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The exchange or geometric cluster algorithm allows us to define a variance-reduced estimator of the connected
two-point function in the presence of a broken Z2-symmetry. We present numerical tests for the improved
Blume-Capel model on the simple-cubic lattice. We perform simulations for the critical isotherm, the low-
temperature phase at vanishing external field, and, for comparison, also the high-temperature phase. For the
connected two-point function, a substantial reduction of the variance can be obtained, allowing us to compute the
correlation length ξ with high precision. Based on these results, estimates for various universal amplitude ratios
that characterize the universality class of the three-dimensional Ising model are computed.
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I. INTRODUCTION

Cluster algorithms [1,2] have drastically reduced autocor-
relation times in Monte Carlo simulations of a certain class
of spin models. In particular for the Ising model, critical
slowing down could be virtually eliminated. In addition, cluster
algorithms allow us to introduce variance-reduced estimators
of the two-point function. In the case of the Swendsen-Wang
algorithm, after freezing or deleting links, the remaining
degrees of freedom are the overall signs of the clusters. The
variance-reduced or improved estimator is constructed by
performing the sum over these degrees of freedom exactly
[3–5]. This allowed the magnetic susceptibility and the
correlation length of the Ising model and also O(N )-invariant
nonlinear σ -models with N > 1 in the disordered phase to be
determined to high precision. See for example Refs. [6,7].
However, in the presence of a broken symmetry, these
estimators fail to reduce the variance significantly.

The exchange cluster algorithm [8,9] is closely related with
the geometric cluster algorithm [10]. In the exchange cluster
algorithm, a pair of systems is considered. These systems
do not interact. Hence the Hamiltonian of the pair is just
given by the sum of the two Hamiltonians. In the exchange
cluster algorithm, the values of spins at corresponding sites are
exchanged between the two systems. Since the total sum of the
spins stays constant under such updates, the exchange cluster
algorithm is not ergodic. Therefore, in addition, updates of the
individual systems with, for example, the local heat-bath and
standard cluster algorithms are performed. In the geometric
cluster algorithm, only a single system is considered. The sites
of the lattice are grouped into pairs. The values of the spins
are exchanged within these pairs. The authors of [8,9] were
mainly aiming at systems with external fields. Here the virtue
of the algorithm is that the external field does not effect the
exchange of the spins. Therefore, particularly in the case of the
Ising model in a random field, one would expect a reduction
of autocorrelation times [11].

In [12,13], we used the exchange cluster algorithm to
get variance-reduced estimators of quantities related to the
thermodynamic Casimir force. Here, we discuss a variance-
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reduced estimator of the connected two-point correlation
function in the presence of a broken Z2-symmetry. We
study the properties of this estimator in the example of the
Blume-Capel model on the simple-cubic lattice. Its reduced
Hamiltonian is given by

H = −β
∑
〈xy〉

sxsy + D
∑

x

s2
x − h

∑
x

sx, (1)

where the spin might assume the values sx ∈ {−1,0,1}. x =
(x0,x1,x2) denotes a site on the simple-cubic lattice, where
xi ∈ {1,2, . . . ,Li}, and 〈xy〉 denotes a pair of nearest neighbors
on the lattice. We impose periodic boundary conditions in all
three directions. In our numerical study, we consider lattices
with the same linear extension L = L0 = L1 = L2 in all
directions. The inverse temperature is given by β = 1/kBT , D
controls the density of vacancies sx = 0, and h is an external
field. One finds that for D∗ = 0.656(20), leading corrections
to scaling vanish [14]. Here we shall study the model at
D = 0.655, where βc = 0.387 721 735(25) is known with high
precision [14].

The paper is organized as follows. First we recall the
definition of the exchange cluster algorithm and discuss
the construction of the variance-reduced estimator of the
connected two-point function. Next we discuss the definition
of the second-moment and the exponential correlation length.
We recall how these quantities are determined from the
connected two-point function that we compute in the Monte
Carlo simulation. Theoretical predictions for the behavior
of the slice-slice correlation function are summarized. Then
we summarize some results for critical phenomena that are
needed for the analysis of our data. Following that, there is
a discussion of our numerical study. We briefly discuss the
update scheme that is used. The behavior of the statistical
error of the slice-slice correlation function is analyzed. Based
on our data, we study the critical behavior in the high- and
low-temperature phase and on the critical isotherm. Here we
are mainly aiming at universal amplitude ratios. We summarize
our results and give an outlook. In the Appendix, we briefly
summarize results that we obtained for the critical isotherm of
the standard Ising model.
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II. THE CONNECTED TWO-POINT FUNCTION:
VARIANCE REDUCTION

Let us start the discussion assuming h > 0, such that the
Z2-symmetry is explicitly broken. The connected two-point
function is defined by G(x − y) = 〈sxsy〉 − 〈sx〉〈sy〉, where
〈sx〉 = 〈sy〉 = m is the magnetization of the system. Now let
us consider a pair of identical systems. The two-point function
of the difference of the spins in these two systems is

G2(x − y) = 〈(sx,1 − sx,2)(sy,1 − sy,2)〉
= 〈sx,1sy,1〉 + 〈sx,2sy,2〉 − 〈sx,2sy,1〉 − 〈sx,1sy,2〉,

(2)

where the second index of sx,l with l ∈ {1,2} denotes the
system. Since the two systems do not interact, 〈sx,2sy,1〉 =
〈sx,2〉〈sy,1〉 = m2 and hence G2(x − y) = 2G(x − y).

Now let us apply the exchange cluster algorithm to the pair
of systems. The elementary operation of the algorithm is to
swap the value of spins between the two systems. This can be
written in terms of an auxiliary Ising variable σx ∈ {−1,1}:

s̃x,1 = 1 + σx

2
sx,1 + 1 − σx

2
sx,2,

(3)

s̃x,2 = 1 − σx

2
sx,1 + 1 + σx

2
sx,2.

For σx = −1, the exchange is performed, while for σx = 1 the
old values are kept. Now we update the σx using the Swendsen-
Wang cluster algorithm. The construction of the clusters is
characterized by the probability to delete the link 〈xy〉 between
the nearest neighbors x and y [10]:

pd = min[1, exp(−2βembed)], (4)

where βembed = β

2 (sx,1 − sx,2)(sy,1 − sy,2). A link 〈xy〉 that is
not deleted is called frozen. As for the cluster algorithm [1,2]
applied to the Ising model, clusters are sets of sites that
are connected by frozen links. For all sites x within a
given cluster σx = σ̂i , where i labels the clusters. Hence the
remaining degrees of freedom are the σ̂i = ±1, with equal
weight for each of the two possible values. Variance-reduced
estimators are obtained by performing the average over all
possible configurations of the σ̂i exactly. For the estimator
A2 = (sx,1 − sx,2)(sy,1 − sy,2) we get the variance-reduced
counterpart

A2,imp = 1

2Nc

∑
σ̂

[σx(sx,1 − sx,2)][σy(sy,1 − sy,2)]

= 1

2Nc

∑
σ̂

σ̂i|x∈i σ̂j |y∈j (sx,1 − sx,2)(sy,1 − sy,2)

= �(x,y) (sx,1 − sx,2)(sy,1 − sy,2), (5)

where Nc is the number of clusters and �(x,y) is equal to 1 if
x and y belong to the same cluster and 0 otherwise. Inspecting
Eq. (4), we see that pd < 1 requires that (sx,1 − sx,2)(sy,1 −
sy,2) > 0. Hence the difference (sx,1 − sx,2) has the same sign
for all sites x in a given cluster. Hence A2,imp � 0, which is
obviously not the case for the standard estimator A2.

Next let us discuss the case of spontaneous symmetry
breaking in the low-temperature phase. The problem is that

for h = 0 there is no symmetry breaking on a finite lattice.
In analytical calculations, one therefore introduces a finite
external field h and takes the thermodynamic limit at finite
h first and then performs the limit h ↘ 0. In Monte Carlo
simulations, it is too cumbersome to mimic this approach.
Therefore, usually the magnetization at h = 0 is computed as

m = 1

L0L1L2

〈∣∣∣∣
∑

x

sx

∣∣∣∣
〉
. (6)

This is motivated by the hypothesis that the partition function
is dominated by configurations that can be clearly assigned to
one of the bulk phases, while the remainder is again dominated
by configurations in which two interfaces separate regions
that can be assigned to the bulk phases. The contribution
of the latter configurations is, at least in the most simple
approximation, proportional to exp(−2σL2), where σ is the
interface tension. For a more detailed discussion, see the
vast literature on the physics of interfaces. See, for example,
Ref. [15] and references therein.

In the same spirit, we align the magnetization of the
two systems here. To simplify the discussion, we ignore
configurations with exactly vanishing magnetization in the
following. First note that the constraint M1M2 > 0, where
Ml = ∑

x sx,l does not affect the marginal distributions of the
individual systems l = 1 and 2. Concerning the estimator of
the two-point function, the discussion below Eq. (2) has to be
slightly modified:

〈sx,2sy,1〉 = 〈sx,1sy,2〉

=
〈

1

L0L1L2

∑
u

su,1
1

L0L1L2

∑
w

sw,2

〉

=
〈

1

L0L1L2

∣∣∣∣
∑

u

su,1

∣∣∣∣ 1

L0L1L2

∣∣∣∣
∑
w

sw,2

∣∣∣∣
〉

= m2, (7)

where we used that the two systems are uncorrelated up to the
constraint M1M2 > 0.

Now let us discuss how this constraint is imposed in
the simulation. Updating the individual systems by using
local or cluster algorithms leaves the Boltzmann distributions
of the individual systems invariant. However, the resulting
configurations might violate the constraint M1M2 > 0. This
could be reinforced by hand: If M1M2 < 0, we simply multiply
all spins in the first system by −1. Since M2 > 0 and
M2 < 0 are equally probable, this operation leaves invariant
the Boltzmann distribution of the first system. Now the
aligned configurations are updated with the exchange cluster
algorithm, and the improved estimator (5) is computed. The
remaining problem is that the exchange cluster algorithm
does not strictly leave the constraint M1M2 > 0 invariant.
By construction M1 + M2 is kept constant. Based on the
hypothesis on the probability distribution of the magnetization
discussed above, the probability that M1M2 changes sign under
the exchange cluster algorithm is at least suppressed by a factor
of exp(−2σL2).

In our simulations, we actually considered the quantity

P =
∑

x

sx,1sx,2, (8)
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which is invariant under the exchange of spins between the
configurations. We replaced the constraint M1M2 > 0 by
P > 0. This means that after performing the updates of the
individual systems, we determine P , and if P < 0 the spins
of the first system are multiplied by −1. The remaining
question is, how likely is M1M2 > 0 given P > 0? In fact, our
numerical results show that with increasing L, the probability
rapidly goes to 1.

III. THE CORRELATION LENGTH AND THE SPECTRUM
OF THE TRANSFER MATRIX

In our study, we are aiming at the magnetic susceptibility
and the correlation length, which are derived from the two-
point function. Here we briefly recall some basic definitions.
For a more detailed discussion, see, for example, Sec. 4 of
Ref. [16].

To simplify the analysis, one projects to zero-momentum
states of the transfer matrix. Toward that end, one considers
the correlation function Ḡ(r) = 〈S0Sr〉 − 〈S0〉〈Sr〉 of slices

Sx0 = 1√
L1L2

∑
x1,x2

s(x0,x1,x2). (9)

For finite L1, L2, and L0 → ∞, assuming r � 0, the slice-slice
correlation function has the form

Ḡ(r) =
∑

α

cα exp(−mαr), (10)

where

cα = 〈0|S|α〉2, (11)

where |α〉 are the eigenvectors of the transfer matrix. |0〉 is
the eigenvector corresponding to the largest eigenvalue λ0.
Since the transfer matrix is a real, symmetric, and positive-
definite matrix, the eigenvalues λα are real and positive. Let us
assume that they are ordered such that λα � λβ for α < β. The
masses are given by mα = − ln(λα/λ0). In the basis of slice
configurations, S is a diagonal matrix with entries given by
Eq. (9). The coefficient cα is nonvanishing only if |α〉 has zero
momentum, zero angular momentum, and positive parity. For a
more detailed discussion of the transfer-matrix formalism, see,
for example, Sec. 4.1 of Ref. [16]. In the limit L1,L2 → ∞,
the dimension of the transfer matrix rapidly goes to infinity.
One expects that the slice-slice correlation function assumes
the form

Ḡ(r) =
∑

i

ci exp(−mir) +
∑

j

fcut,j (r). (12)

In a particle interpretation, m1 is the mass of the fundamental
particle, while the mi with i > 1 can be interpreted as masses
of bound states of the fundamental particle. The contributions

fcut,j (r) =
∫ μmax,j

μ0,j

dμ aj (μ) exp(−μr) (13)

are due to scattering states. Therefore, μ0,j = ∑
i ni,jmi ,

where ni,j is an integer and
∑

i ni,j > 1. For the theoretical
background, see textbooks on quantum field theory, such as,
for example, [17]. Explicit results for the three-dimensional
Ising universality class are summarized below in Sec. III A.

The exponential correlation length is defined by the decay of
the correlation function at large distances. Hence ξexp = 1/m1.
Analyzing data obtained from Monte Carlo simulations, one
often considers the effective correlation length

ξeff(r) = −1/ ln

[
Ḡ(r + 1/2)

Ḡ(r − 1/2)

]
. (14)

The exponential correlation length is obtained as ξexp =
limr→∞ ξeff(r).

The second-moment correlation length is defined by
ξ 2

2nd = μ2

2dχ
, where d = 3 in our case and the magnetic

susceptibility can be written as χ = Ḡ(0) + 2
∑∞

r=1 Ḡ(r)
and μ2 = 2d

∑∞
r=1 r2Ḡ(r). For a single exponential decay,

Ḡ(r) = c exp(−r/ξexp), one gets

ξ 2
2nd,single = exp[−1/ξexp]

(1 − exp[−1/ξexp])2
(15)

for the second-moment correlation length. In the limit ξexp →
∞, one gets ξexp/ξ2nd,single = 1 + O(1/ξ 2

exp). For example, for
ξexp = 1, we get ξexp/ξ2nd,single = 1.042 19 . . . .

In fact, Ḡ(r) is dominated by a single exponential decay.
Therefore, we have multiplied ξexp/ξ2nd by

zcor = ξ2nd,single/ξexp (16)

in our numerical analysis to reduce finite ξexp corrections.
Analyzing our Monte Carlo data, we computed χ and μ2

in the following way: Up to a certain distance R, we have
used Ḡ(r) computed directly from the configurations that we
have generated. Since the relative statistical error increases
exponentially with the distance r , for r > R we have used
instead

G̃(r) = Ḡ(R) exp

(
− r − R

ξeff(R + 1/2)

)
. (17)

We will comment on the choice of R below. Also note that,
in order to reduce the statistical error, we computed the slice-
slice correlation function for all three directions of the lattice.
Furthermore, we exploited the translational invariance of the
lattice.

A. Results given in the literature

The authors of Ref. [18] studied the behavior of the
correlation function in the high-temperature phase of O(N )-
invariant models in three dimensions by using perturbation
theory, high-temperature series expansions, and the large-N
expansion. They concluded that the leading cut contribution
is associated with a three-particle state with μ1 = 3m1.
Furthermore, no bound state with a mass less than 3m1 should
contribute. They arrived at the estimate

lim
t↘0

ξexp/ξ2nd = 1.000 200(3) (18)

for the Ising universality class, where t is the reduced
temperature.

In the low-temperature phase, there should be a contribution
from a cut characterized by μ1 = 2m1. This has been computed
by the author of [19] at the one-loop level of perturbation
theory. This calculation was extended to two loops in [20].
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Corresponding estimates are

lim
t↗0

ξexp/ξ2nd ≈ 1.006 52 (at one loop) and 1.012 66

(at two loops). (19)

In [20], the correlation matrix of a large number of different
observables was determined in a Monte Carlo simulation of
the Ising model and the φ4 model on the simple-cubic lattice.
The analysis of these data has shown that there is a bound state
with

m2/m1 = 1.83(3). (20)

This result was confirmed by solving the Bethe-Salpeter
equation for the φ4 theory in three dimensions at the one-loop
level of perturbation theory [21]. Correspondingly, we [7] find
that the ratio

lim
t↗0

ξexp/ξ2nd = 1.020(5) (21)

is larger than the estimates (19) obtained from perturbation
theory.

On the critical isotherm, for symmetry reasons, we expect
that, similar to the low-temperature phase, there is a cut
characterized by μ1 = 2m1. Taking the numerical results for
the linear lattice size L = 120, given in Table 1 of Ref. [22],
we get ξexp/ξ2nd = 1.06(2). Note that the authors of Ref. [22]
simulated the improved φ4 model on the simple-cubic lattice.
This result suggests that also for the critical isotherm there is
a bound state with m2 < 2m1.

B. Analyzing our numerical results

Here we briefly summarize our preliminary study of Ḡ(r),
which is the basis of our evaluation of the correlation length
below. We fitted our numerical results for Ḡ(r) both in the
low-temperature phase and for the critical isotherm with the
Ansatz

Ḡ(r) =
n∑

i=1

ci exp(−mir) (22)

using n = 2 and 3. In the case of the low-temperature phase,
we find for all values of β where we simulated at m2 ≈ 1.8m1,
consistent with Ref. [20]. Furthermore, m3 ≈ 2.3m1. It is

likely that this result is due to the cut at 2m1. Despite the high
statistical accuracy that we reached here for Ḡ(r), we were
not able to get more precise results for the ratio m2/m1 than
that obtained in Ref. [20], analyzing the correlation matrix of
several observables. Therefore, we shall not go into the details
of our analysis.

For the critical isotherm, we find that m2 ≈ 2.3m1. The
results for m3 depend very much on the range of r that is fitted.
We conclude that there is no bound state with m2 < 2m1. The
main deviations from a single exponential decay of Ḡ(r) are
due to a cut with μ1 = 2m1.

Below we shall use the effective correlation length to obtain
our final estimates of the exponential correlation length. We
shall take the effective correlation length at the distance R =
cξeff, self-consistently.

In the high-temperature phase, ξeff converges very rapidly.
We take c = 2, which should guarantee that systematical
errors are small compared with the statistical ones. In the
case of the low-temperature phase, we computed results for
the two choices c = 7 and 9. To estimate the systematic
error of our result for the exponential correlation length, due
to contributions of states with higher masses, we assumed
m2 = 1.8m1. Then, fitting with an Ansatz that contains two
exponentials, we estimated the ratio of the two amplitudes.
We obtained c2/c1 ≈ 0.04 for the values of β we simulated at.
Then, for this Ansatz, having inserted our numerical estimate
for the amplitude ratio, we computed ξeff. It turns out that
the ratio ξexp/ξeff � 1.000 12 and 1.000 024 for c = 7 and 9,
respectively.

In the case of the critical isotherm, we proceeded in a similar
way, now assuming m2 = 2m1. Based on our analysis, we
decided to take c = 6, where ξexp/ξeff � 1.000 06.

IV. CRITICAL BEHAVIOR AND UNIVERSAL AMPLITUDE
RATIOS

In this section, we briefly summarize the results needed for
the analysis of our numerical data. For a detailed discussion,
see, for example, the review [23]. In the neighborhood of
the critical point, various quantities diverge, following power
laws. For example, the exponential and the second-moment
correlation length at vanishing external field behave as

ξexp � fexp,±|t |−ν, ξ2nd � f2nd,±|t |−ν, (23)

TABLE I. Results for the critical isotherm β = 0.387 721 735 of the Blume-Capel model at D = 0.655. In the first column, we give the
value of the external field h. The second column contains the linear lattice size L. Next we give the number of update cycles divided by 105.
It follows the magnetic susceptibility, computed by using the improved estimator. Then we give the results of the second-moment correlation
length ξ2nd and the exponential correlation length ξexp. It follows the magnetization m and the renormalization-group invariant quantity u,
Eq. (32). The estimates given here for χ , ξ2nd, and ξexp are computed using R = 6ξeff, Eq. (17).

h L stat/105 χ ξ2nd ξexp m u

0.02 60 100 4.652 93(10) 1.467 172(38) 1.508 49(16) 0.454 389 8(13) 21.4066(13)
0.01 80 100 8.136 46(17) 1.948 550(48) 1.989 96(21) 0.393 999 0(12) 21.2536(13)
0.006 100 100 12.245 71(26) 2.398 411(59) 2.441 38(25) 0.354 480 6(11) 21.1909(12)
0.003 130 100 21.274 00(46) 3.176 033(80) 3.224 65(34) 0.306 965 4(11) 21.1415(13)
0.001 200 60 50.8996(15) 4.950 94(17) 5.016 44(69) 0.244 201 2(14) 21.0997(17)
0.0006 248 40 76.3007(27) 6.083 55(24) 6.1609(10) 0.219 532 8(16) 21.0950(20)
0.0002 380 19 182.140(10) 9.473 62(57) 9.5850(23) 0.174 569 2(21) 21.0884(30)
0.0001 500 16 315.267(20) 12.526 82(82) 12.6725(34) 0.151 055 7(23) 21.0864(32)
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where t = βc − β is the reduced temperature. For simplicity,
we skip the usual normalization 1/βc. fexp,± and f2nd,± are
the amplitudes and ± indicates whether the high- (+) or the
low-temperature phase (−) is considered. The critical exponent
of the correlation length ν is the same for all systems in a
given universality class. For a vanishing external field, the
magnetization, the magnetic susceptibility, and the specific
heat behave as

m � B(−t)β, χ � C±|t |−γ , Ch � A±|t |−α. (24)

Note that here β is, as usual, the critical exponent of the
magnetization. Also the behavior on the critical isotherm,
β = βc and h 
= 0, is given by power laws. In the following,
we assume h > 0. The exponential and the second-moment
correlation length behave as

ξexp � fexp,ch
−νc , ξ2nd � f2nd,ch

−νc . (25)

The magnetization and the magnetic susceptibility behave as

m � Bch
1/δ, χ � Cch

1/δ−1. (26)

The critical exponents ν, β, γ , α, νc, and δ are the same
for all systems in a given universality class, which is in our
case the universality of the Ising model in three dimensions.
Following renormalization-group theory, the exponents listed
above can be expressed in terms of only two exponents. For
example, one could express them in terms of the so called RG
exponents yt and yh, where the subscript t indicates a thermal
perturbation and h denotes a perturbation by the external field:

ν = 1/yt , α = 2 − d

yt

, η = d + 2 − 2yh, β = d − yh

yt

,

γ = 2yh − d

yt

, (27)

and for the critical isotherm

νc = 1/yh, δ = yh

d − yh

, (28)

where d is the dimension of the system. Quite recently,
Simmons-Duffin [24] computed the dimensions of the fields
by using the conformal bootstrap with high precision,

3 − yh = �σ = 0.518 151(6), 3 − yt = �ε = 1.412 64(6).
(29)

These results are fully consistent with, but clearly more
accurate than,

ν = 0.630 02(10), η = 0.036 27(10) (30)

obtained by a finite-size scaling analysis of Monte Carlo
data obtained for the improved Blume-Capel model [14].
For a comparison with the vast amount of results obtained
by various methods, see [14,24]. Taking the results of [24],
one arrives at ν = 0.629 977(24), η = 0.036 302(12), γ =
1.237 084(54), β = 0.326 423(16), α = 0.110 069(71), νc =
0.402 925 4(10), δ = 4.789 818(67), and 1/δ = 0.208 776(3).

The � in the power laws listed above means that they
are strictly valid only in the scaling limit t → 0. At finite t ,
corrections have to be taken into account. For example, the
magnetic susceptibility behaves as

χ = C±|t |−γ (1 + a±|t |−θ + bt + c±|t |−θ ′ + · · · ) + d(t),
(31)

where d(t) is the analytic background. The terms a±|t |−θ and
c±|t |−θ ′

are singular or confluent corrections, while bt is an
analytic or nonconfluent correction. Furthermore, θ = νω and
θ ′ = νω′. Various methods, e.g., the ε-expansion, perturbation
theory in three dimensions fixed, high-temperature series
expansion, and Monte-Carlo simulations of lattice models
give consistently ω ≈ 0.8 for the exponent of the leading
correction. For the analysis of our data, we shall use ω =
0.832(6) [14]. The authors of [25] obtained ω = �ε′ − 3 =
0.8303(18), which differs slightly from our central value. Note
that in the case of the model studied here, the amplitude of
leading corrections is small. Hence the precise value of ω has
little influence on our final results.

There is a subleading correction due to the breaking of
the Galilean invariance of space by the simple-cubic lattice.
The associate correction exponent is ω′′ ≈ 2. For a precise
estimate, see [18].

Using the scaling field method, the authors of Ref. [26] find
a subleading correction with the exponent ω′ = 1.67(11). Up
to now, there is no confirmation of this finding by using other
methods. In the following numerical analysis we shall assume
the existence of this correction, which has little influence on
central values but enlarges the estimate of systematic errors.

With regard to physics results, we are mainly aiming at so
called universal amplitude ratios that are characteristic for the
universality class of the three-dimensional Ising model. While
individual amplitudes depend on the microscopic details of the
model, certain combinations are universal. The combinations
of the corresponding quantities have a critical exponent that
is equal to zero, which means that they are renormalization-
group invariant or dimensionless. First, we compute the ratios
of amplitudes fexp,+/f2nd,+, fexp,−/f2nd,−, and fexp,c/f2nd,c.
The ratios f2nd,+/f2nd,− and C+/C− relate the low- and high-
temperature phase. For a broken Z2-symmetry we define the
coupling

u = 3χ

ξ 3
2ndm

2
. (32)

For h = 0, in the low-temperature phase we get in the scaling
limit

u∗ = lim
t↗0

u(t,0) = 3C−
f 3

2nd,−B2
(33)

and analogously

uc = lim
h↘0

u(0,h) = 3Cc

f 3
2nd,cB

2
c

(34)

for the critical isotherm. The quantity

Q2 = (f2nd,c/f2nd,+)2−η C+/Cc (35)

connects the critical isotherm with the high-temperature phase.
Finally,

Rχ = C+DcB
δ−1, (36)

where h � Dcm
δ relates the critical isotherm with both the

low- and the high-temperature phase.
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V. THE SIMULATIONS

The exchange cluster algorithm is not ergodic on it own.
Therefore, additional updates of the individual systems are
performed. In particular, an update cycle is composed of the
following:

(i) One sweep with the local heat bath algorithm for both
systems.

(ii) Standard cluster updates of both systems.
(iii) One sweep with the local Todo-Suwa [27,28] algorithm

for both systems.
(iv) One Swendsen-Wang exchange cluster update.
(v) Random translation of one system.
Due to a lack of time, we did not optimize this update cycle.

Let us briefly discuss the choice of the cluster updates of the
individual systems: In the low-temperature phase, we updated
the individual systems by using the single-cluster algorithm.
The number of single-cluster updates was chosen roughly as
the total volume of the lattice divided by the average size
of a cluster. In the high-temperature phase, we updated the
individual systems by using the Swendsen-Wang algorithm.
This allowed us to compare the variance-reduced estimators
of the correlation function that are based on the standard
Swendsen-Wang cluster algorithm and the Swendsen-Wang
version of the exchange cluster algorithm.

In the case of the critical isotherm, the cluster algorithm
applied to the individual systems has to be modified to take
the external field into account [29,30]. The construction of the
clusters is the same as for a vanishing external field h = 0.
Following Ref. [29], there are two ways to incorporate the
external field. The first one is by representing the external field
by a “ghost-spin.” The link of a spin sx with the ghost-spin is
frozen with the probability

pf,h = 1 − pd,h, (37)

where the delete probability pd,h = min[1, exp(−2hsx)]. All
clusters that are frozen to the ghost-spin keep the old sign of
the spins. A cluster is frozen to the ghost-spin if it contains at
least one spin that is frozen to the ghost-spin. Clusters that are
not frozen to the ghost-spin get the sign plus or minus with
equal probability.

The alternative is to chose the new sign of the clusters with
the heat-bath probability

pC(−) = exp
(−h

∑
x∈C sx

)
exp

(−h
∑

x∈C sx

) + exp
(
h

∑
x∈C sx

) (38)

and pC(+) = 1 − pC(−).
Here we used a modified version of the ghost-spin variant.

First we run through all sites of the lattice and decide whether
the spin is frozen to the ghost-spin or not. Then we construct
all clusters that contain spins that are frozen to the ghost-spin.
As in Ref. [29], these clusters keep their sign. In contrast
to [29], we change the sign of all clusters that are not frozen
to the ghost-spin. This has the technical advantage that we
need not construct these clusters, since we just have to change
the sign of all spins that do not belong to clusters that are
frozen to the ghost-spin. A preliminary study shows that also
autocorrelation times compare favorably. In our update cycle,
we performed one of these updates for each system.

We used the SIMD-oriented Fast Mersenne Twister algo-
rithm [31] as a pseudo-random-number generator. In total, all
our simulations took about 18 years of CPU time on a single
core of an Intel(R) Xeon(R) E5-2660 v3 running at 2.60 GHz.

A. The critical isotherm

We simulated at the estimate of the inverse critical tem-
perature β = 0.387 721 735 at various values of the external
field. Preliminary simulations indicate that the deviation from
the thermodynamic limit for the quantities that we study is
below our statistical accuracy for L � 11ξ . Since the variance-
reduced estimators studied here are self-averaging, we decided
to simulate much larger lattices. Here, by self-averaging
we simply mean that for L � ξ the variance is inversely
proportional to the volume L3. Our final results, which are
given in Table I, are taken from simulations with L ≈ 40ξ .

First, let us discuss the performance of the improved esti-
mator of the two-point function. Actually, we did not directly
determine the variance of the quantities. During the simulation
we computed the averages over bins of 1000 measurements
each. Hence we only had access to the statistical error and not
to the variance and the autocorrelation times separately. The
statistical errors are computed by using the jackknife method
throughout. Analyzing the data for the standard estimator of
the slice-slice correlation function, we find that the statistical
error depends little on the distance between the slices. Hence
for the connected slice-slice correlation function, the relative
statistical error increases proportional to exp(r/ξexp). The
same holds for the effective correlation length ξeff computed
from the standard estimator of the slice-slice correlation
function. On the contrary, we find for all values of the
external field h that the statistical error of the variance-reduced
estimator of the slice-slice correlation function decreases as
exp(−r/[2ξexp]). Hence the relative statistical error increases
as exp(r/[2ξexp]). The same holds for the effective correlation
length ξeff computed from the variance-reduced estimator of
the slice-slice correlation function.

Now let us turn to the analysis of our data. First, we
fitted our data for the second-moment correlation length, the
magnetization, and the magnetic susceptibility using power-
law Ansätze. Then we studied universal ratios that consist of
quantities defined on the critical isotherm only.

We fitted the second-moment correlation length with the
Ansätze

ξ2nd = f2nd,ch
−νc

(
1 +

n∑
i

aih
εi

)
, (39)

where f2nd,c and the ai are the free parameters of the fit. We
performed fits for n = 1, 2, and 3 using different choices for
the correction exponents εi . As values we have used εi =
0.832νc, 1.67νc, 2νc, and 2, with νc = 0.402 925 4. Only for
the exponent ε = 2νc we find an amplitude that is clearly
different from zero. In particular, fitting the data with a single
correction term and ε1 = 2νc, we find f2nd,c = 0.306 321(17),
a1 = −0.161(18), and χ2/d.o.f. = 0.12 (where d.o.f. denotes
degrees of freedom). Our final estimate, and in particular the
error bar, is chosen such that the results of various plausible
fits are accommodated. To obtain the dependence of the central
value on νc and βc, we repeated a selection of fits for slightly
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shifted values of νc and βc. We arrive at

f2nd,c = 0.306 31(18) − 220 (βc − 0.387 721 735)

− 3 (νc − 0.402 925 4). (40)

Next we fitted the magnetization with the Ansätze

m = Bc h1/δ

(
1 +

n∑
i

aih
εi

)
(41)

using n = 1 and 2. It turns out that for n = 1 and ε1 = 2νc, we
get χ2/d.o.f. = 0.68 taking all our values of h into account.
One gets Bc = 1.033 400 69(28) and a1 = −0.114 79(10). To
get an estimate of possible systematic errors due to further
corrections, we performed fits with n = 2, adding a term with
a correction exponent ε2 = 0.832νc or ε2 = 1.67νc. In both
cases, the amplitudes of the corresponding corrections remain
compatible with zero within the error bars. In particular for
the fit with ε2 = 0.832νc, the statistical error of Bc increases
considerably compared with n = 1 and ε1 = 2νc. We quote

Bc = 1.033 401(20) + 170 (βc − 0.387 721 735)

+ 7 (1/δ − 0.208 776) (42)

as our final result. Next we have analyzed the magnetic
susceptibility. Also here we find that all data can be fitted well
with an Ansatz that contains a single correction term with the
correction exponent ε = 2νc. In particular, we find χ2/d.o.f.
= 0.89 and Cc = 0.215 748 7(34) and a1 = −0.558 05(66).
As in the case of the magnetization we performed fits, where
we added a second correction term. We arrive at our final
estimate

Cc = 0.215 749(15) + 73 (βc − 0.387 721 735)

+ 1.5 (1/δ − 0.208 776). (43)

The amplitudes of the magnetization and the magnetic sus-
ceptibility on the critical isotherm are trivially related by
Cc = Bc/δ. Our numerical estimates of Cc and Bc are indeed
consistent with this relation.

Next we analyzed the renormalization-group invariant
quantity u, Eq. (32). We used the Ansatz

u = uc + c1ξ
−ε1
2nd + c2ξ

−ε2
2nd , (44)

where uc, c1, and c2 are the free parameters. We performed
fits using ε1 = 0.832, which is our estimate of ω and the two
choices ε2 = 2ω and ε2 = 2.

For both choices we get an acceptable χ2/d.o.f. taking into
account all data except for our largest value of h. As our final
result, we take

uc = 21.086(20), (45)

which is the value of u for our smallest value of h. The error
bar is taken such that the results of the fits discussed above
are covered. In Fig. 1 we plot our estimate of ξexp/ξ2nd along
with its corrected counterpart zcorξexp/ξ2nd as a function of ξ−2

exp.
We see that at least for the smaller values of the correlation
length the major part of the corrections is indeed eliminated by
multiplying with zcor. The fact that the data for ξexp/ξ2nd fall
more or less on a straight line reflects that zcor − 1 = O(ξ−2

exp).
An analysis similar to that of the quantity u above results in

0 0.1 0.2 0.3 0.4 0.5
ξ−2
exp

1.005

1.01

1.015

1.02

1.025

1.03

ξ 
   

 /ξ
ex
p

2n
d

uncorrected
corrected

FIG. 1. We plot ξexp/ξ2nd along with its corrected counterpart
zcorξexp/ξ2nd for the critical isotherm as a function of ξ−2

exp. The dashed
lines connecting the data points are there to guide the eye. Note that
the symbols for the two smallest values of h partially overlap. The
solid horizontal line gives our estimate for the scaling limit. The
dashed lines parallel to it indicate its error.

fexp,c/f2nd,c = 1.0109(5). As our final estimate, we quote

fexp,c/f2nd,c = 1.0110(6). (46)

This estimate also includes the results for zcorξexp/ξ2nd obtained
for our two smallest values of h.

B. The low-temperature phase, h = 0

First we studied finite-size effects at β = 0.391 and 0.42
by simulating a large range of lattice sizes. Throughout we
performed 108 update cycles. At the level of our statistical
accuracy, the results for the correlation length, the magnetic
susceptibility, the magnetization, and the energy density
are consistent among each other for L � 12 and 48 for
β = 0.42 and 0.391, respectively. Taking our final results
ξexp = 1.087 01(35) and 4.4449(19), discussed below, we
find consistently that for L � 11ξexp deviations from the
thermodynamic limit are small compared with our statistical
errors. Furthermore, the numerical results are consistent with
an approach of the thermodynamic limit that is exponentially
fast in the linear lattice size. Concerning the validity of the
variance-reduced estimator, we checked whether the signs of
P and M1M2 coincide. For β = 0.42, we find that this is
the case for the fraction 0.980 740(46), 0.998 769(12), and
0.999 982 3(14) of pairs of configurations for the linear lattice
sizes L = 4, 6, and 8, respectively. For the larger lattice
sizes L = 10,12,16, . . . that we simulated, the sign of P and
M1M2 coincides for all configurations that we analyzed. For
β = 0.391, we find a fraction of 0.999 972(18) for L = 32,
while for all larger lattice sizes that we simulated, the sign
of P and M1M2 coincides for all configurations that we
analyzed. Furthermore, the analysis of our data shows that
the variance-reduced estimator of the correlation function is
self-averaging.

Our final estimates are obtained for lattice sizes L � 44ξexp,
where deviations from the thermodynamic limit are much

032140-7



MARTIN HASENBUSCH PHYSICAL REVIEW E 93, 032140 (2016)

TABLE II. Results for the low-temperature phase of the Blume-Capel model at D = 0.655 and a vanishing external field h = 0. In the
first column, we give the inverse temperature β. The second column contains the linear lattice size L. Next we give the number of update
cycles divided by 105. Then we present the magnetic susceptibility, computed by using the improved estimator. Then we give the results of
the second-moment correlation length ξ2nd and the exponential correlation length ξexp. The corrected ratio zcorξexp/ξ2nd follows, as well as the
renormalization-group invariant quantity u, Eq. (32). All estimates given here are computed for R = 7ξeff, Eq. (17).

β L stat/105 χ ξ2nd ξexp zcor ξexp/ξ2nd u

0.42 48 205 1.964992(32) 1.031143(20) 1.08696(14) 1.01786(12) 14.07096(67)
0.41 60 126 3.193168(68) 1.302022(33) 1.35761(21) 1.01949(14) 14.06315(84)
0.40 88 100 6.84022(17) 1.892267(52) 1.95348(33) 1.02116(16) 14.06400(91)
0.396 112 104 11.24176(28) 2.423518(68) 2.49420(41) 1.02230(15) 14.06351(91)
0.394 132 100 15.89635(42) 2.883053(83) 2.96210(51) 1.02256(16) 14.06513(93)
0.393 148 100 19.74238(52) 3.214815(90) 3.30138(55) 1.02301(16) 14.06754(91)
0.392 168 102 25.65302(69) 3.66821(11) 3.76268(63) 1.02274(16) 14.07048(93)
0.391 196 101 35.73272(97) 4.33667(13) 4.44557(75) 1.02295(16) 14.07045(93)
0.39 248 100 56.1525(15) 5.45174(16) 5.58651(95) 1.02335(16) 14.07095(92)
0.389 400 33 114.9821(48) 7.84194(34) 8.0305(20) 1.02338(23) 14.0755(14)
0.3883 580 10 307.102(26) 12.9205(12) 13.2266(72) 1.02345(51) 14.0771(29)

smaller than our statistical errors. Our numerical estimates
are summarized in Table II.

Similar to the critical isotherm, we did not analyze autocor-
relation times and variance separately. Instead, we computed
the statistical error using a jackknife analysis. For the standard
estimator of the slice-slice correlation function Ḡ(r) we find
that the statistical error is virtually independent of the distance
r . Hence the signal-to-error ratio decreases as exp(−r/ξexp).
In contrast, for the variance-reduced estimator we find that
the statistical error decreases as exp(−r/[2ξexp]). Hence the
signal-to-error ratio decreases as exp(−r/[2ξexp]). Similar
observations hold for the effective correlation length ξeff(r),
which is computed from Ḡ(r). This improvement allowed us to
take ξeff(r) at about twice the distance compared with Ref. [7]
as an estimate of ξexp, making systematical errors negligible.

We analyzed the data for the magnetization obtained here
along with those of Ref. [7] by using Ansätze of the type

m = B (−t)β
(

1 +
n∑
i

ai (−t)εi

)
(47)

with t = βc − β. We performed fits for n = 2 and 3. We fixed
the exponents β = 0.326 423, ε1 = 0.832ν, ε2 = 1, and ε3 =
2ν, where ν = 0.629 977. For n = 3 we get χ2/d.o.f. close
to 1 up to βmax = 0.41, where we take all data for β � βmax

into account. For fits with n = 2 we get χ2/d.o.f. up to about
βmax = 0.395. Comparing the results of different fits, we arrive
at the final estimate,

B = 1.9875(3) + 2460 (βc − 0.387 721 735)

+ 22 (β − 0.326 423). (48)

In the case of the coupling u, we abstain from fitting, since
there is little variation with β. As a final estimate, we take the
value obtained for our smallest value of β,

u∗ = 14.08(1). (49)

The error bar is chosen such that also the results for β = 0.389
and 0.39 are covered. This result is fully consistent, but more
precise than our previous estimate u∗ = 14.08(5) [7]. For a

comparison with results obtained by using other methods and
previous Monte Carlo simulations, see Ref. [7].

Also in the case of zcorξexp/ξ2nd we abstain from fitting. As
our final estimate, we take

fexp,−/f2nd,− = 1.0234(6), (50)

where the error bar is chosen such that the results for our
four smallest values of β are covered. For all values of β,
we compared our result for zcorξexp/ξ2nd using R = 7ξeff and
R = 9ξeff, Eq. (17). We conclude that the difference should be
clearly smaller than the error bar given in Eq. (50). Our present
result is consistent with, but more precise than, fexp,−/f2nd,− =
1.020(5) obtained in Ref. [7]. For a comparison with results
obtained by using other methods and previous Monte Carlo
simulations, see Ref. [7].

C. The high-temperature phase

Finally, we also performed simulations in the high-
temperature phase. We simulated at values of the inverse
temperature βh = 2βc − βl , where βc = 0.387 721 735 is our
estimate of the inverse critical temperature and βl are the values
of β that are used in Sec. V B. The linear lattices sizes L are
essentially the same as for the corresponding values of β in
the low-temperature phase.

We computed variance-reduced estimators both based on
the standard Swendsen-Wang update and the cluster exchange
update of the two systems. In the following, ḠSW(r) and
ḠEC(r) denote the results for Ḡ(r) obtained from the two
estimators, respectively. We find that the ratio of the statistical
errors of ḠEC(r) and ḠSW(r) depends little on r . In both cases,
we find that the ratio of signal to statistical error decreases as
exp(−r/[2ξexp]). The same holds for the effective correlation
length obtained from ḠSW(r) and ḠEC(r). For large distances,
we find for all values of β that we simulated a ratio of about
1.55 between the statistical errors of ḠEC(r) and ḠSW(r). For
small distances, we see a smaller factor that depends slightly
on β. For our smallest β, we find a factor of about 1.5 that
decreases to about 1.2 for our largest value of β. Note that in
the case of ḠSW(r), the measurements of both systems enter.
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TABLE III. Results for the high-temperature phase of the Blume-Capel model at D = 0.655. We give results for the same quantities as in
Table II for the low-temperature phase. Only u is missing, since it is not defined for a vanishing magnetization. All estimates given here are
computed for R ≈ 2ξeff, Eq. (17). The numbers are obtained from improved estimators based on the standard Swendsen-Wang algorithm.

β L stat/105 χ ξexp ξ2nd zcorξexp/ξ2nd

0.35544347 48 150 10.15694(17) 1.923431(29) 1.944827(36) 1.0000705(45)
0.36544347 64 112 16.00107(29) 2.456110(40) 2.473081(49) 1.0000823(43)
0.37544347 88 107 33.28360(75) 3.611554(68) 3.623445(79) 1.0001157(40)
0.37944347 112 105 54.0942(13) 4.647652(90) 4.65721(10) 1.0001348(40)
0.38144347 132 111 76.0765(19) 5.54245(11) 5.55076(13) 1.0001459(41)
0.38244347 148 101 94.2427(25) 6.18851(13) 6.19619(15) 1.0001546(40)
0.38344347 168 101 122.1430(34) 7.07068(15) 7.07771(18) 1.0001625(42)
0.38444347 196 101 169.6870(59) 8.36931(19) 8.37571(22) 1.0001700(45)
0.38544347 248 80 266.0115(91) 10.53510(27) 10.54096(30) 1.0001809(47)
0.38644347 400 28 543.398(29) 15.17511(58) 15.18080(65) 1.0001944(66)
0.38714347 580 12 1449.01(15) 25.0266(18) 25.0332(20) 1.000199(12)

Hence the performance of the two variance-reduced estimators
is very similar. Results for various quantities derived from
ḠSW(r) are summarized in Table III.

We analyzed the data for the second-moment correlation
length given here along with those of Ref. [32]. We used
Ansätze of the type

ξ2nd = f2nd,+t−ν

(
1 +

n∑
i

ai t
εi

)
(51)

with n = 2 and 3. The reduced temperature is t = βc − β. Free
parameters are f2nd,+ and ai . We fixed ν = 0.629 977 and the
correction exponents ε1 = 0.832ν, ε2 = 1, and ε3 = γ ≈ 2ν.
Taking into account the results of various fits, we arrive at

f2nd,+ = 0.2284(1) − 2.1 (ν − 0.629 977)

+ 500 (βc − 0.387 721 735). (52)

In a similar way, we arrive at the estimate of the amplitude of
the magnetic susceptibility

C+ = 0.143 00(5) − 1.2 (γ − 1.237 084)

+ 300 (βc − 0.387 721 735). (53)

Next we studied amplitude ratios that combine the
high- with the low-temperature phase. Following [7,33],
we computed the ratios Rχ (βl − 0.387 721 735) = χ (2 ×
0.387 721 735 − βl)/χ (βl) and Rξ2nd (βl − 0.387 721 735) =
ξ2nd(2 × 0.387 721 735 − βl)/ξ2nd(βl). In this way, the diver-
gence is canceled and the value of the critical exponent is not
needed. We fitted these two quantities with the Ansätze

R(t) = R∗ + a1t
ε1 + a2t (54)

and

R(t) = R∗ + a1t
ε1 + a2t + ctε3 , (55)

where we take ε1 = νω and ε3 = γ ≈ 2ν. To obtain the
dependence of our result on the value of βc, we repeated
the analysis, assuming βc = 0.387 727 6, which is our central
estimate of βc plus the error bar. Our final estimates are

C+
C−

= 4.714(4) + 36 000 (βc − 0.387 721 735) (56)

and

ξ2nd,+
ξ2nd,−

= 1.940(2) + 11 000 (βc − 0.387 721 735). (57)

These results are consistent with C+
C−

= 4.713(7) and ξ2nd,+
ξ2nd,−

=
1.939(5) given in [7]. For a detailed comparison with estimates
obtained in the literature, see [7].

To get the universal amplitude ratio Q2, we first analyzed

r = χ/ξ
2−η

2nd (58)

both for the high-temperature phase as well as the critical
isotherm. We fitted our data with the Ansatz

r = r∞ + a1ξ
−ε1
2nd + a2ξ

−ε2
2nd , (59)

where r∞, a1, and a2 are the free parameters of the fit. We
fixed ε1 = 0.832 and ε2 = 1.67 or 2. In the case of the high-
temperature phase, the fits with ε2 = 1.67 are clearly better
than those with ε2 = 2. Comparing the results of different
fits, we arrive at r∞,high = 2.5960(15) for the high-temperature
phase. Here we have also taken into account the uncertainty
of η. In the case of the critical isotherm, we arrive at r∞,c =
2.2020(20). As our result for the universal amplitude ratio, we
quote

Q2 = r∞,high/r∞,c = 1.179(2). (60)

This can be compared with Q2 = 1.201(10) and 1.195(10)
obtained in Refs. [22] and [34], respectively. For a compre-
hensive collection of results obtained by various methods, see
Tables 11 and 12 of the review [23].

Finally, using the amplitudes computed above,

Rχ = C+DcB
δ−1 = 1.650(3). (61)

This result can be compared with Rχ = 1.723(13) obtained
from Monte Carlo simulations of the improved φ4 model on
the simple-cubic lattice [22], and Rχ = 1.660(4) using high-
temperature series expansions of improved lattice models in
combination with a parametric representation of the equation
of state [34]. For results obtained by other methods, see Table
12 of the review [23].
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VI. CONCLUSIONS AND OUTLOOK

We discussed a variance-reduced estimator of the connected
two-point function that is based on the exchange cluster
algorithm [8–10]. We studied the properties of this estimator
at the example of the improved Blume-Capel model on the
simple-cubic lattice. We performed simulations for the high-
and low-temperature phase at a vanishing external field and
for the critical isotherm. In the high-temperature phase, we
find that the variance-reduced estimator of the slice-slice
correlation function Ḡ(r) based on the standard Swendsen-
Wang algorithm [1] and on the Swendsen-Wang version of the
exchange cluster algorithm perform similarly. In both cases,
the relative statistical error increases as exp(r/[2ξexp]). This
is a clear improvement compared with exp(r/ξexp) for the
standard estimator. The exchange cluster improved estimator
still works in the presence of a broken Z2-symmetry. For the
critical isotherm as well as the low-temperature phase, we find
that the relative statistical error increases as exp(r/[2ξexp]),
as is the case in the high-temperature phase. Analyzing
the slice-slice correlation function, we confirm that for the
low-temperature phase there is a second isolated exponentially
decaying term with ξ2 ≈ ξexp/1.83 [20,21]. In contrast, for
the critical isotherm, we do not find such a contribution.
The reduced statistical error allowed us to take the effective
correlation length at a large separation of the slices as an
estimate of the exponential correlation length ξexp, reducing
systematical errors to one-eighth of a per mille or less. This
allows us to compute the ratio fexp/f2nd of the amplitudes
of the exponential and the second-moment correlation length
with high precision. Using our data for the magnetization,
the magnetic susceptibility, and the correlation length, we
computed various universal amplitude ratios. We compared
our estimates with those of Refs. [7,22,34]. For a compre-
hensive review of results obtained by various methods, see
Ref. [23].

It seems plausible that the variance-reduced estimator
discussed here is also effective for other models with Z2

symmetry. However, it is quite unclear how the idea can
be generalized to problems with another symmetry. In our
assessment, the main virtue of the exchange cluster algorithm
is the construction of variance-reduced estimators of excess
quantities related to defects of various kinds in Ising-like
systems. In Refs. [12,13], we computed the thermodynamic
Casimir force using such an estimator.
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APPENDIX: THE ISING MODEL ON THE CRITICAL
ISOTHERM

We simulated the Ising model at β = 0.221 654 62, which
is the estimate of the inverse critical temperature given in
Eq. (A2) of [32]. We performed these simulations before we
became aware of the variance-reduced estimators discussed
in the main body of the text. We simulated lattices with
L0 > L = L1 = L2. Therefore, we computed the slice-slice
correlation function in the 0 direction only. Also the ratio L/ξ

is smaller than in our study of the improved Blume-Capel
model. However, L is large enough to ignore deviations from
the thermodynamic limit. Our results for the energy density
E = 1

L0L2 〈
∑

〈xy〉 sxsy〉, the magnetization, the magnetic sus-
ceptibility, the second-moment correlation length, and the
dimensionless quantity u are summarized in Table IV. All
estimates given here are computed for R ≈ 4ξeff, Eq. (17).
Therefore, we do not quote an estimate of ξexp.

We fitted the data with similar Ansätze to those for the
improved Blume-Capel model in the main body of the text.
We fitted the magnetization with Ansätze of the form

m = Bc h1/δ

(
1 +

n∑
i=1

aih
εi

)
, (A1)

where we fixed 1/δ and the correction exponents εi . The free
parameters of the fit are Bc and ai . We used ε1 = 0.832νc, ε2 =
1.664νc or 2νc, and ε3 = 1. For the Ansatz with n = 1 we get
an acceptable χ2/d.o.f. only when discarding most of the data
points. Taking into account h = 0.001, 0.0006, and 0.00033
we get χ2/d.o.f. = 1.56, Bc = 1.395 500(55), and a1 =
−0.2066(4). Next we performed fits with n = 2 correction
terms. Among our different choices, the smallest χ2/d.o.f. are
found for ε2 = 1.664νc. Here we get, taking h = 0.01 down to
0.000 33 into account, χ2/d.o.f. = 1.40, Bc = 1.394 070(34),
a1 = −0.1825(3), and a2 = −0.1413(11). Finally, for n = 3,
with ε2 = 1.664νc and ε3 = 1, we get χ2/d.o.f. = 1.40 taking
all values of h. The results for the free parameters of the fit are
Bc = 1.393 971(39), a1 = −0.1806(5), a2 = −0.166(4), and
a3 = 0.043(6).

TABLE IV. Results for the critical isotherm β = 0.221 654 62 of the standard Ising model on the simple-cubic lattice. For a discussion, see
the text.

h L0 × L2 stat/106 E m χ ξ2nd u

0.05 32 × 122 200 1.6576621(58) 0.6819794(16) 2.32857(15) 0.83556(24) 25.748(21)
0.02 48 × 202 200 1.4119028(37) 0.5794070(14) 5.33012(35) 1.25521(37) 24.085(20)
0.01 64 × 242 200 1.2833057(31) 0.5087991(15) 9.69650(64) 1.68910(41) 23.318(16)
0.005 100 × 362 113 1.1921108(26) 0.4450808(16) 17.3802(15) 2.26080(81) 22.778(23)
0.002 160 × 502 59 1.1124843(25) 0.3714069(21) 37.0357(45) 3.30542(16) 22.303(30)
0.001 160 × 682 45 1.0735366(24) 0.3231855(26) 65.174(11) 4.4007(28) 21.965(39)
0.0006 200 × 822 31 1.0529398(24) 0.2914486(31) 98.538(21) 5.4172(42) 21.892(48)
0.00033 300 × 1002 27 1.0351784(19) 0.2580626(30) 159.599(34) 6.9184(55) 21.712(48)
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Based on these fits, we arrive at our final estimate,

Bc = 1.3941(6), a1 = −0.19(2). (A2)

Performing similar fits, we arrive at

f2nd,c = 0.2771(12) (A3)

for the amplitude of the second-moment correlation length.
We analyzed our data for the coupling u by fitting with the
Ansatz (44). We arrive at

uc = 21.05(15), (A4)

which is consistent with our result (45) obtained from the data
for the improved Blume-Capel model.
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