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The mechanism of critical phenomena or critical transitions has been recently studied from various aspects, in
particular considering slow parameter change and small noise. In this article, we systematically classify critical
transitions into three types based on temporal scales and noise strengths of dynamical systems. Specifically, the
classification is made by comparing three important time scales τλ, τtran, and τergo, where τλ is the time scale of
parameter change (e.g., the change of environment), τtran is the time scale when a particle or state transits from
a metastable state into another, and τergo is the time scale when the system becomes ergodic. According to the
time scales, we classify the critical transition behaviors as three types, i.e., state transition, basin transition, and
distribution transition. Moreover, for each type of transition, there are two cases, i.e., single-trajectory transition
and multitrajectory ensemble transition, which correspond to the transition of individual behavior and population
behavior, respectively. We also define the critical point for each type of critical transition, derive several properties,
and further propose the indicators for predicting critical transitions with numerical simulations. In addition, we
show that the noise-to-signal ratio is effective to make the classification of critical transitions for real systems.
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I. INTRODUCTION

Critical transitions of nonlinear systems long have been
studied in various fields, including earthquake, disease out-
break, stock-market crash, and so on [1–16]. In particular,
the topic to predict the critical point has attracted scientists
for hundreds of years. In the ancient time, people used the
life experiences to make predictions but with limited accuracy
due to lack of theoretical support. Even up to recent times,
few precise indicators for real problems have been found,
although there are many mathematical models established to
characterize the critical phenomena.

In the 2000s, one simple but effective prediction index,
i.e., “critical slowing down” phenomenon, was proposed by
Scheffer et al. based on the bifurcation theory [2,3]. They found
that the system would exhibit a drastically slowing down of
relaxation time and a significant increasing of variance when
the system is close to the bifurcation point from a steady
state. Since then, much research has been devoted to the
development of similar models and many statistical indicators
have been proposed [4,5]. These theories and models have
been widely applied to ecology [6–8], meteorology [9–12,15],
economics [13,14], and so on. In addition, Cavalcante et al.
named the extreme events in chaotic systems “Dragon kings”
and considered their predictability and controllability [17]. A
rigorous and detailed mathematical description was given by
Kuehn in 2011 [18]. Recently, an extension of Scheffer’s model
to multivariable systems or complex networks was established
by Chen et al. in 2012 [19–24]. Their dynamical network
biomarker (DNB) showed early-warning signals effectively
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by exploring high-throughput data of gene sequences for
biological and medical systems, which opens a door to the
prediction of complex disease even in the predisease stage.
Further extension to single sample statistics was also presented
[25].

However, most of those works mentioned above assume
sufficiently small noise perturbations, and thus the critical
transition always happens near the bifurcation point. On the
other hand, it is still an open question how to effectively
characterize the critical transition to detect its early warning
signals for a system with moderate or large noise [16].
Thompson et al. found the early and delayed escape under
different drift and noise with first order autoregression [26].
Dakos et al. made a step forward in this direction by
discussing the “flickering” phenomenon [27]. They compared
its statistical behaviors with the small noise case and found
that almost all indicators could hardly be used anymore for
large noise cases.

There are a number of other studies related to the stochastic
systems with nonsmall noise transitions. Horsthemke and
Lefever established a noise-induced transition theory in the
one-dimensional case [28]. They focused on the maximal
points of the probability density function (pdf) and set the
transition point as a state where a sudden change of their
number (for maximal points) occurred. Arnold defined a
P -bifurcation point where the distribution changed from uni-
modal to bimodal [29]. The transition path theory (TPT) was
developed to study the statistical properties of transition paths
as an ensemble [30]. Burglund et al. discussed noise-induced
phenomena under different scales of Kramers time [31]. In
addition, there are also theoretical works on nonequilibrium
phase transition, which were used to analyze the qualitative
change of density function [32–34]. These works motivate us
to consider the critical transitions in moderate and large noise
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cases with a general mathematical framework and study their
dynamical properties before the transitions.

In this paper, we aim to build a general mathematical
framework for understanding critical transitions with the con-
sideration of both small noise and large noise. To characterize
the critical transitions, we will show that there are three key
time scales, i.e., (a) the time scale of parameter change denoted
as τλ, (b) the time scale when a particle (or state of the
system) transits out of a metastable basin denoted as τtran,
and (c) the time scale when the system becomes ergodic
denoted as τergo. Clearly, the traditional theory based on
small noise, e.g., critical slowing down, is just a special case
when τλ � τtran � τergo, which is called the state transition
in this paper. For such a case, the critical transition happens
at or near the bifurcation point, i.e., the attraction basin of
the stable equilibrium becomes sufficiently small. When the
noise is not sufficiently small, generally there are at least
two other important types of transition in mathematics. One
type is the basin transition, which is a particle transiting out
of an attraction basin, and it generally happens not at but
before the bifurcation point, i.e., the attraction basin of the
stable equilibrium is not sufficiently small. This corresponds
to the regime τtran < τλ < τergo of the system. Another type
corresponds to the regime of the system τtran � τergo � τλ.
We call it the distribution transition, which may happen far
before the bifurcation point due to the ergodic state of the
system. For such dynamics, what can be observed is just
the point cloud of trajectories or probability distribution of the
system. Based on such time scales, we identify the features of
critical transitions and further propose different indicators to
predict the critical point for each case. In terms of dynamical
behaviors, there are an additional two different ways of
transitions, i.e., single-trajectory transition and multitrajectory
ensemble transition, which correspond to the transition of
individual behavior and population behavior, respectively. We
note that a related idea on discussing the time-scale issues in
mesoscopic dynamics was also proposed in Ref. [35].

We should also remark that the purpose of this paper does
not intend to solve the problem of the prediction for critical
transitions but aims to present the theoretical framework with
a minimal model to characterize the critical transitions for
both small and large noises. However, as we can see, the
considered minimal model shows essential features of general
stochastic dynamics for critical transitions. Note that before
the critical transition for case (a) or case (b) from one stable
equilibrium, there is no information on the dynamics of the
transited stable equilibrium, but for case (c), the information on
the dynamics of the transited stable equilibrium is considered
to be available due to the ergodic condition. In such a sense, the
critical transition for case (b) can be considered as a conditional
distribution transition, in contrast to the distribution transition
for case (c), while the state transition for case (a) can be also
considered as one extreme case of the conditional distribution
transition.

The structure of this paper is as follows. In Sec. II, we
present a minimal model and its generalization. Then we
define the three time scales associated with the model. In
Sec. III, we classify the systems into three regimes. In each
regime, we investigate the critical transition behavior and
study the properties of the critical point. We also discuss the

differences between the single-trajectory and multitrajectory
samplings. In Sec. IV, we list some indicators or properties
useful in predicting the critical points. Simulation results are
also presented. We show that the noise-to-signal ratio (NSR)
can discriminate the regimes of the stochastic systems for
classifying the transitions. Finally, we make the conclusion
with the discussion on some omitted but interesting topics in
Sec. V.

II. MODEL

Critical transition is a complicated behavior, governed by
stochastic dynamics. In this section, we first propose a minimal
model, which is a one-dimensional stochastic differential
equation (SDE) with a gradient force and additive noise, to
describe such behaviors. We then discuss its extension to
general cases with multiple variables. In the end, we take a
toy model having an analytical form for further discussions
without loss of generality.

A. A one-dimensional model with additive noise

We start from a gradient SDE with changing parameters to
model the critical phenomena in one dimension:{

dxτ = −∂xU (xτ ,λ)dτ + √
2ηdwτ ,

dλ
dτ

= k.
(1)

In Eq. (1), xτ is the position of a particle or a state of the
system at time τ . U (x,λ) is a potential function changing
with the parameter λ. With the change of the parameter, there
is a bifurcation which qualitatively changes the dynamics.
Actually, the parameter k adjusts the difference of time scales
between x and λ. The smaller k is, the slower λ varies than
x. wτ is a standard Brownian motion with mean zero and
covariance 〈wτwτ ′ 〉 = min(τ,τ ′). And η denotes the noise
strength. Here we employ the convention in probability theory
to use dwτ instead of the white noise dwτ/dτ because of
the irregularity of Brownian paths. The system (1) is not an
almighty model for describing the critical transitions, but it can
exhibit some essential features for general dynamical systems.

Equation (1) is a system with one variable x, two parameters
τ and λ with three degrees of freedom, U , k, and η. If we set
our observation time, i.e., the whole changing period of λ as
O(1), then we claim that there are three typical time scales in
the dynamics expressed by Eq. (1):

(i) τλ, the time scale of parameter λ.
(ii) τtran, the waiting time when a particle (or state of the

system) transits across the boundary of a stable metastable well
(or the boundary of the attracting basin for a stable equilibrium)
into another.

(iii) τergo, the time scale when the system becomes ergodic.
It is easy to see that the order of τλ is O(1/k) in Eq. (1). For

τtran, we have an approximate expression in special situations.
When k = 0 and η is sufficiently small, we have log(τtran) ∼
O(hU/η), where hU is the energy barrier height of the potential
well U (x,λ) at a fixed λ. τergo is one order higher than the
maximum τtran between all metastable states. If we can get the
largest negative eigenvalue λ1 (with the least magnitude) of
the forward operator induced by Eq. (1), then τergo is in the
order of O(1/|λ1|) (cf. Chapter 5 of Ref. [36]).
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To set our observation time for λ to be O(1), we rescale
Eq. (1) as {

dxt = −∂xV (xt ,λ)dt + √
2σdwt ,

dλ
dt

= 1,
(2)

by letting t = kτ , V (x,λ) = U (x,λ)/k, and σ = η/k. Thus
λ will change with unit rate and τλ = O(1). With this
manipulation, we reduce the number of degrees of freedom
of the system (1) from three into two in (2): V and σ . For
every V and σ , there is a simple correspondence for U , k,
and η.

For the three time scales τλ, τtran, and τergo, though in general
the last two can hardly have analytic expressions, it is obvious
that the time rescaling from Eq. (1) to Eq. (2) will not change
their ranking. Moreover, τergo is always larger than τtran. Now
with a fixed V (x,λ), it is σ that determines the ranking of τλ,
τtran, and τergo. Concerning the primitive parameters in Eq. (1)
corresponding to the same V (x,λ), smaller temporal parameter
k, which means slower environmental change, or larger noise
strength η, will lead to larger effective noise amplitude σ .

In Sec. III, we will classify critical phenomena into three
types with respect to different rankings of τλ, τtran, and τergo.
The ranking is mainly determined by noise amplitude σ , which
is a combination of the primitive parameters k and η.

B. A general multidimensional model with multiplicative noise

The model in the previous subsection is a simplest minimal
model, which has limitations in some sense. More often, we
can consider a general dynamical system as:{

d X t = f (X t , p)dt + √
2σ g(X t , p)dW t ,

d p
dt

= h(t),
(3)

where the coordinates X t ∈ Rn, parameter p ∈ Rm, and
W t is a n-dimensional Brownian motion with independent
components. We choose the positive functions g(x, p),h(t) ∼
O(1). We suppose that dynamics of a nonlinear system
are around a stable equilibrium initially with the gradual
change of parameters, and we only consider codimension one
bifurcations through the interactions of f (x, p), g(x, p), and
σ without loss of generality.

To discuss the relation with our minimal model, let us give
some suitable remarks on Eq. (3). First, with a given initial
condition, the parameter p determines a simple curve in Rm.
Using the arclength as the natural coordinate of the curve, the
parameter equation can be reduced into dλ/dt = s(t). Thus
Eq. (3) can be transformed into{

d X t = f (X t ,λ)dt + √
2σ g(X t ,λ)dW t ,

dλ
dt

= s(t).
(4)

Second, in a high-dimensional system, f (x,λ) may not be
written in a gradient form (in a one-dimensional system, we
can always transform it into a gradient form), and the effect of
g(x,λ) is not trivial. For Eq. (4), we can define the three time
scales τλ, τtran, and τergo similar to those in Eq. (1) of Sec. II A.
In a gradient system, τtran is the time when a particle transits
across the barrier of potential well, but in a general system,
τtran is the time when the particle or the state crosses over the
attracting basin’s boundary of the stable equilibrium.

Third, we take the viewpoint of “effective potential” in a
nonequilibrium phase transition [28,32] or “quasipotential” in
large derivations [37,38]. We utilize an “ideal potential,” which
has been mentioned without a name in Ref. [27], defined as

V (x,λ) = −σ ln pst(x,λ). (5)

Here pst(x,λ) is the steady-state pdf induced by Eq. (4) with
a fixed λ. As the system Eq. (4) has only stable equilibrium
points and codimension one bifurcations, we claim that the
boundary of ideal potential V can grasp the boundary of the
attracting basin after sufficiently long time. Though τλ, τtran,
and τergo can no longer be estimated through V , the ideal
potential still gives us an intuition on the scope of attracting
basins.

Clearly, although we know Eq. (3) is much more com-
plicated than the minimal model Eq. (2), with the previous
discussion, we can do the same classification to Eq. (3) or
Eq. (4) according to the different rankings of τλ, τtran, and τergo.
Thus the later discussions on our minimal model will shed light
on the investigation for general models, and our study on the
simplest system (2) presents the necessary steps towards the
understanding of more complicated critical transitions.

C. Toy model for simulation

In the classification and simulations, we choose the poten-
tial function as

U (x,λ) = 1
4x4 − 3

2x2 + λx, (6)

which is unimodal or bimodal at different λ values. We take
k = 0.01 and vary η (or σ ). Hence, we have the corresponding

V (x,λ) = 100
(

1
4x4 − 3

2x2 + λx
)
. (7)

To study the critical transitions, we take the dynamics in
Eq. (2) with Eq. (7) and choose λ(0) = −3, x(0) ≈ 2.1038,
which corresponds to the unique stable fixed point of potential
V (x,λ(0)). The terminal time is set at t = 6, i.e., λ = 3. When
doing the simulations, we use the Euler-Maruyama scheme

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

λ

x

FIG. 1. Bifurcation diagram of the dynamics in Eq. (2) with
V (x,λ) in Eq. (7). The stable equilibrium points are marked by a
solid blue line and the unstable equilibrium points are marked by a
dashed red line. At λ = −2, the bistable state occurs, and at λ = 2
one metastable well disappears.
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and choose a sufficiently small step size �t = 10−6 as the
default. The bifurcation diagram of V (x,λ) is shown in Fig. 1
with its stable (solid blue line) and unstable (dashed red line)
equilibrium points marked.

III. CLASSIFICATION OF CRITICAL TRANSITIONS
IN DIFFERENT SCALES

A. Classification

According to the ranking and size of the typical time scales
induced by the system (2), we classify the critical transitions
into three cases.

Case I: state transition, for τλ � τtran � τergo, usually un-
der relatively fast temporal parameter k or small parameter η,
i.e., small noise amplitude σ .

Case II: basin transition, for τtran < τλ < τergo, usually
under relatively medium temporal parameter k and parameter
η, i.e., medium noise amplitude σ . It can be viewed as a
conditional distribution transition.

Case III: distribution transition, for τtran � τergo � τλ,
usually under relatively slow temporal parameter k or large
parameter η, i.e., large noise amplitude σ .

We know that the ranking of τλ, τtran, and τergo is only
determined by σ with the same V in Eq. (2). We thus also call
Case I the small noise case, Case II the medium noise case,
and Case III the large noise case. The main results of this paper
are concluded in Table I, including the classifications and the
features of each case. We will discuss the details in the next
subsection.

Horsthemke and Lefever [28] mainly focused on the
distribution transition, which is Case III in our classification.
And they especially discussed the one-dimensional model with
the qualitative change of extrema of the stationary distribution
as a signal. We will extend it to a high-dimensional space
and use KL divergence (Kullback-Leibler divergence) as a
new indicator. Berglund and Gentz [31] used Kramers time to
classify the transitions but without τergo. They have discussed
stochastic resonance where drift term f is periodic in time
instead of our medium noise case (Case II), which is much
common in transition phenomena. In particular, as far as we

know, the difference between a single-trajectory sample and a
multitrajectory sample has never discussed before. After all,
our classification is clear and general, and we will also derive
indicators as early-warning signals shown in Sec. IV.

B. Discussion on models and classification

Now we discuss in detail how the classification is done
and what the definition of the critical transition is in each
case. As mentioned previously, we will classify the dynamics
described by Eq. (2) into three types or cases: state transition,
basin transition, and distribution transition. Simulations are
based on the dynamics Eqs. (2) and (7).

1. State transition under small noise

Case I occurs when τλ � τtran � τergo, which means that σ

is much smaller than the barrier height of the potential and
the particle or the state of the system x(t) almost always stays
in a close neighborhood of the stable equilibrium point. Thus
during the observation, we can hardly see the transition until
the state becomes unstable.

In this case, we define the critical point as the bifurcation
point, where a metastable well disappears and the particle
has to transit into another. This definition has no ambiguity
between the multitrajectory and single-trajectory statistics,
because all paths or trajectories make the sudden change at
the same instant. In the sufficiently small noise case, many
criteria of early warning signals for predicting the critical
transitions are proposed, like the increasing of variance and
autocorrelation and so on. “Critical slowing down” is the
basis of these statistics [2,4] for one-dimensional systems, and
“strong fluctuation and correlation” is the signal for complex
networks or multidimensional systems [19].

Transition path of a single particle is illustrated in Fig. 2(a),
which is simulated by a Euler-Maruyama scheme for dy-
namical Eqs. (2) and (7) under small noise σ = 0.125. The
bifurcation point is at λ = 2, which is also the critical point in
this case. We can observe a sudden transition of the position
of the state, clearly. In probability space for a multitrajectory
ensemble, we can compute the first jump pdf, which is almost

TABLE I. Classification of critical transitions and features of each case.

Case I Case II Case III

Transition type State transition Basin transition Distribution transition
Time scales τλ � τtran � τergo τtran < τλ < τergo τtran � τergo � τλ

Noise amplitude σ Small Medium Big
Temporal parameter k Fast Medium Slow
Primitive noise η Small Medium Large
Single-trajectory Bifurcation point Point when a particle crosses Point when sudden or largest
critical point (λ∗) the boundary of an attracting change of distribution (computed by

basin for the stable equilibrium time sequence in windows) occurs
Ensemble critical Bifurcation point Point when most trajectories transit Point when sudden or largest
point (λ∗) change of distribution (computed by trajectory

ensemble at each time) occurs
Properties near Increase of variance, Large deviations from mean; Sudden change of some moments; increasing KL
critical point autocorrelation, correlation noise and barrier height in the divergence between adjacent distributions

and so on same order
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FIG. 2. State transition case under small noise. The dynamics is given by Eq. (2) with potential (7). Noise amplitude σ = 0.125 is relatively
small to the potential barrier. Panel (a) is a path for a single particle under small noise and a transition can be seen. The solid red line is the
stable equilibrium points and the dashed red line is the unstable equilibrium points. The trajectory of a state or particle is in blue. The critical
point is defined as the bifurcation point λ = 2. Panel (b) shows the first jump pdf for multiple particles under small noise strength. In Fig. 2(b),
the first jump probability density is nearly a δ function at λ = 2, which is also the bifurcation point. From both Figs. 2(a) and 2(b), we know
there is no difference between the multiple- and single-trajectory statistics in this small noise case.

a δ function at λ = 2 and is shown in Fig. 2(b). The evolution
of the probability density of x is also presented in Fig. 3.

2. Basin transition under medium noise

Case II occurs when τtran < τλ < τergo with a relatively
medium noise size. In this case we can observe the particle
transiting at some place before the system bifurcates, but in
general it will never get back. One realization of the path is
explicitly shown in Fig. 4(a).

We want to emphasize that every trajectory has a quite
different escape time in the medium noise case. Therefore, we
distinguish two concepts: the single-trajectory transition and
multitrajectory ensemble transition. For the single-trajectory
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−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

λ

x −3−2−1 0 1 2 3
0

20

40

x

p

−3−2−1 0 1 2 3
0

20

40

x

p

−3−2−1 0 1 2 3
0

20

40

x

p

−3−2−1 0 1 2 3
0

20

40

x

p

−3−2−1 0 1 2 3
0

20

40

x

p

critical point

FIG. 3. The evolution of pdf of x for the dynamics (2) and (7) with
σ = 0.125 for the small noise case. The solid blue line is the stable
equilibrium points and the dashed red line is the unstable equilibrium
points. Insets are pdfs at λ = −2.5, − 1,0,1,2.5. If we plot all the
pdfs at every λ, it will exhibit a sudden transition at λ = 2 (green
triangle line).

transition, we define the critical point as the time when the
particle crosses the boundary of an attraction basin, i.e., the
separatrix between two neighboring attraction basins. For the
multiple-trajectory transition, we define the critical point as
the most probable transition point, at which the particles leave
the attraction basin of the metastable state with the maximal
escaping rate. We call it the ensemble transition point. Though
the total transition probability saturates until the bifurcation
point, the particles hardly stay in the initial metastable well
eventually.

Now let us list some simple properties of the system in this
case.

(1) For a single trajectory, the particle follows the uphill
path

ẋ = ∇V (x,λ) (8)

with a high probability before the transition (cf. Refs. [39,40]).
(2) For single-particle trajectories, the closer the particle

gets to the boundary, the more seldom it stays there.
(3) For a multitrajectory ensemble, the most probable

transition point corresponds to the parameter λ∗ at which the
height of the basin h is in the same order of the noise ampli-
tude σ .

Simulation of a single-trajectory path is shown in Fig. 4(a)
with σ = 50. We can see that the transition occurs far before
the bifurcation point. For multiple trajectories, we simulate
105 paths to compute the probability density of the first jump
at each parameter. The numerical pdf of the transition point
is shown in Fig. 4(b). The most probable transition point
is marked as the critical point for ensemble transition. We
can observe that the transition time generally differs for the
single trajectory and multiple trajectories. The evolution of
probability density for x is plotted in Fig. 5.

3. Distribution transition under large noise

The third case is τtran � τergo � τλ, which means that
during the observation the state of the system has transited over
the whole reachable space many times. Here σ is relatively
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FIG. 4. Basin transition under medium noise. The dynamics is described by Eq. (2) with potential (7). We choose σ = 50, which is neither
too small nor too large relative to potential barrier. A basin transition path for a single particle and the first jump pdf for multiple particles are
shown in Figs. 4(a) and 4(b), respectively. In Fig. 4(a), the solid red line is the stable equilibrium points and dashed red line is the unstable
equilibrium points. The trajectory of a single particle is in blue. For the single trajectory, the critical point is at which it crosses the boundary of
a metastable well and moves to another metastable state. In Fig. 4(b), 105 trajectories are simulated and we record the first jump time for each.
The maximum of the density function is defined to be the critical point of ensemble transition, which is marked red in the figure (λ ≈ 0.33).
The definitions of critical transitions differ for single-trajectory transition and ensemble transition.

larger than the two former cases. As τergo is sufficiently small,
the system reaches its equilibrium quickly at every λ.

Because the system is ergodic with a fast time scale, the
single-path statistics in an O(1) time interval and multitra-
jectory statistics in space make no difference. To define the
critical point, we focus on the sudden qualitative change of the
equilibrium distribution.

Some theories have been proposed on studying the qual-
itative change of distributions. The noise-induced transition
theory utilizes the number and position of stable equilibrium
points as indicators, which are also the local maxima of pdf
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FIG. 5. The evolution of pdf of x with σ = 50 here for the
medium noise case. The solid blue line is the stable equilibrium points
and the dashed red line is the unstable equilibrium points. Insets are
pdfs of x at λ = −2.5, −1,0,1,2.5. By comparing the neighboring
pdfs at every λ, they exhibit the largest change before λ = 1 but
after λ = 0 (about 0.33 marked by the green triangle line), which
corresponds to the ensemble transition point.

[28]. The phase transition theory commonly uses an order
parameter, which is obtained by mean-field approximation or
other methods in lattice models [33,34].

However, using the number or position of equilibrium
points to measure qualitative change has some shortcomings.
For example, in Eq. (2) the equilibrium pdf can be given for
each fixed λ as

pst(x,λ) = 1

Zλ

e− V (x,λ)
σ , (9)

where Zλ is the normalization constant. A new stable equi-
librium appears at x = −1 when λ = −2, but the probability
around x = −1 is almost zero. Though the number of stable
fixed points has a sudden change, there is no considerable
change for the statistical quantities like the mean or variance.
In practice, it is difficult to detect.

The order parameters utilized in phase transitions like the
mean or variance are usually low-order approximations of
moments to the density function. For characterizing the dis-
tribution transition, KL divergence (relative entropy) between
two density functions is a good candidate of indicators, which
extends the approximation of pdf to the full order in terms of
moments.

We define the critical point in this case as the sudden
change point of distributions, and we take the Fisher infor-
mation metric (FIM) or KL divergence between two pdfs in
consecutive time as indicators. The FIM or its KL divergence
approximation as the indicator involves the information of
probability density in whole order.

We plot a simulation path with σ = 200 in Fig. 6(a). In
state space, it is difficult to observe any critical phenomenon.
The first jump probability density is shown in Fig. 6(b). Since
the system is ergodic, the first transition happens whenever the
bistable state occurs. The particles or states have been already
moving over the whole space, so the peak in Fig. 6(b) is not
meaningful. However, in probability space, we can plot the
evolution of the whole pdf at each parameter λ (see Fig. 7).
Thus we can compute the Fisher information metric in theory
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FIG. 6. Distribution transition under large noise. We choose σ = 200 which is relatively large to potential barrier. A single particle trajectory
and the first jump pdf for multiple particles are shown in (a) and (b), respectively. In (a), the solid red line is the stable equilibrium points, the
dashed red line is the unstable equilibrium points, and the blue line is a single trajectory of a particle. This trajectory is flickering all the time. In
(b), the first jump probability density is nearly a δ function at λ = −2, where bistability occurs. This peak point marked red is not meaningful
since the particle is always moving over the whole space even after that point.

and its KL divergence approximation by simulation. The result
is shown in Fig. 8, and the peak at λ = 0 is set to be the critical
point of distribution transition.

We call this regime distribution transition because if we let
σ → 0 and keep τergo � τλ in Eq. (2) [namely k → 0 faster
than η in Eq. (1)], we will have a double-peaked δ distribution
centered at two metastable states when λ = 0, but have only
one δ distribution for the other values of λ. In this case, the
FIM diverges at the critical point λ = 0. On the other hand, if
we let η → 0 faster than k, it corresponds to the small noise
case. A similar discussion can be referred to Ref. [35].

C. Extension to the general model

We have shown in Sec. II B that the general model Eq. (3)
or Eq. (4) also has the time scales τλ, τtran, and τergo. The main
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FIG. 7. The evolution of pdf with σ = 200 for the large noise
case. The solid blue line is the stable equilibrium points and the
dashed red line is the unstable equilibrium points. Insets are pdfs of x

at λ = −2.5, −1,0,1,2.5. The Fisher information metric for the pdfs
in consecutive time gives the critical λ = 0 with the biggest change,
which corresponds to the distribution transition point we defined
(green triangle line).

differences between Eqs. (4) and (2) are x, which is a vector
in high dimensions, and s(t), which is inhomogeneous in time.
In the case of s(t) ∼ O(1), we can perform a time rescaling
τ (t) = ∫ t

0 s(u)du to make λ change with the unit rate during
the observation. We then have the similar classification of
transitions as the one-dimensional case.

1. State transition under small noise

In this case, σ is relatively small such that τλ � τtran �
τergo. The critical transition point is defined as the bifurcation
point. Differing from the one-dimensional case, X t is now
in Rn. When we process the data, we should do clustering
just as the procedure in DNB theory [19,20,25]. The basic
assumption in DNB theory is that we can transform the system
into eigenmodes, in which the principal eigenmode bifurcates.
There are some but not all components related to the principal
eigenmode. Their variances and autocorrelations will increase
drastically when the system is close to critical transitions.
Moreover, the correlations among these components increase
fast while the correlations between this group and others
decrease to zero.

2. Basin transition under medium noise

In this case, σ is in a medium level such that τtran < τλ <

τergo. As discussed in the one-dimensional case, we have to
distinguish the single-trajectory transition and multi-trajectory
ensemble transition. For a single-particle trajectory, we set the
critical point at which the particle transits out of the basin of
metastable state. For ensemble transition, the transition point
is defined as the parameter with which the system achieves the
maximal escaping rate. The properties of the system near the
critical point are just extensions of the one-dimensional case.

3. Distribution transition under large noise

In this case, σ is relatively large such that τtran � τergo �
τλ. The system can reach its equilibrium fast and we get the
states distributed as pst at each λ. The ergodicity ensures us
no statistical difference between a single trajectory and the
ensemble of trajectories. As in the one-dimensional case, we
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FIG. 8. (a) The theoretical Fisher information metric (FIM) at each λ and (b) KL divergence of adjacent distributions with discretization.
The KL divergence is computed from the empirical distributions for each pair λ and λ + �λ. �λ = 10−2 and 104 trajectories are simulated to
estimate the distribution. We define the critical point as the peak of the curve, where the largest change of distribution occurs. The curve will
get more peaked when σ is smaller, while ergodicity is preserved.

define the critical point at which the equilibrium pdf has a
qualitative change or maximal change. We can quantify the
change using Fisher information metric and KL divergence
as an approximation. In high dimensions, the KL divergence
or FIM is difficult to be numerically computed precisely by
data. As we know, the KL divergence is affine invariant. We
can first use principal component analysis [41] to obtain the
principle components and then sum up the KL divergences in
each principal component to make the estimation.

Clearly, we can only observe the dynamics around the
original stable equilibrium before the state transition or basin
transition, but we can observe the dynamics around both
the original and the transited stable equilibria before the
distribution transition due to the ergodic condition. Thus, the
critical transition for the basin transition can be considered
as a conditional distribution transition, in contrast to the
distribution transition for the distribution transition, while the
state transition can be also considered as one extreme case of
the conditional distribution transition.

IV. INDICATORS AND PROPERTIES FOR EARLY
WARNING SIGNALS

With the previous discussion on our minimal model and
related extensions, we now aim to study how to make predic-
tions on the critical transition from the available information
in data.

A. Difference between a single trajectory
and a multiple-trajectory ensemble

Before discussing the indicators, we first explain the dif-
ferences between the single trajectory and multiple-trajectory
ensemble.

The key difference between the two concepts is whether
we focus on individual sudden change or parameter-induced
group change. Intuitively, transition for a single trajectory is
mainly an individual behavior, e.g., someone catches a cold.
While the ensemble transition for multiple trajectories is a
group behavior usually caused by the change of parameter
or environment, e.g., the breakout of influenza. The smaller

the external noise is, the less the difference between the two
behaviors is. When the noise tends to zero, the stochastic
dynamics degenerates to the deterministic case like Case I. On
the other hand, when the noise is sufficiently large such that
the system becomes ergodic quickly, the statistical behavior
in short time between these two is not remarkable and we are
in Case III. Thus the difference matters only in Case II with
medium noise.

The difference of the two behaviors is also embodied in
processing the data: The statistical quantities can be computed
at each instant for multiple trajectories, but the time windows
are needed for single-trajectory data.

B. Indicators and properties in different cases

Based on the analysis of our minimal model, we propose
several indicators in different cases. Though these indicators
have different forms, they are actually based on similar
mechanisms. We can divide those indicators into two classes:
signals in state space and signals in probability space.
Variance, correlation, and so on are among the former class,
and the latter includes KL divergence and FIM, etc. In different
cases, the difficulty in computing different indicators from the
data varies dramatically.

1. State transition case

The prediction problem of early warning signal has been
studied in vast literature in this case. The major mission is
to detect the bifurcation point before the system bifurcates.
Scheffer et al. presented an early work based on the critical
slowing down behavior [2]. Chen’s group extended it into
multivariate network and proposed the “DNB” (dynamical
network biomarker) indicator [19] or “DNM” (dynamical
network marker) [24] by further considering correlations
among the variables among a network. To make a long
story short, the most useful indicators are the variance and
correlation. Many other proposals can be found in Ref. [4].

Corresponding to the trajectory in Fig. 2, we compute its
variance through a moving time window. We can observe in
Fig. 9 that the variance of x increases drastically before the
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FIG. 9. Critical indicator—variance in Case I. The simulation
result is computed by using single trajectory in moving time windows.
We plot the curve (solid blue line) before the critical point (dashed
red line). The dramatic increase of variance is clearly observed.

critical point, i.e., the bifurcation point. The result will be
apparent if we compute via multiple trajectories.

2. Basin transition case

In this case, we distinguish the single trajectory and
multiple-trajectory ensemble, in contrast to the state transition.
The major mission is to detect when the single particle or many
particles get close to the boundary of a metastable basin.

For the prediction of a single-trajectory critical transition,
we propose the following indicator:

S(x,δ,N ) = |x − x̄N |
pN (x,δ)

, (10)

where x is the current particle position, x̄N is the mean position
by the previous N points, and pN (x,δ) is the percentage of
points in δ neighbor of x among the previous N points. The fact
that |x − x̄N | becomes larger and pN (x,δ) becomes smaller
near the transition point means that the particle is getting into
a place seldom visited before. Hence, the larger S is, the closer
the particle reaches the boundary of the attraction basin. Here
δ and N will be chosen according to the considered problem.

For the trajectory obtained in Fig. 4(a), the indicator S is
shown in Fig. 10. S increases indeed when approaching the
transition point, and each peak in the figure represents an
attempt to jump out.

For the ensemble transition, in which we define the critical
point as the instant when the system achieves the maximal
escaping rate, there seems no suitable indicators if only the
trajectories of particles which do not cross the boundary are
available. This is often the real case, especially in medical
examples. Although there are no clear rules of dynamics, our
simulations support that the critical transition point occurs
where σ has the same order as the depth of the basin. We
sampled 100 trajectories for each σ varied from 1 to 100 and
then plotted hV /σ for every σ in Fig. 11(a) where hV is the
barrier height when the trajectory transits across the boundary.
In Fig. 11(b), we simulate the dynamics Eq. (1) with potential
(6), where k varies from 10−3 to 102 and η varies from 10−6
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λ
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critical point

FIG. 10. Critical indicator—signal S [see Eq. (10)] in Case II.
The simulation result is computed using the single-trajectory data by
moving the time window. We take N = 104 and δ = 0.1. The highest
sharp peak (red point) is the transition point where the particle travels
across the boundary of the attraction basin.

to 102. The amount of 103 trajectories are simulated at each
parameter to compute hU/η, where hU is the barrier height at
the first transition point. The colored contour means that the
first transition is located in λ ∈ [−2,2], and the blank domain
means that either the particle walks around the whole space
before λ = −2 or it does not transit until λ = 2 (see bifurcation
diagram in Fig. 1). The Fig. 11(a) is a slice of Fig. 11(b) which
are marked by red line with square symbol. Both results in
Fig. 11 show that the particles prefer to jump when the barrier
height is close to the noise amplitude. These results are helpful
for understanding the critical transition pattern and providing
heuristics for constructing the indicators in the medium noise
case.

3. Distribution transition case

As discussed in the previous section, we define the critical
point in Case III as the instant in which the sudden change of
distribution occurs. The FIM or KL divergence of adjacent
distributions achieves maximum there. Hence, one natural
indicator is FIM or KL divergence, or we can take moments
as a cheap alternative. In the high-dimensional case, we take
the principal component analysis and make the sum of KL
divergences for the marginal distribution on each component.

We take a lattice model as an example to show the appli-
cability of the proposed indicators. The considered dynamics
has the following form [32,42,43]

dxi =
⎡
⎣f (xi) + 1

2
g(xi)g

′(xi) − D

N

∑
j∈N (i)

(xi − xj )

⎤
⎦dt

+ σg(xi)dwi, (11)

where N (i) is the neighbors of site i, N is the number of
nearest neighbors, σ is the amplitude of noise, D controls
the strength of spatial interaction, and wi(t) are independent
standard Brownian motions.
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FIG. 11. The ratio between the barrier height and noise amplitude when the first transition occurs. (a) hV /σ of various σ in dynamics Eq. (2)
with potential Eq. (7). (b) hU/η of various k and η in dynamics Eq. (1) with potential Eq. (6). Average is taken by 100 and 1000 trajectories
in Figs. 11(a) and 11(b), respectively. The blank domain in Fig. 11(b) means either the particle walks around the whole space before λ = −2
(top left blank) or does not transit until the bifurcation occurs at λ = 2 (bottom blank). Figure 11(a) is the slice marked by red line with square
symbols in Fig. 11(b). This shows the first transition usually happens when barrier height is in the same order of the noise amplitude.

We choose 10×10 square lattice in two dimensions,
D = 25,σ = 1, and

f (x) = ax + x3 − x5, g(x) = 1 + x2. (12)

We vary a from −2 to 0 with step size 0.1. In simulations,
�t = 10−4 and 106 steps are taken in each a. The system
achieves ergodicity for each parameter. The results of order

parameter |〈xi〉|, average of variances Var(xi) and average of
KL divergence on each site are shown in Fig. 12. The signals
at the critical point are clear.

C. Classification by noise-to-signal ratio

We have discussed about the models and transitions. But for
a specific problem, the way to identify the regime of a critical
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FIG. 12. Critical transition of a lattice model with large noise. The system Eq. (11) is ergodic in each parameter a. Figure 12(a) is a sketch
map of the dynamics on a 10×10 lattice. The absolute mean value Fig. 12(b), average variance of sites Fig. 12(c), and KL distance of adjacent
equilibrium distributions Fig. 12(d) are computed. The red points in the last three figures correspond to the critical transition point where a
sudden change of distribution occurs.
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transition is a nontrivial problem. The NSR can give heuristic
classification on this problem, though it is difficult to give an
exact judgment. In the model Eq. (2) with Eq. (7), we define
the NSR as

NSR = log
σ

μ
, (13)

where σ is the amplitude of noise and μ is the magnitude of
the characteristic potential energy barrier. To identify to which
regime the considered dynamics with different parameters
belongs, we do a large number of simulations and make
the grouping from the numerical behaviors of the sampled
trajectories. From the discussions in the previous subsection,
it is natural to make the following classification according to
the characteristics of the simulated path as

Case I: if the trajectory has only one transition point, which
is very close to the bifurcation point;

Case II: if the trajectory has only one transition point, but
it is far before the bifurcation point;

Case III: if the trajectory flicks over the whole space and
crosses the boundary between two attraction basins many
times.

We take the dynamics (2) with potential (7). When doing
the simulation, μ = 100 is fixed and σ varies. We simulate
trajectories for every NSR expressed by Eq. (13) from −4 to 1
with step size 0.1 and observe into which case the trajectories
fall. The results are shown in Fig. 13. In Fig. 13, we set each
case an number—1 for Case I, 2 for Case II, and 3 for Case III.
At each NSR from −4 to 1 with step 0.1, 100 trajectories
are simulated and classified. The average case number is

−4 −3 −2 −1 0 1

case I: 1

case II: 2

case III: 3

NSR = log10(σ/μ)

Case III

Case II

Case I

FIG. 13. Simulations to identify into which case the trajectory
belongs by the noise-to-signal ratio (NSR). The vertical axis shows
the classification according to the characteristics of sample paths
with different parameters: Case I is for small noise, in which the
only one transition point is near the bifurcation point; Case II is for
medium noise, in which the only one transition point is far before
the bifurcation point; and Case III is for large noise, in which the
trajectory flicks over the space. We set Case I to value 1, Case II to 2,
and Case III to 3. The NSR varies from −4 to 1 with step size 0.1, and
the blue circles are results of several trajectories corresponding to the
related NSR. The red line is the average result of 100 trajectories at
each NSR. In the transitional zones with intermediate NSR, we have
overlapping between regimes. From the figure, we can know how the
system evolves with the changing of NSR.

plotted by the red line. And the blue circles are results of
several trajectories. From these results, we can summarize the
following heuristic rules:

(i) When NSR � −2, i.e., σ/μ � O(10−2), the system
falls in Case I;

(ii) When NSR ∼ −1, i.e., σ/μ ∼ O(10−1), the system
falls in Case II with high probability;

(iii) When NSR � 0, i.e., σ/μ � O(1), the system falls in
Case III.

These observations may provide useful references for the
consideration of specific problems with a model as Eq. (1) or
Eq. (3).

V. CONCLUSION AND DISCUSSION

We studied critical phenomena or critical transitions with
both a minimal model and its generalized model. The analysis
covers both conceptual and computational aspects. One major
contribution in our paper is that we classify the critical
transitions into three types according to their time scales and
noise strengths, which are state transition, basin transition, and
distribution transition, corresponding to the small, medium,
and large noise cases respectively. In each case, we define the
critical transition and provide the early-warning indicator or
property. For the small noise case, variance and correlation are
good signals to predict the critical transition. For a medium
noise case with multiple particles, we find that the most
probable jumping point is located at which the potential barrier
has the same order as the noise amplitude. For large noise case,
KL divergence shows significant signals. We also proposed to
distinguish two concepts in the medium noise case, i.e., the
single-trajectory statistics and multiple-trajectory statistics.
These two concepts lead to different locations of transition
points in the medium noise, but they almost coincide in the
small and large noise cases. The simulations support our
theoretical results and the proposed indicators.

There are many related works considering the critical
tipping points in other ways. We next briefly discuss several
representative models and their relation with our work.

(a) R-tipping theory. Wieczorek et al. and Luke et al.
have studied the excitability and compost bomb instability
of dynamical systems [44,45]. From these works, Ashwin
et al. established a rate-dependent tipping (R-tipping) point
theory [46,47] which mainly focused on the changing rate of
the parameters. According to different rates of parameters,
the traceability of trajectories will suddenly change, and that
is where the R-tipping occurs. R-tipping may be found even
without bifurcation and noise. In our model [see Eq. (2)], we
have transformed the rate changing effect into the noise term.
We show that there are noise-induced transitions across the
basin of attraction without an R-tipping. Thus, the R-tipping
transition is a parallel theory with our framework, which
focuses on different aspects of critical phenomena.

(b) Sandpile model. The discrete sandpile model has been
long used in the modeling of earthquake and so on [48,49].
We can consider the sandpile model as a discrete situation
in our medium noise case where no parameters change and
τλ = +∞. The noise is set as adding a ball. We know the
critical point is the state when the number of balls becomes
closing to the threshold (N ) of a cell. Just as demonstrated in
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Fig. 11, the most dangerous time (the number of balls is N − 1)
is the state when the barrier height (N − the number of balls)
gets close to the noise amplitude (counts of ball added each
time, which is just 1). We can set the size of the largest cluster
of cells which have N − 1 balls as an order parameter. It will
be a good indicator to the critical corruption. In principle, our
idea or framework in the medium noise case is also plausible in
this discrete model, but more detail analyses are necessary for
future studies. A continuous sandpile model was also proposed
in 1996 [50], but the start point and equations differ from ours.

(c) Percolation models. Sornette et al. used different
models, i.e., Bohman-Frieze-Wormald [51] or the hierarchical
fiber bundle model [52,53], to consider the transition problem
in the percolation. They found several statistics which are
powerful in prediction based on the pdfs. Though the model
differs, we can consider that the system is in the situation
τergo � τλ. Thus, at any time the system is ergodic and we can
obtain the equilibrium pdfs. Many statistics can be computed
and used for prediction with these pdfs. Percolation models
are not in a SDE form but the classification also makes sense
for this case.

In our framework, some important questions remain to be
further studied in the future.

(i) Sampling frequency issue. Most of the results are
simulated with a fixed small k, which means that the parameter
λ changes very slowly. Although our theory still works for
large k, which is transformed to a different noise magnitude σ ,
the large-k case generally corresponds to very low sampling
size since the system varies too quickly in real time. We need a
high-frequency sampling to obtain sufficient information. This
generally imposes difficulty in real problems.

(ii) Time window issue for single-trajectory data. In deal-
ing with the single-trajectory data, we move the time window
to get the statistics. In general, the width of the time window
influences the final result. To make the result more accurate,
the width of the window should tend to zero. In this case,
more sample points in unit time are needed. Thus, a balance is
required in real situations.

(iii) More general bifurcation patterns. The bifurcation
we discussed so far is only for the codimension one case.
For codimension two or higher, the situation will be much
more complicated. Generally, it is difficult to know external
or internal parameters simply based on the observed data.
Besides, although the indicators in small noise case can be
used in both catastrophic and noncatastrophic cases [54], the
signal is not so significant in the latter situation.

(iii) Indicators for transition. So far we have good indica-
tors for Case I with small noise. For Case II, the proposed
indicator for the single-trajectory critical transition has a
clear theoretical background but needs further tests and
improvements. The best way to set the parameters like the
number of points N or neighbor size δ is a practical issue.
For Case III with large noise, one may encounter the problem
whereby the noise dominates the signal if the noise magnitude
is too large big.

(iv) More general models. As known to us, R-tipping
theory, the sandpile model, the percolation models, and many
others cannot be simply written in the form of an SDE with
white noise perturbations. However, their critical phenomena
and classifications share many similarities with our model.
More general models need to be established to consider these
models in a unified framework.

These problems challenge future research on the study of
critical transition theory.
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