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Semiphenomenological model for gas-liquid phase transitions
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We examine a rarefied gas with inter-molecular attraction. It is argued that the attraction force amplifies
random density fluctuations by pulling molecules from lower-density regions into high-density regions and thus
may give rise to an instability. To describe this effect, we use a kinetic equation where the attraction force is
taken into account in a way similar to how electromagnetic forces in plasma are treated in the Vlasov model.
It is demonstrated that the instability occurs when the temperature 7 is lower than a certain threshold value T
depending on the gas density. It is further shown that, even if 7" is only marginally lower than T, the instability
generates clusters with density much higher than that of the gas. These results suggest that the instability should be
interpreted as a gas-liquid phase transition, with 7 being the temperature of saturated vapor and the high-density

clusters representing liquid droplets.
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I. INTRODUCTION

Consider a rarefied gas with intermolecular attraction such
as, typically, the Keesom and London forces [1]. If the gas
is homogeneous, the sum of all pairwise forces affecting
any given molecule is, on average, in balance. If, however,
a fluctuation increases the gas density in a certain region,
adjacent molecules are pulled toward it, making the gas there
even denser. In principle, this effect could cause an instability,
but it is opposed by the ability of sufficiently fast molecules
to “fly out” of the high-density region. Still, the latter effect
weakens if the gas temperature 7 decreases, whereas the
intermolecular attraction depends solely on the density p.
Thus, for a given p, a threshold temperature 7 (o) should exist
such that the homogeneous gas state is unstable for 7 < Tj.

In this paper, we present a simple qualitative model of
this instability and interpret it as a gas-liquid phase transition,
which appears to be the only interpretation possible, as
instability per se has never been observed in rarefied gases.
This interpretation is also supported by the fact that even a
weak instability (such that T is only marginally lower than T5)
gives rise to “clusters” with a dramatically increased density,
which can be viewed as the formation of liquid droplets
(i.e., nucleation). Furthermore, the connection between the
instability of a gas and gas-liquid phase transition (although
not nucleation) has been pointed out previously in Refs. [2-5].

This paper has the following structure. In Sec. II we
formulate our model mathematically and, in Sec. III, use
it to examine the stability of a homogeneous gas state. In
Sec. IV, we prove the H theorem for our model and explore
its connection to the instability found. The regime of weak
instability is investigated in Sec. V, and in Sec. VI, we discuss
the physical aspects of the results obtained.
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II. FORMULATION

We shall use a kinetic approach to rarefied gases, where the
gas is characterized by a one-particle distribution function f
depending on the time #, the spatial coordinates x = [x,y,z],
and the molecule velocity v = [u,v,w]. The local density,
velocity, and temperature of the gas are given by

pszfm V=%/Wﬂ%, (1)

m
T=— — V2 £ dv, 2
3kBp/w 2f @)

where m is the molecular mass and kp is the Boltzmann
constant. The rotational and oscillational degrees of freedom
of the molecules are not considered.

To justify the kinetic approach to gas-liquid phase transi-
tion, we note that, for a sufficiently low temperature, saturated
vapor can be treated as an ideal gas and, consequently, as a
rarefied one [6]. The latter indeed justifies the kinetic approach.

To quantify the “ideality” of saturated vapor, we introduce
the following nondimensional parameter:

,3 — kB Ts Ps i (3)
mpg
where py, Ty, and p; are the pressure, temperature, and density
of the saturated vapor. We shall consider a gas as sufficiently
close to being ideal if the deviation of 8 from unity is less
than 0.1.

We have computed g for saturated water steam using the
1997 version of the formulas of the International Association
for the Properties of Water and Steam [7] and plotted B(T5)
in Fig. 1. One can see that, for T; < 200 °C, the deviation of
B from unity is less than 10%. Thus, saturated water steam
can be treated as an ideal gas (hence, the kinetic approach is
applicable) in more than half of the range between the triple
and critical points (0 °C and 374 °C, respectively).

The fact that phase transitions can occur in a rarefied gas,
where the size ! of the molecules is much smaller than the
distance L between them, has another important implication.
It suggests that the potential ®(x) of intermolecular interaction
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FIG. 1. The “ideality” parameter B [as determined by (3)] for
water steam vs the temperature 7; (measured in °C) of the saturated
vapor. The dotted line corresponds to 8 = 1.1.

involves a short-scale repulsive-dominated part ®, and a
long-range attractive part ®,. The former, with a scale ~/,
is responsible for collisions, whereas the latter, with a scale
~L, is, presumably, what causes phase transition (by pulling
molecules toward each other and thus causing condensation).

Admittedly, the potentials commonly used for simulations
of molecular dynamics [8] (e.g., the Lennard-Jones potential)
do not allow a natural scale separation. That is, they can be
separated into a repulsive “core” and an attractive “tail,” but
the scales of these do not differ by an order of magnitude. As
a result, we do not have at our disposal a specific example of
o, (x).

We still hope to describe the gas-liquid phase transition
qualitatively correctly, which would suffice for the aim of the
present work.

It will be shown that our results do not depend on the
specific shape of ®,(x), and even more importantly, the
onset of instability occurs at infinitely long wavelengths. Both
these circumstances suggest that only the global, integral
characteristics of ®,(x) are important, whereas its short-scale
behavior has a limited impact.

Since the aim of this work is to merely illustrate the
concept proposed, we take advantage of all approximations and
simplifying assumptions used in the kinetic theory. First, we
employ the Bhatnagar—Gross—Krook (BGK) approximation
of the collision integral (which describes the effect of the
short-scale, repulsive potential @, ). The long-range, attractive
potential ®,, in turn, is described through the approach
used previously in the Vlasov model for electromagnetic
interactions in plasma [9].

Under the assumptions described above, the kinetic equa-
tion has the form

af Loof _ fu—-f

- -V —F. . — = , 4
3t+v f+m ov T @)

where t is the characteristic time over which the gas relaxes
to the state of equilibrium due to collisions,

P m \"? . m|v —V|? 6)
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is the local Maxwellian distribution, and F(¢,x) is the collective
force exerted at a point x by neighboring molecules. Under
the Vlasov model, F is given by

F(t.x) = —V/ p(;;x)cba(x —x¥)d%¥, (6)

where the attractive potential ®,(x) should be treated as a given
function, such that ®,(x) — 0 as |x| — oco. As mentioned
above, its specific shape is not important, but its strength is,
and it can be characterized by

E=— / ®,(x) d’x. (7

Note that @, is negative (due to its attractive nature and the
assumed decay at infinity); hence, E > 0.

Note that, physically, T depends on p and 7. This
dependence has been determined as follows: assuming the
hydrodynamic limit of Egs. (1)-(2) and (4)-(6), we have
calculated the dynamic viscosity of the gas,

tkgTp

’

m

and equated it to its counterpart derived through the first
approximation of the Chapman-Enskog method [10]. As a
result, we obtained

o

T=—0:,
pkpT)'?

where o is a parameter depending on the differential cross
section of the gas under consideration. Expression (8) shows
that a hotter and denser gas relaxes to the state of equilibrium
faster than a cooler and more rarefied one (just as it should
physically).

Note that the use of kinetic equations for studying phase
transitions is by no means new, as they have been employed
previously in Refs. [3,5,11]. The closest “relative” of our
Eq. (4) is the so-called Enskog-Vlasov equation introduced
in Refs. [11,12], put on a more rigorous footing in Ref. [13],
and used in several papers afterward (e.g., Refs. [14—16]). The
difference between the Enskog-Vlasov equation and Eq. (4)
is in the form of the collision integral: the former model
involves the Enskog version for dense gases or liquids, whereas
the latter involves the BGK version (which is much simpler
but still produces a good description of rarefied gases). The
simplicity of the BGK-Vlasov model should enable one to
advance further.

When studying the stability of an equilibrium state with
density pp and temperature Tp, it is convenient to use the
following nondimensional variables:

1 m 172 t
X,y = — X,
" o \ ks To 70
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i = —,
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where
o

n= —————.
polkpTo)'/?

In terms of variables (9)—(11), Egs. (1)—~(2), (4)—(6), and (8)
become (subscripts nd omitted)

Y

af af
2L .V F.2L
or TVVSTE
P lv— V| 12
_ _ — flor 12
[(2nT)3/2 exp( 2T Tt
3 1 3
o= | fdv, V=—[vfdv, (13)
P
1 2, 73
T=—{|v-V|"fd, (14)
3p
F= —aV/p(t,x’) &, (x — x)d’x, (15)
where
PoE
_ 16
kaTo ( )

is the relative strength of the intermolecular attraction force.
Observe also that, due to (7), the nondimensional potential
satisfies

/ O,(x)d’x = —1. (17)

In what follows, we shall need certain properties of the Fourier
transform of ®,(x),

d,(k) = / e d(x) d>x. (18)

In particular, it follows from (17) that
&,00) = —1. (19)

Let the intermolecular force be isotropic; hence, ®,(x) is
spherically symmetric, i.e., ®, = ®,(|x|). This implies that
@, (k) is also spherically symmetric and

Im &,(k) = 0. (20)

Next, as follows from (18),
8,001 < [ |o0ld*x

Since ®,(x) represents the attractive part of the intermolecular
force, it follows that &, (X)A< 0, and the right-hand side of the
above inequality equals —®,(0). Thus, given (19),

min{®,(k)} = —1. (21)
keR3

III. THE STABILITY OF A HOMOGENEOUS GAS
Let the solution of equations (12)—(15) be

exp(—%lvlz) ~ .
=——=—=+f, p=1+p, 22
f 2 foop p (22)
V=V, T=1+T, F=F, (23)
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where the variables with tildes describe a disturbance in a
homogeneous gas. Substituting (22)—(23) into Egs. (12)—(15)
and linearizing them, we obtain

0 er i @A)
stV V= (E-W) I
(s o VP3N exp (=3P
ﬁ:/fd3v, V:/Vfd3v, (25)
. o1 ;
T=—pts / VR F dP, (26)
F=—aV / p(t,x) Du(x —x)d’X. 27)

We confine ourselves to harmonic disturbances, i.e., solutions
of the form

f — f(V) est+ik-x’ ﬁ — pAest+ik-X’ - (28)

where k, Ims, and Res are the wave vector, frequency,
and growth (or decay) rate of the disturbance, respectively.
Substitution of (28) into (24)—(27) yields

g2
e e exp (= 3P
sf+lk'vf+alk~v,o<baW
~ VP =3 \exp(—=ilvP?) .,
=(p Y T —f, 9
,a:/fd3v, V:/vfd3v, (30)
£ . 2213
T=—p+3 [V idY, (31)

where dADa(k) is the Fourier transform of ®,(x) as defined
by (18). Expressing f from (29), we substitute it into (30)
and (31) and thus obtain

X e IVP=3
p = (1 —aik-vpP)p+v-V+ 3 T

€ —lV2
x ;;p( M), (32)
Q)21 +s+ik-v)
. , A L vP =3,
V=] vl —aik-vpP)p+Vv-V+ 5 T

X
Q) (1 +5 +ik-v)

NP I L o IVP=3,
T=—,o+§ vl (1—aik - vpd)p+v-V + 5 T
1)o2
€X —51|V
p( 2||) dSV.

2P +s +ik-v) G4

GivenAthe problem’s isotropy, one can let k = [0,0,k], V=
[0,0,W] and then carry out the integration with respect to
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the first two components of v = [u,v,w]. It is also conve-
nient to multiply and divide the integrands in (32)—(34) by
(1 +s — ik - v), which yields

2
p :/{[1+s—a(kw)zé>a]ﬁ—w2(ikﬁ/)+(1 +92 5 li}

% exXp (—%wz) d
Q) 2[4 5)* + (kw)?]

w, (35)

ikW:/{(kw)z[l +a(l+5)d4]p + (1 + s)w?(ikW)

exp ( — %wz)

(27r)1/2[(1+s)2+(kw)2]dw, (36)

2.9,
+(kw)2w2 T}

. 1 .
T=—p+ 5/ {(2 + w1 + 5 — atkw)>d,1p

. 4 242,
— 2+ kW) + (1 + S)MT}

2
« exp (—%wz) d
QM2 + $)> + (kw)?]

w. (37)

Since the unknowns p, W, and 7' do not depend on w, (35)-
(37) are essentially linear homogeneous equations, with their
coefficients given by integrals with respect to w, involving
s as a parameter. Accordingly, set (35)—(37) has a nontrivial
solution only if its determinant A is zero. Since A depends
on s, the requirement A(s) = 0 determines s. If, for some «,
Res > 0, the homogeneous gas state is unstable.

In what follows, we shall derive a stability criterion for
the long-wave limit, k — 0, and then show numerically that it
actually holds for an arbitrary k.

A. The long-wave limit of Equations (35)—(37)

As mentioned before, ®(x) is spherically symmetric; hence,
@, depends on |k|, and (19) implies

b, =—-14+0k* as k— 0.
It turns out that Egs. (35)—(37) describe three modes, such that
51 =00, 523 =0(k). (38)

Modes 2 and 3 are essentially acoustic waves, whereas mode
1 does not seem to have an obvious physical interpretation.
Expanding Egs. (35)-(37) in k and keeping in mind that the
behavior of s is given by (38), we obtain
[s + k(1 = )] + (1 = 25)(kW) + [-3GkW) + T1K>
= O(s?.sk% k%), (39)

K(1—a)p—(s + 3kHEW) + k*T = O(s%,sk>, kY,  (40)
[3s + 5k*(1 — @)1p + 5(1 — 25)(ik W)
+ (Bs 4+ 10kH)T — 21(ikW)HK? = O(s*,sk> k). (41)

Equations (39)—(41) form a set of linear homogeneous equa-
tions for (9, W,T'), and it has a solution only if its determinant
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is zero, which yields

353 —Ba—5)k>s —5k* (@ —1) + (4 + 5a)k*s +3(a+3)k>s>
= Ok*,s%,sk?).

A straightforward analysis of this cubic equation yields

- S=1) 12
17~ Sy K ) 5
if a# -, (42)
§2,3 ™~ +. /o — %k, 3
iN1/3
st~ (550) 7 . 5
104\ 1/3 — 143172 i o=z
523~ (197) TS

Equation (42) shows that mode 1 is stable only if
a < 1. (43)

Modes 2 and 3, in turn, do not affect the stability criterion, as
one of them is always stable and the other is unstable if ¢ > %
(i.e., when mode 1 is unstable also).

Observe that (43) does not depend on &, (k), making the
shape of the attractive potential unimportant. Its strength,
however, is important, as « depends on E [see (7) and (16)].

Note also that the stability criterion (43) and (16) does not
involve any characteristics of the collision integral [such as the
parameter o in expression (8) for t]. Thus, the collision-caused
mixing does not affect the existence of the instability, and the
only damping effect is the ability of sufficiently fast molecules
to fly out of high-density regions created by intermolecular
attraction. Moreover, this counterintuitive conclusion could
have been drawn immediately after the nondimensionalization,
as the only parameter left in the model, «, is independent of
the collision characteristics. Note, however, that even though
collisions do not affect the existence of the instability, they
still affect its growth rate.

Other physical aspects of condition (43) will be discussed
in Sec. V.

B. Numerical results

Set (35)—(37) was solved numerically by funding the roots
of its determinant. Several examples of ﬁDa (k) have been tested,
and it was confirmed that the specific shape of ®, affects
only the spectral range and strength of the instability but not
the parameter region where it occurs. In other words, if the
instability exists for one particular example of ®,, it exists for
all of them [as long as they satisfy condition (17)].

It was also confirmed that mode 1 becomes unstable at
o= %, with one of the other two modes losing stability at
o=z

Mi)st importantly, the destabilization of both modes occurs
in the long-wave part of the spectrum (as illustrated by
Fig. 2). This circumstance suggests that the long-wave stability
criterion (43) is exact.

In the next section, we show that (43) indeed holds for
arbitrary k.
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FIG. 2. The growth rate s; of mode 1 [computed using Egs. (35)-
(37) with &, = exp(—%kz)] vs the wave number k. (1) « = 0.9, (2)
a=1,3)a=1.1.

IV. THE INSTABILITY AND THE H THEOREM

In this section, we reexamine the stability of ahomogeneous
gas by finding out whether or not it maximizes the entropy
subject to fixed mass and energy.

To make the mass, energy, and entropy finite, we first
assume that the solution of our governing equations (12)—(15)
is triple periodic with a period occupying a large, but finite,
cube C = (L x L x L). Then we consider the limit L — oo,
making the analysis general.

With this in mind, we define the gas entropy by

sz_i/ /fln fd*vd’x (44)
L3 C ’ ’

where the x integration is carried out over C. One can verify
that Eqs. (12)—(15) imply the following H theorem:

= /[/m—(fM— )d3v]oTl/2d3x>O,

where f, is the nondimensional local Maxwellian distribution
[i.e., the first term in the square brackets in Eq. (12)]. Note also
that Egs. (12)—(15) conserve the net mass and energy,

M——f/fd3vd3 e_ﬁ/(/M fd’v+a

X / / f'f ®u(x' —X) d3v/d3vd3x/>d3x, (45)

where f' = f(V X ,1).

Due to the H theorem, a stable state should maximize S
for given values of M and £. Without the intermolecular
attraction, the uniform Maxwellian distribution satisfies this
requirement, but if the intermolecular forces “shift” the entropy
maximum away from the Maxwellian distribution, it should
become unstable.

In what follows, we shall prove that this is indeed the case
foroa > 1.

A. The analysis

To find the stationary points of S subject to constraints

M=My, €=6&, (46)
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with M and £ given by (45), consider the functional
F =S+ MM — Mo + u(& — &), (47)

where A and p are the Lagrange multipliers. Substituting (44)—
(45) into (47), we require 6 F = 0, which means that the
coefficients of dA, du, and &f in the expression for §F
should all be zero. The first two of these requirements yield
constraints (46), and the third one yields

—1—1nf+x+uB|v|2+a/ f’@a(x’—x)d3v’d3x]=0.
(48)
One can readily verify that, for
A=1-3In2r+a, pn=-1, (49)

(48) admits a solution describing the uniform Maxwellian
distribution with unit density and temperature,

1 1,
f}w1 = Wexp <—§|V| ) (50)

Solution (49)—(50) is a stationary point of the functional F,
but it is not necessarily its maximum. To find out if it is, one
needs to take the second variation of F with A and u given
by (49), which yields

2 GfP? «
”—‘m/c/[—m A
X //8f’8f¢a(x’—x)d3v’d3x’}d3vd3x. (51)

Observe that the terms §A M and 8 8€ have been omitted
from 82F, as only those variations should be considered
that preserve the net mass and energy (6M = §& = 0), for

which (45) yields
/ /5fd3vd3x =0,
c

1
//|:§|V|2+oz/ fA;l@a(x/—x)d3v’d3x’}5fd3vd3x=0.
C

(52)

Thus, if there exists §f such that requirements (52) hold
and (51) yields §2F > 0, the solution f = fy, does not
maximize the entropy and thus is unstable.

In what follows, we shall first consider harmonic variations,

8f(v,x) =8 f(v)cosk - x, (53)

with the general case discussed in the next subsection.
Observe that harmonic disturbances automatically satisfy

conditions (52), i.e., preserve mass and energy. Next, substi-

tute (53) into (51) and take the limit L — oo, which yields

a 2 2
82F = —%/ (if) dPv “q):(k) (/ Sfd3v> . (54)
M,
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where ®,(Kk) is given by (18). Now, we change v = (u,v,w)
toa = (a,b,c), where

Jo = P (—3u?) _exp (—3v?)
(27_[)1/2 ’ (27_[)1/2 ’
exp (—3w?)
e’

In terms of a, (54) becomes

2
8°F = —f h2d3a—a&>a(k)(f hd3a> , (55)
Cl Cl

where C is the unit cube and
_ 8
2fM1 ‘

Next, we use the following particular case of Jensen’s
inequality [17]:

2
/ h2d3a></ hd3a>,
C Cy

where the equality occurs if and only if # = const. If applied
to (55), Jensen’s inequality yields

2
8°F < —(/hd3a) [1+ ad,K)].

Evidently, if

h

1 + « min{®,(k)} > 0, (56)
keR3

then 82F < 0, and the Maxwellian distribution is stable with
respect to all harmonic disturbances. If, on the other hand, (56)
does not hold, there exists a perturbation making 82 F positive,
i.e., increasing the entropy; hence, the Maxwellian distribution
is unstable. Note also that condition (56) makes sense only if
&, (K) is real, which it indeed is due to (20).

Most importantly, equality (21) makes (56) identical to the
long-wave criterion (43) and thus proves that it holds for all k.

B. Discussion

(1) The above analysis can be generalized for nonharmonic
disturbances by reducing the variational problem (51)—(52) to
a certain eigenvalue problem (through an approach proposed
in Ref. [18] and used in Ref. [19]). In the case under
consideration, this eigenvalue problem can be readily solved
by the Fourier transformation, yielding the same stability
criterion, (56).

(2) One might wonder how the Maxwellian distribution
(which is stable in the conservative Vlasov model [20]) can
be unstable in the dissipative BGK-Vlasov model. This does
not constitute a contradiction, however, as there are plenty
of examples where solutions stable in a conservative system
become unstable after introduction of a nonconservative effect
(e.g., such as one that transforms mechanical energy into heat).
The most famous of such examples is the Poiseuille flow
between two parallel plates, which is stable in the (inviscid)
Euler equations but becomes unstable if weak viscosity is
introduced [21].

PHYSICAL REVIEW E 93, 032148 (2016)

Physically, a steady state of a conservative system can be
stable because it is “trapped” in a local (but not absolute)
minimum of mechanical energy. If, however, an interchange
mechanism for mechanical energy and heat is introduced, the
system may go through the “bottom” of the (former) minimum
by channeling some of the energy into heat.

(3) Assume that the criterion (56) does not hold and thus
the uniform Maxwellian distribution does not maximize the
entropy. Given that this is the only steady state admitted by
our model, one might wonder what the new state of maximum
entropy is and how the solution reaches it.

It appears that, if (56) is violated, the entropy is no longer
bounded and the system either remains in a state of permanent
evolution or, more likely, develops a singularity in a finite
time. One way or another, the unstable gas develops regions of
high density (as shown in the next section) where our model
becomes inapplicable. As a result, we can describe only the
initial stage of the gas-liquid phase transition.

To describe phase transitions in full, one needs to replace
the BGK-Vlasov equation (4) with the Enskog-Vlasov equa-
tion [11] applicable to both gases and liquids. As shown in
Ref. [12], the entropy corresponding to the latter model is of
the van der Waals type, and if the gas state no longer maximizes
the (modified) entropy, the liquid state is likely to become the
new maximum.

V. THE REGIME OF WEAK SUPERCRITICALITY

We shall now examine the behavior of a weakly unstable
gas, i.e., such that

a=1+¢, (57

where 2 « 1. In addition to the (weak) linear instability,
we take into account (weak) nonlinearity, which turns out to
dramatically change the behavior of disturbances of mode 1.

A. The analysis

To derive an asymptotic equations for a weakly unstable,
weakly nonlinear disturbance, the governing equations (12)—
(15) need to be rescaled. Assuming that the spectral width of
the instability is k = O(e), we rescale the spatial variables as
follows:

Xpew = e 'x.

Expression (42) for s; [with o given by (57) and k = O(e)]
suggests the following scaling for the time variable:
fhew = € 1.

In terms of the new variables, we can rearrange Eqs. (12)—(15)
in the form (with the subscript “new” omitted)

fo P (VP
@rT)? P 2T

b [(F-%—gv.Vf)—s“%], (58)

pT1/2 av

p:/fd3v, pV:/vfd3V, (59)
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3pT = /|v — V2 f d’v, (60)

F(x,t) = —&(1 + e}V / p(x + ex',1) D, (x)d’x  (61)

[note that we changed X' — X’ + x in Eq. (61) and took into
account that ®,(—x") = ®,(x)].

In principle, Egs. (58)—(61) can be expanded in straight-
forward series in ¢, which would lead, however, to fairly
cumbersome algebra. Instead, one can take a “shortcut”
by assuming that the density perturbation is O(e?) and
using (39)—(41) to estimate the corresponding orders of the
perturbations of V and 7'. Then, examining the dependence of
Eqgs. (58)—(61) on ¢, one can determine the higher-order terms

J

PHYSICAL REVIEW E 93, 032148 (2016)

in the expansions of the unknowns and eventually obtain

f=exp (=3P +e? fO+et f D467 fO 460 O 4
0=1+&2p@ +&*p® 4 59O 4 650 4 ... (62)

V=VO 4£0vO 4 T=1+4&'TY+e570 ..
E = £’E® + B 4 KO 4 ... | (63)

The lengths of the above series are due to the fact that, to derive
the dynamics of the first nontrivial corrections (i.e., f@, p®,
etc.), one has to go as high as the sixth order in ¢. Substitution
of (62)—(63) into Egs. (58)—(61) yields

1)g2 2 112
exp (—3|vI?) [v|> -3 exp (—31v[%)
2 _ ,@ 2 @4 _ (€] 4 2
/ g Qr)y? ! P 2 T Qn)*? ©
Iv[* -3 exp (—1[v[?
o= {p“) +v.- VO 4y [V(ap(z) +y V2@ 4 kp®?) — TVT(4) + pPvp?® % (65)

O = <p<6) +p oV =3 37@ 4y VO 4
2

—-V- V|:v VO 4y V(p(Z) +yV2p® —

where y = 3 [x]*®,(x) d*x and
TW — ,0(2) + )/VZ,O(Z) + %,0(2)2. (67)

Next, substituting (66) into the sixth-order version of (59),
one can verify that p*®, T© and V© disappear due to
cancellations, yielding

9p® 1

Lty -V(5>+V2<p<2>+yv2p(2> _ T<4>+5p<2>2> 0.
@

235 L. V<5>+V2( <2>+V2p(2>_2T<4>+%p<2)2)=0.

Eliminating V - V® from these equations and taking into
account (67), we obtain

5(14 p® 5
:V«|:——( 2" )y — v (68)

This is the desired equation governing weakly nonlinear
perturbations. Even though it does not seem to have come up in
the literature before, it is in many respects similar to the well-
studied Cahn-Hilliard [22] and Kuramoto-Sivashinsky [23,24]
equations. Generally, properties of such (nonlinear parabolic)
equations are now well understood.

To elucidate the dynamics described by Eq. (68), observe
that the two terms on its right-hand side describe the second-
and fourth-order diffusion. The latter acts as the “usual”
diffusion (making disturbances spread and decay), whereas
the former acts as either the usual diffusion or “antidiffusion”

3p@
ot

Iv|* -3 M 72 re _ 9p®\ exp (—31vI%)
2 ot (2m)*?
lv[> -3 @, L ep)|exp (=3vF)
2 Tty @y ©0

(

(making disturbances contract and grow) for p® < —1 or
p® > —1, respectively. Most importantly, the coefficient of
the second-order diffusion,

D =—31+p?),

becomes more negative with increasing p®, which is known
to give rise to singularities developing in a finite time
(e.g., [25,26]).

Indeed, consider a small disturbance developing from

,0(2) = Asinkx at =0,

where A < 1 and k € (0,y~"/?). As follows from the lin-
earized version of (68), the solution grows exponentially (as it
should since (68) describes an overcritical regime). While the
instability is close to being linear, the crests and troughs of the
wave grow at the same rate, but once p® has grown to order
one, the diffusivity D becomes “more negative” at the crests
and less negative at the troughs. Eventually, it becomes positive
at the troughs, so that the instability there stops, whereas
near the crests it accelerates, making these grow and contract,
resulting thus in a blowup.

To clarify the nature of the blowup singularity, assume that
0? > 1, i.e., consider the solution near the point where the
blowup is imminent. In this case, Eq. (68) reduces to

2) 2)
W g () - Ty

ot
This equation admits the following substitution:
PP =t —07"qE), E=w—-0""r (69
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FIG. 3. The solution of the boundary-value problem (70)—(71)
with y = 1.

where 1, is the blowup time, r = |x| is the radial variable, and
q (&) satisfies

1 +l dg 1 d _5é§2qdq
ot = (e )

Sy d [ ,d[1d ([ _dq
‘@g{ %[%(5 E)“' 70

We assume that ¢ (&) describes a spatially localized perturba-
tion, i.e.,

qgq—0 as & — oo. an

The boundary-value problem (70)—(71) has been solved
numerically by shooting. A unique solution has been found,
and it is shown in Fig. 3.

B. Physical aspects of solution (69)—(71)

Three comments on the results of the previous subsection
are in order.

(1) The unbounded growth of solution (69) as t — f,
violates the condition of weak nonlinearity under which
Eq. (68) was derived; hence, (69) becomes inapplicable some
time before the blowup. We conclude that the solution found
shows only the fendency of a slightly unstable gas to develop
high-density clusters.

(2) This tendency can only be interpreted as nucleation,
i.e., formation of liquid droplets. Note that, in contrast to the
classical nucleation theory (e.g., [27]), our results are derived
from the microscopic model specific to the physical system
under consideration. Such an approach should supply more
detailed information about emerging droplets than what can
be obtained by general methods.

(3) Only positive exploding solutions have been found
(a negative one would be impossible to explain within the
framework of the gas-liquid transition interpretation).

VI. DISCUSSION AND CONCLUDING REMARKS

To assess to what extent the results obtained correspond to
what we know about gas-liquid phase transition, rewrite the

PHYSICAL REVIEW E 93, 032148 (2016)

instability criterion (43) and (16) in the form (the subscript 0
is omitted)

T <T,, (72)
where
E
T, == (73)
ka

If criterion (72)—(73) holds, the temperature is too low for the
matter to remain a gas; hence, 7T is, essentially, the temperature
of saturated vapor. Note that 7y is usually defined as a function
of the pressure, not the density, so we rewrite (73) in the
form

kpT, = (Ep)'/?, (74)

where p = pkgT /m is the (ideal) gas pressure.

Qualitatively, dependence (74) shows the correct tendency:
the temperature of the saturated vapor is a growing function of
p, with faster (slower) growth at small (large) p. That said, (74)
differs significantly from the Antoine formula,

A
kT, = —— + C,
B2 In(po/p)

which is generally regarded to accurately represent 7, [28].
Thus, (74) describes only the qualitative aspects of the
temperature-pressure relationship of a saturated vapor [29].

To illustrate how the present model can be made more
accurate, consider a gas whose molecules have a permanent
dipole moment (e.g., water). In this case, the attractive
potential is a slowly decaying function of the distance, &, ~
x| =3, making the integral in expression (7) for E diverge at
both small and large |x|. The small-scale divergence seems to
be physically unimportant, as molecules surrounding a given
point pull in different directions; hence, the total force averages
out. The large-scale divergence, in turn, is crucial: it confirms
that ®,(x) has a strong long-range effect and its spatial scale
is indeed larger than that of the repulsive potential ®, (which
is what we assumed in the first place). Still, both divergences
make it impossible to use such @, in the basic model presented
in this paper.

To properly describe dipole-dipole interactions, one should
recall that they depend on the dipoles’ orientations; hence, the
kinetic equation should take into account the rotational degrees
of freedom. Unfortunately, this dramatically complicates the
problem by adding six extra independent variables (the Euler
angles plus the three components of the angular momentum) to
the original seven (¢, X, v). Even for diatomic molecules (e.g.,
hydrochloric acid), the rotation-modified kinetic equation still
involves ten independent variables. It also involves, however,
certain small parameters, which might help us to resolve the
solution’s dependence on some of the variables (this work is
currently in progress).

Furthermore, diatomic molecules without a permanent
dipole moment (e.g., nitrogen) still have an induced moment
depending on the molecule’s orientation. Thus, a model of
phase transitions for all gases except the noble ones should
account for the rotational degrees of freedom.

(75)
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Note also that any approach based on the BGK approxi-
mation (with or without rotation) can describe only the initial
stage of the phase transition, when the gas can still be regarded
rarefied. To describe all of this process, one should replace the
BGK-Vlasov equation (4) with the Enskog-Vlasov equation
(see Refs. [11,12]).

Finally, the present model in its current form (with the
BGK approximation and without rotation) could be applicable
to the gravitational instability in the accretion disks, which

PHYSICAL REVIEW E 93, 032148 (2016)

is one of the possible mechanisms of formation of planetary
systems [30,31].
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