(T pth) ∼ 10−9, (18)

2Alternatively, one can drop the condition τ = 0 on S and include
the random stress in the definition of the random force δF and torque
δT on the particle. The two choices are mathematically equivalent.

which demonstrates the reliability of the assumption T = 0
on time scales much longer than R

√
T ρ0 � 10−10 s.

On the basis of Eqs. (12) and (13), in the next section we
derive the generalized Langevin equation for the suspended
Brownian particle and its associated noise spectrum.

III. DERIVATION OF THE PARTICLE’S GENERALIZED
LANGEVIN EQUATION

We now focus on the nonequilibrium Brownian particle
dynamics. The full state of the fluid-particle system is given in
terms of the hydrodynamic fields and the particle coordinates,
namely, the center-of-mass position R(t) = (X(t),Y (t),Z(t))
and the translational and rotational velocity V (t) = 〈V (t)〉 +
δV (t) and �(t) = 〈�(t)〉 + δ�(t), respectively. The latter
evolve by Newton’s equations of motion

mV̇ = F + δF + Fext, (19a)

I · �̇ = T + δT + T ext, (19b)

where m is the mass of the particle and I its tensor of inertia.
The deterministic force and torque exerted by the fluid are,
respectively,

F(t) = −
∫
S

σ (r,t) · n(r)d2r, (20a)

T (t) = −
∫
S

r × [σ (r,t) · n(r)]d2r, (20b)

where n(r) is the inner normal vector field of the particle
surface S and

σ = −p1 + � (21)

is the total stress tensor. Analogous definitions hold for the
random force δF and torque δT , replacing σ by δσ . External
forces Fext(t) and torques T ext(t) may also be present. The
system of equations (12), (13), (19), and (20) entirely describes
the evolution of the fluid and the Brownian particle. Our aim
is to eliminate the equations for the hydrodynamic fields and
reduce Eqs. (19) and (20) to a generalized Langevin equation
for the particle variables only. Therefore, we rewrite Eq. (19)
in the form

L · ḃ = h + δh + f ext, (22)

where we combine the translational and rotational velocities
into the 6-vector b ≡ (V ,�) and we define the generalized
tensor of inertia

L ≡
(

m1 0
0 I

)

and the generalized forces

h ≡
(

F
T

)
, δh ≡

(
δF
δT

)
, f ext ≡

(
Fext

T ext

)
. (23)

By Eqs. (12b), (12a), (5), and (14), v(r,t)
and p(r,t) are linear functionals of b(t ′) with
−∞ < t ′ < t . Thus, in view of Eq. (20), the hydrodynamic
forces necessarily contain a contribution that is a linear
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functional of b(t ′) with −∞ < t ′ < t , i.e., we can write

h(t) = −
∫ ∞

−∞
Z+(R,t − t ′) · 〈b(t ′)〉dt ′. (24)

Here Z+(R,t) is a 6 × 6 time-dependent causal friction
tensor, which depends on the particle position owing to the
nonconstant fluid viscosity. We omit this dependence in the
following. The very same reasoning applies to δh, but in
addition, since (13b) is a nonhomogeneous equation due to
the presence of the random stress τ , a term ξ (t) has to be
included in order to account for contributions independent of
the particle velocity. Hence δh consists of a friction term and
a Langevin noise

δh(t) = −
∫ ∞

−∞
Z+(R,t − t ′) · δb(t ′)dt ′ + ξ (t). (25)

In the subsequent derivation we will establish the statistics
of the Langevin noise ξ (t) and relate it to the dissipative term
h(t). The linearity of the problem suggests that one operate
in frequency space. Given a generic function of time g(t), we
denote its Fourier transform by g(ω) = ∫ ∞

−∞ g(t)e−iωtdt . The
complex conjugate of g(ω) will be denoted by g∗(ω).

In Fourier space Newton’s equation (22) reads

−iωL · b(ω) = −Z+(ω) · b(ω) + ξ (ω) + f ext(ω), (26)

where we used the Fourier-transformed equations (24) and
(25),

h(ω) = −Z+(ω) · 〈b(ω)〉, (27a)

δh(ω) = −Z+(ω) · δb(ω) + ξ (ω). (27b)

Note that the deterministic part of the velocity vector 〈b(ω)〉
is set by the external force and thus can be chosen arbitrarily.

We are now in the position to evaluate the statistics of the
Langevin noise ξ (ω). We proceed in three steps. First, we
derive an expression for (twice) the real part of the friction
tensor defined by

Zij (ω) ≡ Z+
ij (ω) + Z+

ij

∗
(ω). (28)

To evaluate the components of the friction tensor we make
use of the property Z+

ij = Z+
ji , hinging only on the symmetry

of the stress tensor σij = σji [4]. We exploit the freedom of
choosing the boundary condition (5) to select velocity vectors
whose αth entry is the only nonzero one and denote them
by αbi(ω) (the superscript α will also be appended to the
corresponding hydrodynamic fields). Second, we show that
ξ (ω) is a Gaussian variable with zero mean. Finally, we
link the noise correlation tensor 〈ξi(ω)ξ ∗

j (ω)〉 to the friction
tensor (28).

We wish to find an expression in terms of the solution to
Eq. (12b)—without formally solving the much more involved
problem represented by the stochastic equations (13b)—for
the quantity

Zij (ω)〈αbi(ω)〉〈βb∗
j (ω)〉 = Zαβ(ω)〈bα(ω)〉〈b∗

β(ω)〉, (29)

where the equality holds by virtue of the choice of b(ω). In
Eq. (29) and in the following we apply the Einstein summation
convention to latin indices only. Also, we suppress the function
arguments where there is no risk of confusion. Equation (29)
reads

Zij 〈αbi〉〈βb∗
j 〉 (28)= (Z+

ij + Z+
ij

∗
)〈αbi〉〈βb∗

j 〉 (27a)= −(αhi〈βb∗
i 〉 + 〈αbi〉βh∗

i )

(20),(23)= 〈βV ∗
i 〉

∫
S

ασijnjd
2r + 〈β�∗

i 〉
∫
S

[r × (ασ · n)]id
2r + 〈αVi〉

∫
S

βσ ∗
ij njd

2r + 〈α�i〉
∫
S

[r × (βσ ∗ · n)]id
2r

=
∫
S

(〈β V ∗〉 + 〈β�∗〉 × r)i
ασijnjd

2r +
∫
S

(〈αV 〉 + 〈α�〉 × r)i
βσ ∗

ij njd
2r

(5)=
∫
S

βv∗
i

ασijnjd
2r +

∫
S

αvi
βσ ∗

ij njd
2r

=
∫
V

∂j (βv∗
i

ασij )d3r +
∫
V

∂j (αvi
βσ ∗

ij )d3r (30)

(12b)=
∫
V

(ασij ∂j
βv∗

i + βσ ∗
ij ∂j

αvi) + i�ω

∫
V

(αv∗
i

βvi − βv∗
i

αvi)d
3r

(12a)=
∫
V

(α�ij ∂j
βv∗

i + β�∗
ij ∂j

αvi)d
3r + i�ω

∫
V

(αv∗
i

βvi − βv∗
i

αvi)d
3r

= 2
∫
V

φαβd3r − 2�ω Im
∫
V

αv∗
i

βvid
3r, (31)

where in (30) we used the divergence theorem and in (31) we defined the generalized dissipation tensor

φαβ(R,r,ω) ≡ η(r)[∂i
αvj (r,ω)∂i

βv∗
j (r,ω) + ∂i

βvj (r,ω)∂j
αv∗

i (r,ω)] = φ∗
βα(R,r,ω), (32)

where the R dependence of the hydrodynamic fields is not explicitly displayed. For general particle shapes and boundary
conditions, it is obtained by solving the time-dependent deterministic Stokes equation (12b). For constant viscosity, the dynamical
Oseen tensor [34], which is the Green’s function of Eq. (12b), allows one to find the required solution. Equation (31) is valid
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whatever the magnitude of αbi and βb∗
j , in particular when they are unit vectors. With this choice we have

Zαβ(R,ω) = 2
∫
V

φαβd3r − 2�ω Im
∫
V

αv∗
i

βvid
3r. (33)

Since Zαβ is real by definition, Eqs. (33) and (32) imply that φαβ = φβα . Besides, Eq. (33) has to be invariant under exchange of
α and β owing to the symmetry Zαβ = Zβα . Therefore, one can eliminate the second term in Eq. (33) and obtain

Zαβ(R,ω) = 2
∫
V

φαβ(R,r,ω)d3r. (34)

Then we turn to the random force ξ (ω):

ξi〈αbi〉 (27b)= (δhi + Z+
ij δbj )〈αbi〉 (27a)= δhi〈αbi〉 − αhj δbj

(20)= −〈αVi〉
∫
S

δσijnjd
2r − 〈α�i〉

∫
S

[r × (δσ · n)]id
2r + δVi

∫
S

ασijnjd
2r + δ�i

∫
S

[r × (ασ · n)]id
2r

= −
∫
S

(〈αV 〉 + 〈α�〉 × r)iδσijnjd
2r +

∫
S

(δV + δ� × r)i
ασijnjd

2r

(5),(14)= −
∫
S

αviδσijnjd
2r +

∫
S

δvi
ασijnjd

2r

= −
∫
V

∂j (αviδσij )d3r +
∫
V

∂j (δvi
ασij )d3r (35)

(12b),(13b)= −
∫
V

δσij ∂j
αvid

3r +
∫
V

ασij ∂j δvid
3r −

∫
V

αvi∂j τij d
3r

(12a),(13a)= −
∫
V

αvi∂j τij d
3r =

∫
V

τij ∂j
αvid

3r. (36)

In (35) we made use of the divergence theorem and in (36) of the property δσij ∂j
αvi = ασij ∂j δvi , which is a direct consequence

of the symmetry of σ . We thus have

ξi〈αbi〉 = ξα〈bα〉 =
∫
V

τij ∂j
αvid

3r, (37)

which shows that ξ is Gaussian with vanishing mean, being the integral of the deterministic quantity ∂j
αvi times the zero-mean

Gaussian field τ . Hence, its correlation matrix suffices to specify the statistics completely. Using (37), we determine the noise
correlation

〈ξi(ω)ξ ∗
j (ω′)〉〈αbi(ω)〉〈βb∗

j (ω′)〉 = 〈ξα(ω)ξ ∗
β (ω′)〉〈bα(ω)〉〈b∗

β(ω′)〉

=
∫
V

d3r ′
∫
V

d3r ∂j
αvi(r,ω)〈τij (r,ω)τ ∗

kl(r ′,ω′)〉∂l
βv∗

k (r ′,ω′) (38)

= 2kBδ(ω − ω′)
∫
V

η(r)T (r)[∂i
αvj (r,ω)∂i

βv∗
j (r,ω) + ∂i

αvj (r,ω)∂j
βv∗

i (r,ω)]d3r (39)

= 2kBδ(ω − ω′)
∫
V

φαβ(R,r,ω)T (r)d3r. (40)

In (39) we used the Fourier transform of (15a). Setting the
magnitude of 〈bα〉 and 〈b∗

β〉 to one, we finally obtain the noise
correlation tensor in the form

〈ξα(R,ω)ξ ∗
β (R,ω′)〉 = kBTαβ(R,ω)Zαβ(R,ω)δ(ω − ω′),

(41)

where Tαβ is the frequency-dependent noise temperature
defined by the spatial average of the temperature field T (r)
performed with the dissipation tensor φαβ ,

Tαβ(R,ω) ≡
∫
V φαβ(R,r,ω)T (r)d3r∫

V φαβ(R,r,ω)d3r
. (42)

Summing up, we have arrived at the generalized Langevin
equation for the particle (translational and angular) velocity b

L · ḃ(t) = −
∫ t

−∞
Z(R,t − t ′) · b(t ′)dt ′ + ξ (t) + f ext(t),

(43)

where the tensor L combines the particle mass and moment of
inertia, Z(t) is the time-dependent friction tensor, and ξ (t) is a
Gaussian noise having vanishing mean and correlations given
by Eqs. (15) and (42).

In order to determine Eq. (15), in principle one should
consider Eq. (12c) with the appropriate boundary conditions.
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Usually, these would consist in imposing constant
temperatures at the outer boundaries and the continuity
of the normal heat flux across the particle surface, i.e.,

κpn · ∇T |Sin + q = κn · ∇T |Sout , (44)

with q an optional heat flux released by the particle. If the heat
sources are independent of the particle (q = 0), e.g., if they
are placed at the outer boundaries of the fluid, the temperature
field will generally depend on the instantaneous particle
position. Nevertheless, in most practical cases the thermal
conductivities of particle and solvent (κp and κ , respectively)
will be such that the feedback of the particle motion onto the
temperature field (which is of the maximum relative strength
O(κp/κ − 1) close to the particle surface [see [35], Eq. (24)])
can be treated as a small correction to the overall temperature
field in the solvent. If the particle itself acts as the heat source,
so that q = 0 in Eq. (44), like in hot Brownian motion [26,36],
the temperature field can be calculated once and for all in
the particle frame (advection terms arising from the change
of frame can again be neglected). Therefore, Eqs. (41)–(43)
can be taken to entirely describe the particle dynamics. The
higher-order corrections should remain relatively small, if not
negligible, for all practical purposes.

IV. ANALYTIC EXAMPLE: PARTICLE IN A LINEAR
TEMPERATURE FIELD

We now consider a concrete example to illustrate the formal
results of the previous section. Namely, we seek the Langevin
equation for a spherical particle of radius a in an unbounded
fluid with a constant temperature gradient of magnitude C,
externally imposed along the z spatial direction,

T (r) = T0 + Cz. (45)

For the sake of the argument, we consider a particle whose
thermal conductivity is comparable to that of the solvent, i.e.,
κp � κ (e.g., a glass particle in water), so that its presence
does not alter (45). If η[T (r)] � η is taken constant, which
is a good approximation for water under moderate heating
conditions, Eq. (12b) is independent of T (r) and the problem
can be fully worked out analytically. Due to the spherical
symmetry enjoyed by the momentum equations (12b) and
(5), no hydrodynamic coupling exists between different space
directions and between angular and translational dynamics,
i.e., φαβ = diag(φαβ). In the following we thus focus on the
translational motion only. Moreover, the particle experiences
a homogeneous fluid friction in view of (34) and φαβ being
independent of R.

In order to calculate Tαβ = diag(Tαβ), it is convenient to
obtain the dissipation function φz′z′ for a particle moving along
a fixed ẑ′ direction, where the prime denotes the particle frame
(arbitrarily rotated with respect to the unprimed laboratory
frame), and express the fluid temperature field in primed
coordinates. Using the standard solution of the time-dependent
Stokes equation (12b) for a sphere moving with unit velocity
[17], one arrives at

φz′z′ (r ′,ω) = η[cos2 θ ′A(r ′,ω) + sin2 θ ′B(r ′,ω)], (46)

where r ′ is the distance from the particle center, θ ′ is the polar
angle measured from ẑ′, and A and B are known functions [36]

whose explicit form is not required here. Taking ẑ′ parallel to
ẑ, so that the fluid temperature reads in the particle frame

T (R + r ′) = T0 + C(Z + r ′ cos θ ′),

we find for the noise temperature in the z direction

Tzz(Z,ω) =
∫
r ′�a

φz′z′ (r ′,ω)T (R + r ′)d3r ′∫
r ′�a

φz′z′ (r ′,ω)d3r ′

= T0 + CZ = T (Z),

because the integral over the polar angle in the numerator
vanishes. The physical reason lies in the symmetry of the flow
field under reversal of the particle velocity, i.e., the transforma-
tion θ ′ → π − θ ′. By symmetry the noise temperatures in the
directions perpendicular to ẑ are identical, i.e., Txx = Tyy , and
they are found by taking ẑ′ parallel to x̂. This choice renders
the fluid temperature in the particle frame in the form

T (R + r ′) = T0 + C(Z + r ′ sin θ ′ cos φ′),

which yields

Txx(Z,ω) = T0 + CZ = T (Z),

because the integral of φz′z′T over the azimuthal angle
vanishes. This is due to the spherical symmetry of the particle
that produces a dissipation function that is (for constant η)
axially symmetric with respect to ẑ′. Summing up, Eq. (43)
for the translational motion reduces to

mV̇ (t) = −
∫ t

−∞
Z(t − t ′)V (t ′)dt ′ + ξ (Z,t) + f ext, (47)

where the noise temperature boils down to the lo-
cal fluid temperature 〈ξα(t)ξβ(0)〉 = kBT (Z)Z(t)δαβ . The
history-dependent friction is the Basset-Boussinesq force
[17]. Namely, Z(t) contains an instantaneous contribution
6πηaδ(t), corresponding to the Stokes friction, and a power-
law term ∼ t−3/2, accounting for the finite relaxation time of
fluid momentum.3

To clarify the role played by the position-dependent noise in
Eq. (47), it is useful to examine the long-time diffusive behav-
ior of the particle. It is obtained by retaining only the Stokes
term4 in Z(t) and taking the overdamped limit of the resulting
memoryless Langevin equation

mV̇ = − 1

μ
V + f ext +

√
2kBT (Z)/μξ̂ , (48)

where μ ≡ (6πηa)−1 is the particle mobility and ξ̂ is a
Gaussian white noise of unit variance. The overdamped limit,
which is valid on time scales such that dt � mμ, follows
from adiabatic elimination in Eq. (48) of the fast variable V
[37,38],5

Ṙ = μ f ext +
√

2μkBT (Z)ξ̂ . (49)

3In fact, Z(t) includes also a derivative of a δ function that produces
an effective added mass, stemming from fluid incompressibility [17].

4The memory effects in (47) can safely be dropped if �0/�p � 1,
�p being the particle density, which gives the relative magnitude of
the power-law decay compared to the Stokes term [4,36].

5The multiplicative noise has to be interpreted in the Itô sense [41].
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To see that the fluid temperature gradient appears on a par
with the external forces we translate Eq. (49) to the equation
for the density field ρ(r,t) of a dilute ensemble of Brownian
particles (or, equivalently, to the Fokker-Planck equation for
the single-particle probability density function) [39,40]

∂tρ = ∇ · (μkBT ∇ρ + μρkB∇T − μ f extρ)

≡ ∇ · (D∇ρ + DT ∇T − μ f extρ). (50)

It differs from an isothermal advection-diffusion equation by
virtue of the thermodiffusion flux DT ∇T . The thermodiffusion
coefficient DT is by definition positive and much smaller
than what is usually measured in colloidal systems [35]. The
discrepancy in the magnitude of the effect arises because
under typical experimental conditions DT depends strongly
on the surface and solvation properties of the solute (e.g.,
dispersion, depletion, and electric-double-layer forces), which
would have to be subsumed in the boundary conditions in a
systematic microscopic derivation, but cannot be found within
a hydrodynamic derivation. In fact, the value of DT here
obtained pertains to a dilute ideal solute in local equilibrium
with the fluid, as one can see by inspecting the steady-state
solution of (50) in the absence of external forces

ρ(r) ∝ 1

kBT (r)
, (51)

which indeed corresponds to the local version of the state
equation of an ideal gas in mechanical equilibrium [39,40].

In conclusion, we have shown the validity of the standard
Langevin description of Brownian motion in a linear tem-
perature field when the viscosity is assumed to be constant.
The fact that the noise temperature becomes a frequency-
independent scalar and local in space, as usually postulated
[27,28], originates from the high degree of symmetry of the
system, but will not be true for generic T (r). For example,
a radial temperature field emanating from a heated particle
suffices to produce a noise temperature with a rich frequency
spectrum [36]. Clearly, the possibility to obtain exact analytic
results hinges on the constancy of η. In general, corrections
stemming from the neglected temperature dependence can
be calculated as perturbations to the time-dependent Stokes
equation or through semianalytic methods for the case of radial
temperature fields [26].

V. DISCUSSION

We have analyzed the fluctuating hydrodynamic equations
for a Brownian particle suspended in solvents with moderate
temperature gradients. The main result obtained in Sec. II
is that, on the scale relevant for the description of Brow-
nian motion, it is sufficient to consider fluctuations of the
solvent hydrodynamic fields around their local equilibrium
state to linear order. In particular, the solvent velocity and
temperature fields are found to evolve independently. This
is traced back to two conditions. First, heat and momentum
diffusion, rather than advection, is the dominant transport
mode in the fluid, as testified by the small Reynolds and
Péclet numbers, namely, Re � 10−3 and Pe � 10−2. Second,
commonly realized temperature gradients induce negligible
relative density variations of order ε1 � 10−2. The ensuing
ineffectiveness of the momentum-temperature coupling has a

remarkable consequence on the Langevin noise ξ . Namely,
its nonequilibrium energy spectrum is only a result of the
spatial inhomogeneity of the random stress tensor τ , which
is governed by the deterministic temperature field T (r,t).
Qualitatively, this could have been anticipated by recalling that
the most important enhancement of fluctuations in nonequi-
librium fluids is due to (nonlinear) convective couplings6

that dominate on long wavelengths, beyond the Brownian
scale [43]. Yet the characteristic energy spectrum kBTij

governing the Brownian noise shares with them the distinctive
features of nonequilibrium fluctuations [44], namely, their
long-range nature and their dependence on the mechanical
transport properties of the fluid, as encoded in the dissipation
tensor φαβ . Moreover, because φαβ is sensitive to the particle
shape and size via the boundary condition (5), the noise
temperature is ultimately a joint property of solvent and solute.
This is in contrast to the results by Golestanian and Ajdari
[45] for the long-time diffusion of a Brownian particle in
temperature gradients. Assuming the (pointlike) particle to
be simply advected by the random flow field without causing
any disturbance, Golestanian and Ajdari identify the particle
velocity fluctuations with those of the fluid and thus miss
the essential near-field (finite-size) contributions that strongly
depend on the particle parameters.

We conclude that an effective theory, which is linear
in the particle-fluid momentum exchange and disregards
stochastic fluctuations in the temperature field, is suitable to
derive a contracted description for nonisothermal Brownian
suspensions. The consequences of this result are more fully
explored in Ref. [29], where the generalized Langevin equation
(43) is derived by direct application of linear-response theory
to the momentum of a Brownian particle and to (locally
equilibrated) distant coarse-grained solvent volume elements.

Another important conclusion of our above calculations is
that the Langevin noise ξ is characterized by Gaussian statis-
tics. Non-Gaussian contributions to the fluctuations (around
the vanishing mean of ξ ) are peculiar features of out-of-
equilibrium systems [46] that can appear only if nonlinear
fluctuations are retained in the hydrodynamic equations or
if the local-equilibrium assumption for the fluid is violated.
Numerical simulations [47,48] have shown that the velocity
fluctuations of a hot Brownian particle clearly exhibit Gaussian
distributed velocity and (when placed in a harmonic potential)
position fluctuations, even under extreme heating conditions
and under narrow confinement. They thus corroborate our main
result that a local-equilibrium linear fluctuating hydrodynamic
theory with Gaussian noise provides a universal basis for
deriving equations of motion for nonisothermal Brownian
dynamics.

The vanishing average of the Langevin noise appearing
in Eq. (43) implies that the important phenomenon of
thermophoresis is absent in our discussion of nonisothermal
Brownian dynamics. To be precise, the stationary distribution
for the particle position associated with Eq. (43) will in general
be nonuniform in space [as exemplified by Eq. (51) for a

6Such coupling between different hydrodynamic modes is the main
culprit of nonequilibrium Casimir-like forces in confined fluids (see,
e.g., [42]).
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free particle in a constant temperature gradient] owing to the
position-dependent noise strength. The corresponding weak
kinematic thermodiffusion however should not be confused
with what is commonly referred to as thermophoresis [49].
The notion refers to an effect that cannot be derived within any
generic hydrodynamic approach, not even if density variations
induced by temperature gradients are considered [17]. As
explained in Sec. IV, it is a result of nonequilibrium molecular
interaction forces at the particle-fluid interface and therefore
remains absent for any hydrodynamic boundary condition that
does not directly couple the velocity and temperature gradient
at the particle surface [50]. Clearly, this does not preclude
the introduction of thermophoresis into the hydrodynamic
description by hand, e.g., by imposing a hydrodynamic slip
velocity at the surface [51].

Finally, it is worth recalling the limitations incurred by
the incompressibility assumption T → 0 made at the outset.
While it is certainly adequate to describe the particle motion
averaged over the whole frequency spectrum, it is bound to
break down at high frequencies, comparable to the inverse
time needed by a sound wave to propagate over a distance
comparable to the particle radius. A corresponding effect that
is well known in the equilibrium theory of Brownian motion is
the failure of the incompressible theory to recover the mean-
squared velocity 〈V 2〉 = kBT0/m, as predicted by energy
equipartition. Instead, it predicts 〈V 2〉 = kBT0/M with the
renormalized mass M > m accounting for the added inertia of
the solvent backflow [4]. The discrepancy is straightforwardly
resolved by observing that the limits t → 0 and T → 0 do
not commute in the evaluation of the equal-time velocity
autocorrelation function [9,52]. Accordingly, we expect that
the high-frequency predictions of our theory will deviate
from measurements performed with compressible solvents,

but presumably only in a frequency range that is currently still
difficult to access experimentally [12,13].

In summary, we showed that the weakness of advection
effects implies that different hydrodynamic fields do not couple
appreciably, on the Brownian scale. After deriving the appro-
priate theory of nonequilibrium fluctuating hydrodynamics,
we identified a previously often overlooked nonlocality of
the resulting generalized Langevin equation for the Brownian
particle, originating from long-range correlations triggered by
temperature inhomogeneities. While conceptually important,
the effect was found to vanish for the practically important
special case of a perfectly linear external temperature gradient.
We further showed the Brownian noise to be Gaussian, which
explains previous observations from numerical simulations.
The thermodiffusion induced by the space dependence of the
noise was pointed out to be subdominant with respect to the
mesoscopic mechanisms of thermophoresis commonly gov-
erning experiments with colloidal suspensions. Altogether, we
could thereby systematically vindicate an analytically tractable
and practically useful theory for the Brownian motion of a
colloidal particle in a nonisothermal solvent, which resembles
very much that for the isothermal case. It only breaks down at
very high frequencies, where sound modes become relevant,
as much as the corresponding isothermal theory would.
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