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A Brownian information engine is a device extracting mechanical work from a single heat bath by exploiting
the information on the state of a Brownian particle immersed in the bath. As for engines, it is important to find
the optimal operating condition that yields the maximum extracted work or power. The optimal condition for
a Brownian information engine with a finite cycle time τ has been rarely studied because of the difficulty in
finding the nonequilibrium steady state. In this study, we introduce a model for the Brownian information engine
and develop an analytic formalism for its steady-state distribution for any τ . We find that the extracted work per
engine cycle is maximum when τ approaches infinity, while the power is maximum when τ approaches zero.
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I. INTRODUCTION

The information engine refers to a system extracting work
from a single heat bath by using the information on the micro-
scopic state of the system. Discussions on the information
engine date back to the thought experiment on Maxwell’s
demon suggested in 1871 [1]. Through the thought experiment,
Maxwell claimed that the entropy can be decreased apparently
by performing measurements and feedback controls on a
thermodynamic system. Later on, Szilard [2] proposed a
primary model for the information engine. In this model he
showed that work can be extracted from a single heat bath,
the entropy of which decreases. These examples had been
regarded as a paradox because the thermodynamic second law
prohibits the total entropy from decreasing. However, in 2009,
Sagawa and Ueda [3] resolved this paradox by discovering the
information fluctuation theorems [3,4]; they showed that the
thermodynamic entropy (work) can be decreased (extracted) as
much as the mutual information gain by the measurement. Af-
ter this discovery, there has been a surge of interest in studying
the information fluctuation theorems [5–12] and developing
theoretical models for the information engine from classical
[13–22] to quantum [23] systems. With the help of techno-
logical advancement, several information engines have been
realized in electronic [24,25] and Brownian systems [26,27].

Among many examples, Brownian systems are a good test
base for the classical stochastic theory based on the Langevin
or Fokker-Plank equations. For this reason, many researchers
have studied the information engines consisting of Brownian
particles trapped in a harmonic potential [18,19,21,22]. For
example, Abreu and Seifert [19] studied the case where the
potential center is varied, Bauer et al. [21] studied the case
where the potential center and the stiffness are varied, and
Kosugi [22] investigated a similar problem.

In a practical aspect, the primary concern for the Brownian
information engine lies in the maximum amount of work one
can extract. More specifically, we are interested in two quan-
tities: The extracted work per engine cycle and the extracted
work per unit time, i.e., the power. In a classical heat engine
without exploiting any information, the maximum efficiency
is achieved when the engine is operated quasistatically and
reversibly. However, the power vanishes in a reversible engine
and the condition for the maximum power is different from that
for the maximum efficiency [28]. In this work, we investigate

the optimal condition for the extracted work per engine cycle
or the power in a model for the Brownian information engine.

In spite of its practical importance, the optimal tuning of the
Brownian information engine has been studied rarely due to
the difficulty in finding the nonequilibrium steady state of an
engine having finite engine cycle time τ . The optimal tuning
conditions have been studied mostly for engines with τ = ∞
[19]. Kosugi [22] developed a formalism for finite τ , but only
the infinite τ limit was addressed.

In this study, we introduce a model for the information
engine consisting of a Brownian particle confined in a
harmonic potential. In this model, one engine cycle of duration
τ consists of the three processes: measurement of the particle
position, feedback control of the potential center, and relax-
ation. We derive a self-consistent equation for the steady-state
probability distribution function for general τ , whose solution
is found in a series expansion form. Using this formalism, we
obtain the optimal parameters set that yields the maximum
extracted work per cycle and the maximum power. We find
that the global maximum of the extracted work per cycle is
realized when τ is taken to be infinity. On the other hand, the
global maximum of the power is achieved in the τ → 0 limit.

This paper is organized as follows. In Sec. II, we introduce
our model. In Sec. III, we develop a formalism for the
nonequilibrium steady-state distribution of the system. Using
the formalism, we investigate the optimal condition for the
maximum work per cycle and the power in Sec. IV. We
conclude the paper with a summary in Sec. V.

II. DESCRIPTION OF THE MODEL

We consider a one-dimensional overdamped Langevin dy-
namics of a Brownian particle in a heat bath with temperature
T . The particle is confined by an external harmonic potential
V (X,λ(t)) = 1

2k[X − λ(t)]2 where X is the position of the
Brownian particle, k is a stiffness constant, and λ(t) denotes a
time-dependent potential center with λ(0) = 0. This dynamics
is described by the Langevin equation

γ
dX

dt
= −k[X − λ(t)] + ξ (t), (1)

where γ is the damping coefficient, and ξ (t) is a Gaussian
white noise satisfying 〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 =
2γ kBT δ(t − t ′) with the Boltzmann constant kB . The angle
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FIG. 1. Illustration of the engine cycle during the time interval
tn � t < tn+1 of the engine. At the measurement step, it is determined
whether the particle is on the left-hand side [M(tn) = 0] or the
right-hand side [M(tn) = 1] of the position λ(t−

n ) + xm represented
by the (blue) dashed line. At the feedback step, if M(tn) = 1, the
potential center is instantaneously shifted to λ(t+

n ) = λ(t−
n ) + xf and

the mechanical work �W (tn) is extracted. At the relaxation step, the
particle is relaxed with the fixed potential center at λ(t+

n ) until the
next cycle starts at time tn+1.

brackets 〈· · · 〉 mean the ensemble average. Note that the
Langevin dynamics (1), when λ(t) is time independent,
is known as the Ornstein-Uhlenbeck process [29,30]. For
convenience, we will set γ = k = kBT = 1 by rescaling
time, length, and energy in units of γ /k,

√
kBT /k, and kBT ,

respectively.
The Brownian system can be used as an information

engine by measuring X and controlling λ(t) depending on the
measurement outcome. Here, we consider the following time-
periodic measurement and the feedback control operations,
which are also illustrated in Fig. 1.

Measurement. At time t = nτ ≡ tn (n = 0,1,2, . . .), a
measurement is performed to determine which side of a
reference position at λ(tn) + xm the Brownian particle is
located at. The measurement outcome is represented by a
binary parameter

M(tn) =
{

1 if X(tn) � λ(tn) + xm,

0 if X(tn) < λ(tn) + xm.
(2)

The information obtained during the measurement step can be
exploited to extract work.

Feedback control. When Mn(tn) = 0, the potential center
remains unchanged. That is,

λ(t+n ) = λ(t−n ), (3)

where t−n (t+n ) denotes the moment just before (after) the
measurement performed at time tn. On the other hand, when
M(tn) = 1, the potential center is shifted instantaneously by
the amount of xf :

λ(t+n ) = λ(t−n ) + xf . (4)

By shifting the potential center, we can extract work �W (tn)
as much as the change in the potential energy caused by the
shift. We adopt a convention that �W (tn) is positive (negative)
when the work is produced by (done on) the Brownian particle.
It is given by

�W (tn) = V (X(tn),λ(t−n )) − V (X(tn),λ(t+n ))

= xf

[(
X(tn) − λ(t−n ) − 1

2xf

]
. (5)

Note that the extracted work is negative when xf < 0. Hence,
we only consider the case with xf � 0.

Relaxation. In the time interval tn < t < tn+1, the particle
evolves in time with fixed λ(t) = λ(t+n ) according to the
Langevin equation (1) until the next cycle begins at time tn+1.
During this step, the particle exchanges the thermal energy
with the heat bath.

The engine is characterized by the three parameters: xm

for the measurement, xf for the feedback, and τ for the
relaxation. Thus, the extracted work per cycle or the power
depends on the choice of those parameters. We are interested
in the optimal choice of the parameters under which the
steady-state average of the extracted work per cycle or the
power becomes maximum. We remark that our model is a
generalized version of the information ratchet introduced in
Ref. [4], which corresponds to the case with xf = 2xm and
τ = ∞.

III. COORDINATE TRANSFORMATION

The engine configuration is specified by the positions
of the particle X and the potential center λ. Note that the
potential center is shifted by the amount of xf each time the
measurement outcome is 1. Hence, it is convenient to introduce
an integer variable l ≡ λ/xf which counts the number of
potential-center shifts. We introduce Pn(X,l) to denote the
joint probability distribution of X and l at time t = t−n . The
joint probability distribution satisfies the recursion relation

Pn+1(X,l) =
∫ lxf +xm

−∞
K

(τ )
lxf

(X|Z)Pn(Z,l)dZ

+
∫ ∞

(l−1)xf +xm

K
(τ )
lxf

(X|Z)Pn(Z,l − 1)dZ, (6)

where

K (τ )
α (X|Z) =

exp
[− [X−α−(Z−α)e−τ ]2

2(1−e−2τ )

]√
2π (1 − e−2τ )

(7)
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is the transition probability of the Brownian particle from
position Z at time 0 to position X at time τ with the potential
center being fixed at position α. Note that this is the transition
probability for the Ornstein-Uhlenbeck process [29,30]. The
first (second) term on the right-hand side of Eq. (6) accounts for
the relaxation process after the feedback control corresponding
to the measurement outcome M(tn) = 0(1).

The extracted work is determined only by the relative
position of the Brownian particle from the potential center.
Hence, it is useful to change the variables from (X,l) to
(x ≡ X − lxf ,l). Then, by using the translational invariance
K (τ )

α (x + α|z + α) = K
(τ )
0 (x|z), we can rewrite (6) as

Pn+1(x + lxf ,l) =
∫ xm

−∞
K

(τ )
0 (x|z)Pn(z + lxf ,l)dz

+
∫ ∞

xm

K
(τ )
0 (x|z − xf )

×Pn(z + (l − 1)xf ,l − 1)dz. (8)

By summing Eq. (8) over all l, we obtain

pn+1(x) =
∫ xm

−∞
K

(τ )
0 (x|z)pn(z)dz

+
∫ ∞

xm

K
(τ )
0 (x|z − xf )pn(z)dz, (9)

where

pn(x) ≡
∑

l

Pn(x + lxf ,l) (10)

is the probability distribution function for the relative position
x at time t−n . This recursion relation can be understood in
terms of an effective dynamics. In the effective dynamics, the
potential center is fixed at the origin. Instead, the Brownian
particle is instantaneously shifted by the amount of (−xf )
when the measurement outcome is M = 1. This effective
dynamics is illustrated in Fig. 2 and will be referred to as
the “fixed potential-center dynamics.”

In the n → ∞ limit, pn(x) will converge to the steady-
state distribution pss(x), which is given by the solution of the
self-consistent equation

pss(x) =
∫ xm

−∞
K

(τ )
0 (x|z)pss(z)dz

+
∫ ∞

xm

K
(τ )
0 (x|z − xf )pss(z)dz. (11)

From Eq. (5), the work is extracted only when x > xm by
the amount of �W = xf (x − xf /2) each cycle. Hence, the
average extracted work per cycle in the steady state is given
by

〈�W 〉ss = xf

∫ ∞

xm

(
x − 1

2
xf

)
pss(x)dx, (12)

where 〈· · · 〉ss denotes the steady-state ensemble average. The
integration in Eq. (12) begins at xm because the work can be
extracted only when the particle position is larger than xm

(M = 1). Such an event occurs with the probability PM given
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FIG. 2. Illustration for the engine cycle in the fixed potential-
center dynamics. In contrast to the original dynamics, the particle is
transported instantaneously by the amount of −xf with the potential
center being fixed in the feedback process.

by

PM ≡
∫ ∞

xm

pss(x)dx. (13)

Using this quantity, we can write 〈�W 〉ss as

〈�W 〉ss = xf

(〈x〉M − 1
2xf

)
PM, (14)

where

〈x〉M ≡ 1

PM

∫ ∞

xm

xpss(x)dx (15)

is the mean position of the particle in the steady state given that
x � xm. The system acts as an engine with positive 〈�W 〉ss

when

0 < xf < 2〈x〉M. (16)

IV. OPTIMAL CONDITION FOR THE ENGINE

In this section, we develop an analytic formalism for pss(x)
and discuss the optimal operating condition for the engine. We
address the special cases in the limit τ → ∞ and τ → 0, then
proceed to the general case with nonzero and finite τ .
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FIG. 3. (a) Density plot for 〈�W 〉ss in τ → ∞ limit. (b) Density plot for 〈�W 〉ss obtained from the truncation method when L = 4 and
τ = log 2. (c) Density plot for wss in τ → 0 limit. The × symbols represent the optimal position where the extracted work or the power is
maximum.

A. τ → ∞ case

When τ is infinite, the system relaxes to the equilibrium
state irrespective of the measurement and the feedback control.
Thus, the system follows the equilibrium distribution

pss(x) = 1√
2π

e−(1/2)x2
. (17)

It is easy to check that the equilibrium distribution is indeed the
solution of the self-consistent equation (11) with K∞

0 (x|z) =
e−x2/2/

√
2π . Using this pss(x), we obtain that

PM = 1

2
erfc

(
xm√

2

)
and 〈x〉M =

√
2

π

e−(1/2)x2
m

erfc
(

xm√
2

) , (18)

where erfc(x) = 2√
π

∫ ∞
x

e−y2
dy is the complementary error

function.
The optimal values of xf and xm at which the en-

gine extracts the maximum amount of works are de-
noted by x∗

f and x∗
m, respectively. They are obtained from

the conditions ∂〈�W 〉ss/∂xf |xf =x∗
f ,xm=x∗

m
= 0 and ∂〈�W 〉ss/

∂xm|xf =x∗
f ,xm=x∗

m
= 0, which yield that

x∗
f = 〈x〉M |xm=x∗

m
, (19)

x∗
m = x∗

f

2
. (20)

The former equation (19) for x∗
f has a clear meaning: Given

a particle position x > xm, the work is extracted maximally
by shifting the Brownian particle to the potential center (in
the fixed potential-center dynamics). Thus, x∗

f should be taken
as the mean position of the particle under the condition that
M = 1. With the optimal choice of xf , the mean value of
the extracted work is given by 〈�W 〉ss = 1

2 〈x〉2
MPM . Note

that 1
2 〈x〉2

M is an increasing function of xm, while PM is a
decreasing function of xm [see (18)]. Due to these competing
effects, the work becomes maximum at a nontrivial value of
x∗

m. Combining (19) and (20), one obtains the transcendental
equation for x∗

m:

x∗
m = 1√

2π

e−(1/2)x∗
m

erfc(x∗
m/

√
2)

. (21)

It has the numerical solution x∗
m 
 0.612. Therefore, x∗

f =
2x∗

m 
 1.224 and the maximum average work per cycle

〈�W 〉∗ss is given by

〈�W 〉∗ss = 1
2 〈x〉2

MPM |xm=x∗
m


 0.202. (22)

Figure 3(a) shows the density plot of the average extracted
work per cycle in the (xm,xf ) plane. The work is indeed
maximum at (0.612,1.224). We add a remark that the average
power is zero because 〈�W 〉∗ss is finite but τ → ∞.

B. τ → 0 case

In the τ → 0 limit, the particle position is measured
incessantly. Therefore, in the fixed potential-center dynamics,
the particle is immediately shifted from xm to xr ≡ xm − xf

whenever it touches the reference position xm. This dynamics is
similar to the resetting process studied by Evans and Majumdar
[31]. They investigated a search problem by a random walker
whose position is reset to the origin at a constant rate. Along
the similar line of reasoning, our resetting process can be
described by the following Fokker-Planck equation:

∂p(x,t)

∂t
= −∂j (x,t)

∂x
+ jr (t)δ(x − xr ), (23)

where p(x,t) is the probability distribution of the particle in
the fixed potential-center dynamics,

j (x,t) =
(

−x − ∂

∂x

)
p(x,t) (24)

is the probability current at position x and at time t , and jr (t) =
limx→x−

m
j (x,t) is the resetting current which is absorbed at xm

and then injected at xr . The probability distribution satisfies
the absorbing boundary condition at xm, i.e., p(x = xm,t) = 0.

The steady-state probability distribution satisfies

−xpss(x) − ∂pss(x)

∂x
=

⎧⎨⎩0 for x < xr

jss for xr � x < xm

0 for x � xm,

(25)

where the steady-state resetting current is given by

jss = lim
t→∞ jr (t) = −∂pss(x)

∂x

∣∣∣∣
x=x−

m

. (26)
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Given jss, the solution satisfying the absorbing boundary
condition is given by

pss(x) =

⎧⎪⎨⎪⎩
jss

∫ xm

xr
e(1/2)(z2−x2)dz for x < xr

jss
∫ xm

x
e(1/2)(z2−x2)dz for xr � x < xm

0 for x � xm.

(27)

The resetting current is determined by the normalization
condition

∫
pss(x)dx = 1. It is given by

jss =
[(∫ xr

−∞
e−(1/2)x2

dx

)(∫ xm

xr

e(1/2)z2
dz

)

+
∫ xm

xr

(
e−(1/2)x2

∫ xm

x

e(1/2)z2
dz

)
dx

]−1

(28)

with xr = xm − xf .
In the τ → 0 limit, the average extracted work per cycle

vanishes because it takes infinitely many cycles for the
Brownian particle to reach xm after a resetting. Thus, it
is useful to consider the average power in the steady state
wss ≡ limτ→0〈�W 〉ss/τ . It is given by

wss = xf

(
xm − 1

2xf

)
jss, (29)

where xf (xm − xf /2) = V (xm,0) − V (xm − xf ,0) is the ex-
tracted work per resetting. Figure 3(c) shows the density plot
for wss in the τ → 0 limit in the (xm,xf ) plane.

The power is maximized when ∂wss/∂xm = 0 and
∂wss/∂xf = 0 simultaneously. A straightforward calculation
shows that both conditions become identical when xf = 0,
which implies that x∗

f = 0. In the limit xf → x∗
f = 0, the

power becomes wss =
√

2
π
xme−x2

m/2/[1 + erf(xm/
√

2)] with
the error function erf(x) = 1 − erfc(x). It takes the maximum
value

w∗
ss 
 0.295 at x∗

m 
 0.840 and x∗
f = 0. (30)

Strictly speaking, the engine does not produce any work at
xf = 0. The result x∗

f = 0 should be understood as the limit
xf → 0+. In this limit, V (xm,0) − V (xm − xf ,0), the work
extracted in a feedback process, vanishes as O(xf ), but the
resetting current jss in Eq. (28) diverges as O(x−1

f ), which
results in a finite power.

C. Finite τ case

For finite τ , pss(x) cannot be obtained in a closed form.
Thus, we try to find it in a series form

pss(x) =
∞∑

n=0

cnφn(x) (31)

using the basis functions φn(x) ≡ Hn(x/
√

2)e−(1/2)x2
where

Hn(x) is the Hermite polynomial of degree n [32]. The Hermite
polynomials satisfy the orthogonality condition∫ ∞

−∞
Hn

(
x√
2

)
Hl

(
x√
2

)
e−(1/2)x2

dx = Nnδnl (32)

with Nn ≡ √
2π2nn!. The expansion coefficients are repre-

sented by a column vector c = (c0,c1,c2, . . .)T where the
superscript T stands for the transpose. The normalization

condition
∫

pss(x)dx = 1 fixes c0 = 1/
√

2π . The other coeffi-
cients will be determined by using the self-consistent equation
(11).

Such an expansion (31) is natural because φn(x) is the
eigenfunction of the Fokker-Planck operator L(x) = ∂

∂x
(x +

∂
∂x

) for the Ornstein-Uhlenbeck process [30], i.e.,

L(x)φn(x) = −nφn(x). (33)

The transition probability K
(τ )
0 (x|z) in Eq. (11) can be written

in terms of L(x) as K
(τ )
0 (x|z) = eτL(x)δ(x − z). Thus, Eq. (11)

can be rewritten as

pss(x) = eτL(x)
[
p0

ss(x) + p1
ss(x + xf )

]
, (34)

where p0
ss(x) ≡ �(xm − x)pss(x) and p1

ss(x) ≡ �(x − xm)
pss(x) = pss(x) − p0

ss(x) with the Heaviside step function
�(x).

Our strategy is to expand both sides of (34) using the basis
set {φn}. First of all, the function p0

ss(x) + p1
ss(x + xf ) in the

right-hand side is expanded as

p0
ss(x) + p1

ss(x + xf ) =
∞∑

n=0

c′
nφn(x). (35)

The expansion coefficients c′ = (c′
0,c

′
1, . . .)

T are obtained by
integrating both sides of (35) after being multiplied with
Hm(x/

√
2). One obtains that

c′ = (A + B)c, (36)

where the matrix elements of A and B are defined as

Anl = 1

Nn

∫ xm

−∞
Hn

(
x√
2

)
φl(x)dx, (37)

Bnl = 1

Nn

∫ ∞

xm

Hn

(
x − xf√

2

)
φl(x)dx. (38)

Note that the Hermite polynomials satisfy the identity

Hn(x + y) = Hn(x) +
n−1∑
k=0

(
n

k

)
(2y)n−kHk(x), (39)

with the binomial coefficient (nk). This identity allows us to
rewrite A + B as

A + B = I + F, (40)

where I is the identity matrix and F has the elements

Fnl = 1

Nn

n−1∑
k=0

(
n

k

)
(−

√
2xf )n−k

∫ ∞

xm

Hk

(
x√
2

)
φl(x)dx

for n � 1 and Fnl = 0 for n = 0. Using eτL(x)φn(x) =
e−nτφn(x) and introducing a diagonal matrix W with elements
Wnl = e−nτ δnl , we finally obtain the self-consistent equation

c = W(I + F)c. (41)

It is more convenient to work with

d = W−1c, (42)

with which the self-consistent equation (41) becomes

d = (I + F)Wd. (43)
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The average extracted work per cycle is given by

〈�W 〉ss =
∫ ∞

xm

(
1

2
x2 − 1

2
(x − xf )2

)
pss(x)dx

=
∫ ∞

−∞

1

2
x2[p1

ss(x) − p1
ss(x + xf )

]
dx. (44)

The involved distribution functions are expanded as [p1
ss(x) −

p1
ss(x + xf )] = −∑

n(Fc)nφn(x) using (35), (36), and (40).
Note that x2 = H2(x/

√
2)/2 + H0(x/

√
2). Hence, using the

orthogonality (32) of the Hermite polynomials, we obtain that

〈�W 〉ss = −
√

8π (Fc)2 = −
√

8π (1 − e−2τ )d2. (45)

For the second equality, Fc = (W−1 − I)c = (I − W)d is used.
The formal solution of d is easily derived. First, we write

d, W, and F in a block form as

d = (d0,d̃)T , W =
(

1 0
0 W̃

)
, and F =

(
0 0
f̃ F̃

)
, (46)

and define the column vectors d̃ = (d1,d2, . . .)T with dn =
enτ cn and f̃ = (f1,f2, . . .)T with fn = Fn0, and matrices W̃
and F̃ accordingly. Inserting these block forms into (43), we
obtain the formal solution for d̃ as

d̃ = c0[I − (I + F̃)W̃]−1 f̃ (47)

with c0 = 1/
√

2π . It is crucial to have the formal solution that
the first row of F vanishes (F0n = 0).

The formal solution involves an inversion of infinite-
dimensional matrices, hence a closed-form expression is not
available. Nevertheless, it is useful because it enables us
to obtain an approximate solution systematically. First, we
truncate the matrices F̃ and W̃ to L × L matrices F̃(L) and
W̃(L) and the vector f̃ to an L × 1 vector f̃

(L)
, respectively,

i.e., F̃ (L)
nm = F̃nm, W̃ (L)

nm = W̃nm, and f̃ (L)
n = f̃n for n,m =

1,2, . . . ,L. They are inserted into (47) to yield a truncated

solution d̃
(L)

. We note that F̃ and f̃ depend on xm and xf

but not on τ , while the diagonal matrix W̃ depends only

on ε ≡ e−τ � 1. Therefore, the truncated solution d̃
(L)

is
the exact up to O(εL). Then, from Eq. (45), we can obtain
the approximate solution for the average extracted work
〈�W 〉(L)

ss = −√
8π (1 − e−2τ )d̃ (L)

2 , which is also exact up to
O(εL).

Figure 3(b) shows the density plot for 〈�W 〉(L)
ss with L = 4

and at τ = ln 2. It is maximum at the point (x∗
m,x∗

f ) marked
by the symbol × whose position can be found numerically. In
Fig. 4, we present the traces of (x∗

m,x∗
f ) as τ is varying with

L = 2,4,6,8. Along each line, x∗
m (x∗

f ) decreases (increases)
as τ increases. The lines converge to a single curve at large
values of τ . The convergence becomes poor in the region of
small τ where the truncation parameter ε = e−τ is not small.

We also performed the Monte Carlo simulations to obtain
the optimal parameter values. In the Monte Carlo simulations,
the Langevin equation (1) was integrated numerically over 109

engine cycles to estimate the average extracted work in the
steady state. In order to estimate x∗

m and x∗
f , we discretized xm

and xf in units of �xm = �xf = 0.01. Among the grid points
of (xm,xf ), we selected nine points having the largest values
of 〈�W 〉ss. Their averages were taken as the the Monte Carlo

FIG. 4. Parametric plot for the optimal control parameters
(x∗

m(τ ),x∗
f (τ )). The solid lines are obtained from the truncation

method for L = 2,4,6,8. The results obtained from the Monte Carlo
simulations are denoted by open circles with error bars. The exact
results in τ → 0 and τ → ∞ are marked by arrows.

results and the standard deviations as the error bars for x∗
m, x∗

f ,
and 〈�W 〉∗ss. The simulated x∗

m and x∗
f are plotted with open

symbols in Fig. 4 with error bars. The exact optimal values
in the τ → 0 and τ → ∞ limits are also plotted in Fig. 4
with closed symbols for comparison. As seen in the figure,
our simulated data at large and small τ are close to the exact
results in τ → ∞ and τ → 0, respectively, which supports the
validity of our Monte Carlo simulations. The analytic results
are in good agreement with the Monte Carlo results unless τ

is too small.
Figure 5 presents the plot of 〈�W 〉∗ss as a function of

ε = e−τ . As the figure shows, the Monte Carlo results (open
symbols) and the analytic results (lines) agree perfectly well
even for small values of L. The numerical results show that
〈�W 〉∗ss increases as τ increases so that the global maximum
of 〈�W 〉∗ss is attained when τ → ∞. Note the extracted work
from an information engine is bounded by the change in the
mutual information between the engine and the measurement
outcome during the relaxation process [4,10]. When τ → ∞,
the mutual information generated at the measurement step

FIG. 5. Parametric plot for the optimal work per cycle 〈�W 〉∗
ss.

Results obtained from the truncation method are denoted by solid
lines. Open circles present the Monte Carlo simulations results. The
exact results in τ → 0 and τ → ∞ are marked by arrows.
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FIG. 6. Parametric plot for the optimal power w∗
ss. Results

obtained from the truncation method are denoted by solid lines. Open
circles present the Monte Carlo simulations results. The exact results
in τ → 0 and τ → ∞ are marked by arrows.

completely vanishes during the relaxation step. This might be
the reason why the average extracted work is maximum at
τ → ∞.

Figure 6 shows the optimal power w∗
ss = 〈�W 〉∗ss/τ as a

function of ε. In contrast to the optimal work 〈�W 〉∗ss per
cycle, the optimal power w∗

ss is a decreasing function of τ and
becomes maximum in the limiting case τ → 0. This indicates
that the continuous time operation is the best way to achieve
the maximum power of the Brownian information engine.
Our model assumes that measurement and feedback processes
do not cost any energy. If they cost some energy, the global
maximum of the power will be realized at finite τ .

V. CONCLUSION

We studied the information engine where the Brownian
particle is confined in a harmonic potential. This engine

consists of the three processes: measurement of the particle
position, instantaneous shift of the potential center depending
on the measurement outcome, and relaxation of the particle.
Each process is characterized by the model parameter: xm

for the measurement, xf for the feedback, and τ for the
relaxation. Using the coordinate transformation, we derived
the self-consistent equation for the steady-state distribution
function of the particle in the fixed potential-center dynamics.
The average work extracted out of the information engine per
cycle is found from the steady-state distribution.

When τ → ∞, the steady state becomes the equilibrium
state. When τ → 0, the dynamics becomes similar to the
resetting process [31] and the exact steady-state distribution
is obtained by analyzing the corresponding Fokker-Planck
equation. When τ is finite, the steady-state distribution has the
infinite series expansion in terms of the Hermite polynomials,
which can be approximated systematically by truncating the
infinite series. We show that the extracted work per cycle is
maximum at τ = ∞ and the extracted power is maximum in
the limiting case τ → 0.

A Brownian particle confined by a harmonic potential is
realized by the optical trap experiment as in, e.g., Ref. [33].
We expect that our theoretical model can be tested in such
experiments. In our model, the Brownian particle exhibits
a ballistic motion as the engine operates. This suggests
that one can design an information motor which rectifies
the thermal fluctuations with the help of measurement and
feedback controls. Further studies along this direction would
be interesting.
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