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Local structure of current fluctuations in diffusive systems beyond one dimension
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In order to illuminate the properties of current fluctuations in more than one dimension, we use a lattice-based
Markov process driven into a nonequilibrium steady state. Specifically, we perform a detailed study of the
particle current fluctuations in a two-dimensional zero-range process with open boundary conditions and probe
the influence of the underlying geometry by comparing results from a square and a triangular lattice. Moreover,
we examine the structure of local currents corresponding to a given global current fluctuation and comment on
the role of spatial inhomogeneities for the discrepancies observed in testing some recent fluctuation symmetries.
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I. INTRODUCTION

The understanding of nonequilibrium physics is of great
relevance for many scenarios ranging from granular materials,
chemical reactions, and molecular motors to traffic jams [1–4].
In particular, much interest is directed towards the study of
the probability of rare events or trajectories in stochastic
models. This has led to the establishment of fluctuation
theorems, which are some of the most general results for
systems out of equilibrium (for reviews see [5–7]). Within
the stochastic framework, interacting particle systems have
enjoyed widespread use to model nonequilibrium steady states
(NESSs). Most such models are one dimensional; we expect
a richer phenomenology in more than one dimension just
as higher-dimensional equilibrium systems are qualitatively
different from their one-dimensional counterparts.

The study of NESSs in more than one dimension has
led to the recent discovery of symmetries for global current
fluctuations in macroscopic systems [8,9]. In particular,
by considering a diffusive lattice gas on a d-dimensional
(hypercubic) lattice of side length L, fluctuation relations were
obtained for a time-averaged global current defined as

J = 1

t

∫ t

0
dτ

∫
�

d r j (r,τ ). (1)

Here the local current j (r,t) is assumed to obey the continuity
equation and a diffusive scaling is applied. Namely, space
is scaled to � = [0,1]d and time is scaled by 1/L2. Then,
according to the macroscopic fluctuation theory (MFT), the
probability of observing a rare global current can be calculated
from the minimization of an action functional that depends on
the local value of the current and density [10,11]. Physically,
this means that out of all the possible ways to generate a
fluctuation, the overwhelmingly most likely to be realized
corresponds to a specific optimal density profile (ODP) and op-
timal current profile (OCP). Under some hypotheses, notably
a spatially homogeneous OCP, it is possible to manipulate the
MFT action functional to obtain that global current fluctuations
satisfy the relation

lim
tLd→∞

− 1

tLd
ln

P ( J ′,t)
P ( J,t)

= E · ( J − J ′) (2)
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for isometric fluctuations such that

|J | = |J ′|. (3)

Here P ( J,t) is the probability of observing the global current
fluctuation J during a time interval t , E is a constant that
depends on boundary and bulk driving of the system, and
| · | denotes the modulus. Note that this isometric fluctuation
relation (IFR) reduces to the renowned Gallavotti-Cohen-type
fluctuation symmetry [12–15] for antiparallel currents, but
it also relates “in a surprisingly simple manner” currents in
different directions [8]. Furthermore, in [9] the IFR was gener-
alized to anisotropic systems, where some discrepancies were
also noted between the global current fluctuations predicted
to satisfy the symmetry at a macroscopic level and those
in models on (large) finite-size lattices. Remarkably, these
fluctuation relations have recently been tested experimentally
as reported in [16], where fluctuations of the velocity of
a tapered rod are shown to be well approximated by the
anisotropic generalization of the IFR.

In this paper we use a continuous-time Markov process
driven by the boundaries into an NESS in order to study
the detailed properties of current fluctuations in more than
one dimension. In particular, a two-dimensional zero-range
process (ZRP) is solved to study (a) the influence of the
underlying lattice geometry on the probability of a global
current (and density) fluctuation and (b) the most likely
local current structure of the OCP associated with a given
global current fluctuation. Specifically, we test whether the
hypothesis of a homogenous OCP may have to be adjusted
for some systems with open boundary conditions, explaining
the above-mentioned discrepancies observed for rare global
currents.

The paper is structured as follows. In Sec. II we introduce
some definitions from large deviation theory commonly used
in the study of NESSs. In Sec. III we explain the so-called
quantum Hamiltonian formalism that we employ to study the
stationary state and the probability of measuring rare particle
current fluctuations. In Sec. IV we solve exactly an anisotropic
two-dimensional (2D) ZRP on square and triangular lattices,
allowing us to analyze fluctuations and compare the effect
of the underlying geometry as the system size increases. In
Sec. V we refine our calculations to show that local current
fluctuations have a more complex structure than implicitly
assumed in some other works and highlight the relevance of
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our results for the anisotropic fluctuation relation (AFR) and
the original IFR. In Sec. VI we summarize our findings and
comment on some remaining open questions. In addition, we
include various technical details in a series of Appendices.

Note that some of these results were already presented
in a briefer work [9]; significantly, we offer here convincing
evidence (Sec. V) to support the conjecture made there on the
local structure of current fluctuations. In addition, we present
an extension to the triangular lattice (Sec. IV) and provide
many further calculational details including a more explicit
derivation of the AFR than the one shown in [9] (Appendix A)
and the corresponding macroscopic optimization argument for
the 2D ZRP with nondecreasing interactions (Appendix C).

II. LARGE DEVIATION THEORY: CURRENT
FLUCTUATIONS

One of the main goals in this paper is to study the structure
of the current profiles that yield a particular global current
fluctuation. However, our results are directly related to the
accuracy of the IFR and the AFR for open systems. In this
section we introduce these two fluctuation relations, beginning
from the framework of large deviation theory.

The study of NESSs involves understanding the probability
of measuring rare currents. In a lattice-gas model for example,
a current is understood as the net number of particles that jump
between two adjacent sites in a positive direction (arbitrarily
chosen) during a given time window. When a system is in
an NESS the mean flux of particles is generally a constant
different from zero. Moreover, it is known that in many
cases such currents obey a large deviation principle (LDP),
for instance, the global current J in Eq. (1) has the limiting
behaviour

ê( J) = lim
tLd→∞

− 1

tLd
ln P ( J,t), (4)

where ê( J) is a rate function (RF) encoding the probabil-
ity P ( J,t) of observing a given current in the long-time
limit [17,18].

In order to calculate the RF, it is useful to compute first the
scaled cumulant generating function (SCGF)

e(λ) = lim
tLd→∞

− 1

tLd
ln〈exp(−tLdλ · J)〉, (5)

where λ is a vector conjugate to J and 〈·〉 denotes the
expectation value. It is well known that when the SCGF is
differentiable we can compute the RF using the Gärtner-Ellis
theorem, which relates these functions via the Legendre
transform [17]

ê( J) = max
λ

{e(λ) − λ · J}. (6)

As we will see below, much can be learned from the SCGF
about the probability of the currents; first, in the rest of this
section we recall some fluctuation relations, which will be
discussed later in the paper.

At this point it is possible to use the LDP (4) to rewrite the
fluctuation relation (2) in terms of the RF as

ê( J) − ê( J ′) = E · ( J ′ − J) (7)

for global currents satisfying |J | = |J ′|. Here the constant
E can be seen as an external field driving the system out of
equilibrium. Moreover, this also implies a symmetry at the
level of the SCGF, which is expressed simply as

e(λ) = e(λ′) (8)

for values of λ such that

|λ − E| = |λ′ − E|. (9)

Here we note that Eq. (9) also corresponds to the equation of
a circle for the conjugate parameter of the current, but with
the center at the constant field E. As mentioned above, such
a symmetry yields, as a special case, the Gallavotti-Cohen-
type relation for forward and backward currents. The AFR
(derived in Appendix A) is a generalization of Eqs. (7)–(9)
where ellipses, instead of circles, relate current fluctuations in
different directions.

In the following section we explain how to study fluctu-
ations of a similar space-integrated global current, in finite
(microscopic) ZRPs. Later we will explain how to scale such
a current to compare the results with the ones obtained from a
macroscopic point of view.

III. ZERO-RANGE PROCESS: MICROSCOPIC APPROACH

A. Definition of the model

The ZRP is a model of interacting particles introduced
in [19] and since studied on general lattices [20,21]. Particles
are allowed to accumulate up to any non-negative number on
each site of the lattice (such as that shown in Fig. 1). The
topmost particle of each site jumps to a neighboring site after
an exponentially distributed waiting time, where the hopping
rate is proportional to an on-site particle interaction factor wn.
As the name of the model suggests, wn depends exclusively
on the total occupation n of the departure site. Indeed, such an
interaction can cause a phase transition where a macroscopic
proportion of particles in the system accumulates on a single
site of the lattice [22,23]. Similar condensation phenomena are
of wide interest in connection with granular systems [24] and
wealth models [25], among other topics.

In order to study this zero-range model we employ a general
framework [26], referred to as the quantum Hamiltonian
formalism, in which the master equation of the system is
written in a form resembling a Schrödinger equation. Within
this approach one can compute the probability of particle
configurations in the system, as well as other important
quantities, such as the time-averaged particle current.

We begin by defining the configuration n = (n1,n2, . . . ,nN )
containing the number of particles on each of the N sites of
the lattice. Then each configuration n is associated with an
element of a basis |n〉 to construct the probability vector

|P 〉 =
∑

n

P (n)|n〉, (10)

where P (n) is the probability at a given time of finding the
system in configuration n.
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(a) (b)

FIG. 1. Different underlying geometries: (a) square lattice and (b) triangular lattice, with periodic boundary conditions in the vertical
direction (y direction) and open boundary conditions in the horizontal direction (x direction). Sites are identified by their row (y coordinate,
first subindex) and column (x coordinate, second subindex) as shown in the insets. In the triangular geometry, sites on the same row are joined
by a zigzag line. In the microscopic model open boundaries are specified by the input rates (α and δ) and the output rates (γ and β) for left and
right boundaries, respectively (see also Fig. 7); the input rates can be related to the left and right reservoir densities ρl and ρr .

The time evolution of the probability vector is described by
the master equation

d|P 〉
dt

= −H |P 〉. (11)

Here the stochastic generator H , also called the Hamiltonian,
contains the hopping rates between all states of the system and
can be written in terms of the ladder operators

a+
i =

⎛
⎜⎜⎝

0 0 0
1 0 0 · · ·
0 1 0

...
. . .

⎞
⎟⎟⎠, a−

i =

⎛
⎜⎜⎝

0 w1 0
0 0 w2 · · ·
0 0 0

...
. . .

⎞
⎟⎟⎠,

(12)
which act exclusively on the probability subspace correspond-
ing to the ith component of the configuration vector.

On each lattice shown in Fig. 1, particles from the bulk jump
with rates pk and qk in the positive or negative k direction
(respectively), as indicated by the insets. A particle jump is
represented in the quantum Hamiltonian formalism by the
simultaneous annihilation and creation of one particle, at the
departure and target sites, respectively, with the operators (12)
times the corresponding hopping rate. Furthermore, particles
are injected at constant rates αk and δk or extracted with rates
γk and βk , both at the left and right boundaries, respectively.

Note that for the two-dimensional systems we study, it is
convenient to identify sites and corresponding ladder operators
with two subindices as done in Appendix B, where we
explicitly show the Hamiltonians corresponding to the square
and triangular lattices [Eqs. (B1) and (B3), respectively]. We
now turn to study the time-independent solution of (11), i.e.,
the steady state.

B. Steady-state solution

Typically, to drive a system out of equilibrium, we let it
interact with more than one reservoir and expect it to reach

an NESS in the long-time limit. In the present context, by
considering a ZRP with open boundary conditions where the
input and output rates are different at the two borders, we
expect the system to approach a time-independent solution
with constant mean current through the system. This means
that the left-hand side (LHS) of (11) vanishes, leaving us with
the eigenvalue equation

H |P ∗〉 = 0, (13)

implying that the stationary state |P ∗〉 is the eigenvector with
eigenvalue zero. Similarly to some other interacting particle
models, for the ZRP with open boundaries the vector |P ∗〉 is
given by the product measure [23,27]

|P ∗〉 = |P ∗
1 〉 ⊗ |P ∗

2 〉 ⊗ · · · ⊗ |P ∗
N 〉, (14)

i.e., the probability distribution factorizes over the sites. For
the ZRP, it can be shown that the marginal for the ith site is

|P ∗
i 〉 =

∑
ni

P ∗
i (ni)|ni〉, (15)

where the probability of finding ni particles on site i is given
by [23]

P ∗
i (ni) = Z−1

i z
ni

i

ni∏
j=1

w−1
j . (16)

Here zi is the fugacity of site i and Zi is the grand canonical
partition function

Zi =
∞∑

j=0

z
j

i

j∏
n=1

w−1
n . (17)

Note that for some choices of the interaction term wn the radius
of convergence zmax of the sum (17) may be finite. Within the
range of values where the partition function is well defined,
the site densities are related to the fugacities via the equation

ρi = zi

∂ ln Zi

∂zi

. (18)
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Outside this range, the diverging Zi corresponds to the
accumulation (condensation) of an arbitrarily large number
of particles on site i. Here we aim to study current fluctuations
within the fluid regime of the ZRP (i.e., no condensation); for
this purpose, it is sufficient to consider wn as an increasing
function of the number of particles. As in the one-dimensional
ZRP with open boundaries [23], it turns out that the fugacities
are independent of wn. However, Eq. (18) will become relevant
when we study the density profile related to a given current
fluctuation [28].

In practice, to compute the fugacities we note that the cre-
ation and annihilation operators affect only the corresponding
site marginal of the stationary state eigenvector according to

a+
i |P ∗

i 〉 = z−1
i di |P ∗

i 〉, (19)

a−
i |P ∗

i 〉 = zi |P ∗
i 〉. (20)

Here we have defined the diagonal matrices di with elements
djk = wjδj,k , where w0 = 0 by definition and δj,k is the
Kronecker delta. Then, for a lattice of N sites, Eq. (13) can
be reduced using (19) and (20) to a system of N coupled
equations for the fugacities of the system. Note that, in
this framework, conservation of probability implies that the
corresponding left eigenvector has every component equal to
unity; we denote such an eigenvector by 〈1|.

C. Current fluctuations

In addition to the probabilities of configurations, it is also
possible to study the probabilities of fluctuations of particle
currents within the system. Specifically, our goal is to quantify
the probability that the time-averaged number of particle
jumps between nearest-neighbor sites, in the whole lattice or
a subset of it, attains a given rare value. This means that we
have to modify the quantum Hamiltonian to count the number
of particles that jump within the lattice during the observation
time interval.

To avoid confusion with the macroscopic current, we will
use the variable I to denote the space-integrated microscopic
current measured across the lattice. Later we will clarify how
to rescale this current to compare it with the macroscopic
approach, but first we explain how the current is constructed.
We define a particular time evolution of the system as the set
of configurations {σ } = {σ0,σ1, . . . ,στ } visited by the system
during the time interval [0,t]. In one dimension it is clear
that the net number of particle jumps is counted with an
antisymmetric function; we let �σi+1,σi

take the value +1 when
particles jump forward and −1 when particles jump backward
anywhere in the lattice (for a more general case see, e.g., [29]).
This way, the space-integrated but time-averaged current in one
dimension is defined as the sum

I (t,{σ }) = 1

t

τ−1∑
i=0

�σi+1,σi
. (21)

In higher-dimensional lattices, we will be interested in a
similar vectorial variable with component Ik(t,{σ }) to count
the number of jumps in the k direction. For now we keep
the one-dimensional notation in order to demonstrate the
framework.

In analogy to the macroscopic case, to compute the
microscopic RF

êL(I ) = lim
t→∞ −1

t
ln P (I,t), (22)

it is useful to define first the SCGF

eL(λ) = lim
t→∞ −1

t
ln〈exp(−tλI )〉. (23)

It can be shown that the average on the right-hand side (RHS)
of this relation can be written as 〈exp(−tĤ )〉, where Ĥ is
a modified Hamiltonian. In order to obtain Ĥ , we have to
multiply the terms of H corresponding to particle transitions
by exp(−λ) for jumps in the positive direction and by exp(λ)
for jumps in the negative direction [30].

In cases when the eigenvalue spectrum of Ĥ is gapped, the
calculation of the SCGF can be done by noticing that in the
long-time limit the exponential of the lowest eigenvalue ζ (λ)
dominates the average (23). This leads to the result

eL(λ) = ζ (λ), (24)

where we have assumed that the prefactors arising from
the eigenstate decomposition are finite. Breakdown of this
condition signifies condensation.

Furthermore, the right ground-state eigenvector |ψ〉 turns
out to have the same form as the stationary state (14)–(17)
but with some modified fugacities ẑi(λ). In principle it is
possible to calculate exactly the modified fugacities |ψi〉 by
using relations analogous to Eqs. (19) and (20), allowing us
to determine also the SCGF. Notice that the lowest eigenvalue
does not vanish in general. Indeed, one can verify consistency
with the stationary state by substituting λ = 0, for which the
eigenvalue does become zero.

Finally, the RF is calculated via a Legendre transform
similar to Eq. (6) but for microscopic currents. We remark
that when the transform cannot be computed analytically, we
can use the implicit relations

I = deL(λ)

dλ
, λ = −dêL(I )

dI
(25)

to calculate it numerically.
To obtain the density profile that gives rise to these currents,

we have to compute the mean local occupation 〈ni〉 taking
into account the dynamics of the modified Hamiltonian. To
do this, we need both left and right modified eigenvectors
corresponding to the ground-state eigenvalue. The left (row)
eigenvector 〈ψ | is again a product with factors denoted by
〈ψi | = (1,z̃i ,z̃

2
i , . . .). To calculate the left fugacities z̃i(λ)

we use the modified Hamiltonian on 〈ψ |, where the ladder
operators act according to the relations

〈ψi |a+
i = 〈ψi |z̃i , (26)

〈ψi |a−
i = 〈ψi |z̃−1

i di . (27)

Here the dependence on λ is left implicit; this is done from
now on for both z̃i and ẑi .

Using Eqs. (26) and (27), the left fugacities are obtained in
terms of the lattice parameters as outlined in the framework
above for the right eigenvector. Note that the components of
the left and right eigenvectors are not the same in general.
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Moreover, the typical density at site i associated with a given
current fluctuation can now be explicitly calculated using
the definition ρi(λ) = 〈ψi |ni |ψi〉, where ni is the diagonal
operator for the number of particles on site i. This leads
to a relation between densities and fugacities similar to the
grand canonical identity (18) for the steady state, but with
the replacement of zi by z̃i ẑi . In particular, for the interaction
wn = n the site density is determined by ρi(λ) = ẑi z̃i , which
reduces in the stationary state to ρi(0) = zi since z̃i equals
unity for λ = 0. For bounded wn, the product 〈ψ |ψ〉 might
diverge, which again generically indicates condensation [30].

In the following we show how to extend the formalism
presented here to study the ZRP on different 2D lattice
geometries. In particular, we want to study the influence of
the underlying lattice structure on current fluctuations in large
finite lattices. To do this, we will modify the Hamiltonians with
factors exp(∓λk) to count simultaneously the number of jumps
along the corresponding positive or negative k directions.

Specifically, the modified Hamiltonians for the systems
shown in Fig. 1 are given explicitly by Eq. (B2) (with λ̃y = 0)
for the square lattice and by Eq. (B4) for the triangular lattice.
In this manner, for fixed lattice sizes, we will compute the
SCGF

eS(λ) = lim
t→∞ −1

t
ln〈exp(−tλ · I)〉 (28)

for the square geometry and

eT (λ1,λ2,λ3) = lim
t→∞ −1

t
ln〈exp[−t(λ1,λ2,λ3) · (I1,I2,I3)]〉

(29)

for the triangular geometry. To avoid confusion, from now
on we will use bold characters to denote vectors in Cartesian
coordinates and we will write explicitly the components of the
variables in the triangular lattice.

IV. EFFECT OF LATTICE GEOMETRY ON CURRENT
FLUCTUATIONS

It is known that in some cases the underlying geometry in
lattice-based models can have a significant effect on the results
obtained from a microscopic point of view. For example, in
a different context, at the level of the universality of phase
transitions in equilibrium systems, some differences were
found numerically between square and triangular lattices [31]
and later predicted theoretically [32]. Here we use the quantum
Hamiltonian formalism to calculate the RF of the global
current in the two geometries shown in Fig. 1 and thus
investigate the influence of the lattice on the dynamical
properties of the ZRP.

One reason we are interested in the RFs of particle current
fluctuations and their associated ODPs is to confirm that the
expressions from both lattices converge to the same function
and recover the hydrodynamic result under the appropriate
scaling. We will give more details of the scaling in Sec. IV C,
but first we calculate the SCGF for finite lattices using the
microscopic approach introduced above.

A. General solution on square and triangular lattices

As mentioned above, to calculate the probability of fluctua-
tions of the global current, we have to measure the number
of jumps throughout the lattice in the time interval [0,t].
The modified eigenvector |ψ〉 associated with the lowest
eigenvalue of the modified Hamiltonian Ĥ obeys relations
analogous to (19) and (20) with the modified fugacities ẑj,i .

For each lattice we apply the corresponding Ĥ [Eq. (B2)
or (B4)] to |ψ〉 and use the eigenvector condition to obtain that
the coefficients of the matrices dj,i in the resulting expression
have to vanish. This leads to the recursion relation for the
modified fugacities of the right eigenvector

Qẑj,i+1 + (Y − R)ẑj,i + P ẑj,i−1 = 0 (30)

with boundary conditions

Qẑj,2 + (Y − Rl)ẑj,1 + Al = 0,
(31)

Ar + (Y − Rr )ẑj,L + P ẑj,L−1 = 0

for the left- and right-hand sides, respectively. Here the
uppercase parameters for the triangular lattice correspond to
the effective bulk rates

P = p2e
−λ2 + p3e

−λ3 , (32)

Q = q2e
λ2 + q3e

λ3 , (33)

Y = p1e
−λ1 + q1e

λ1 , (34)

the boundary injection rates

Al =
2∑

k=1

αke
−λk , (35)

Ar =
2∑

k=1

δke
λk , (36)

and the site exit rates

Rl =
3∑

k=1

pk + q1 + γ2 + γ3, (37)

Rr =
3∑

k=1

qk + p1 + β2 + β3, (38)

R =
3∑

k=1

(pk + qk). (39)

It can be checked that the same difference equation and
boundary conditions are obtained for the square lattice with
coefficients

P = pxe
−λx , Rr = β + qx + py + qy,

Q = qxe
λx , Y = pye

−λy + qye
λy ,

R = px + qx + py + qy, Al = αe−λx ,

Rl = px + γ + py + qy, Ar = δeλx . (40)

Here we have omitted the subindices of the boundary parame-
ters as particle jumps in and out of the system contribute only
to the current in the x direction.
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We make use of the periodic boundary conditions to argue
that we only have to solve Eqs. (30) and (31) for a single row.
In other words, assuming the fugacities are invariant in the y

direction, the system can be treated as a quasi-one-dimensional
chain. The difference equation (30) can be solved exactly, but
the expressions are too cumbersome to handle; in practice we
use a computer algebra package to calculate exact numerical
values for the modified fugacities. An analogous calculation
is required to find the components of the left eigenvector 〈ψ |
using relations (26) and (27). As we will demonstrate, the
seemingly technical analysis of this eigenproblem allows us
to investigate both the probability of given current fluctuations
(since the eigenvalue generically gives the SCGF) and the
mechanisms leading to them (since the modified fugacities
can be related to densities).

The results of the following sections are based on the
fact that the ground state of the modified Hamiltonians (B2)
and (B4) for these lattices can straightforwardly be written in
terms of the modified fugacities such that the SCGF for the
triangular lattice is given by

eT (λ1,λ2,λ3) = L

3∑
k=2

(αk + δk − γke
λk ẑ1 − βke

−λk ẑL), (41)

whereas for the SCGF of the square lattice we have

eS(λ) = L(α + δ − γ eλx ẑ1 − βe−λx ẑL). (42)

Note that, due to the symmetry imposed by the periodic
boundary conditions in the y direction, only the second
subindex, related to the x direction, is needed to identify
the fugacities. Finally, as mentioned above, we can calculate
the average 〈ψ |ni |ψ〉 with the modified eigenvectors, which
corresponds to the ODP from a microscopic point of view.

B. Matching diffusive processes in square
and triangular lattices

Before we can compare the solutions obtained from the
square and triangular lattices, it is necessary to choose carefully
the bulk and boundary hopping rates in order to achieve an
equivalent behavior in the two systems.

First, since we are interested in modeling diffusive dy-
namics in the hydrodynamic limit, we consider symmetric
hopping rates qk = pk . Additionally, we match the extraction
boundary rates to the bulk hopping rates γk = βk = pk so that
the boundaries act simply as reservoirs.

Now, to obtain a mapping for the bulk hopping rates
between the triangular and square lattices, we need to equate
the particle transport, bearing in mind the lattice spacing. In
other words, for our choice of diffusive dynamics, we have
to equate the mean square displacement in the two lattices.
Mathematically, this implies that the hopping rates of the
triangular lattice are mapped to the square lattice via the
relations

px = p2 cos2 φ + p3 cos2 φ,
(43)

py = p1 + p2 sin2 φ + p3 sin2 φ,

where φ = π/6.
To obtain diagonal matrices for the diffusion and mobility

coefficients on the triangular lattice, as required for the process

on the square lattice, we need to identify p3 = p2. Such a
choice of hopping rates leads to the simplified mapping

p1 = py − px

3
, p2 = 2px

3
, (44)

px = 3p2

2
, py = p1 + p2

2
. (45)

Now we can check that for an isotropic choice of hopping
rates in the square lattice (i.e., py = px), our transformations
yield isotropic rates in the triangular geometry. Similarly, we
can use (44) to confirm 2(px + py) = 2(p1 + p2 + p3), so the
exit rate from a bulk site is the same in both lattices.

Similar reasoning can be used to determine the mapping of
the boundary rates, which yields the analogous expressions

αk = 2α

3
, δk = 2δ

3
. (46)

These relations conserve the injection-extraction ratios
α/px = α2/p2 = α3/p3 (and analogously for the RHS bound-
ary), which is equivalent to having reservoirs with the same
fugacity zl = αk/pk and zr = δk/pk for both lattices.

Using the transformation relations (44) and (46), particle
diffusion on the two lattices can be related. To convert
current fluctuations in the triangular lattice to Cartesian
coordinates, we have to specify how to count particle jumps
with the quantum Hamiltonian formalism. An appropriate
relation between the triangular and square geometries can be
obtained by noticing that currents in the triangular lattice have
components

jx = j2 cos φ + j3 cos φ,
(47)

jy = j1 + j2 sin φ − j3 sin φ.

Then we can use the chain rule on Eq. (25) together with the
relations (47) to obtain

λ1 = λy,

λ2 = λx cos φ + λy sin φ, (48)

λ3 = λx cos φ − λy sin φ,

which are the appropriate conjugate variables to compare the
number of particle jumps on a triangular lattice with those on
a square lattice.

C. Hydrodynamic limit and optimal density profiles

In this section we focus on explaining the scaling of our
results obtained from the microscopic approach with the goal
of determining the influence of the underlying lattice geometry
for large systems. We will also compare the microscopic results
with those obtained in Appendix C using the MFT. We begin by
discussing the scaling for the SCGF (28) of the square lattice,
as it is more intuitive than the triangular geometry, which will
be explained immediately after. Later, we will explain how to
scale the density profiles, which is done in a similar way.

As hinted at in the introduction, to obtain the hydrody-
namic limit of diffusive systems starting from a microscopic
approach, a spatial and a temporal rescaling are needed.
Specifically, space is scaled as 1/L and time as 1/L2,
where L is the linear size of the microscopic system (see,
e.g., [33]). In the quantum Hamiltonian formalism, this leads
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to dividing the conjugate parameters by the number of bonds
in the corresponding direction, as we measure particle jumps
throughout the lattice. In d dimensions, the temporal and
spatial rescalings also combine to give a factor of L2−d

multiplying the SCGF [34], but this reduces to unity for our
square 2D system. Hence we expect the macroscopic SCGF
e(λ) to be given by the limit

e(λ) = lim
L→∞

L + 1

L
eS

(
λx

L + 1
,
λy

L

)
. (49)

Here we have included an additional factor of (L + 1)/L to
remove finite-size effects in the x direction of small lattices;
the large-L limit is clearly unaffected by this.

To obtain the correct scaling for the triangular lattice, we
have to remember that the length of the lattice in the x direction
is smaller than in the square lattice, being multiplied by a factor
of cos φ. This can be compensated for by modified-length
spatial and temporal scalings, leading us to the limit

e(λ) =

lim
L→∞

L + 1

L cos2 φ
eT

(
λ1

L cos φ
,

λ2

(L + 1) cos φ
,

λ3

(L + 1) cos φ

)
,

(50)

where λ1, λ2, and λ3 are given by (48). We have checked
that the additional cos φ factors in the argument of eT can be
removed by considering a lattice with L/ cos φ sites in the x

direction (i.e., spatial length L) and L sites in the y direction.
However, this produces more complicated finite-size effects
since the number of sites has to be rounded to an integer.

In the present work we show the results for the interaction
wn = n, but we have checked also the case with wn = w

(w constant) within the fluid regime, which leads to similar
findings. Indeed, the SCGF is invariant with respect to the
interaction as long as there is no condensation [35], but the
relation between the density and the fugacity (and hence
between boundary rates and reservoir densities) does change.
The special case of wn = n is particularly illuminating because
densities then turn out to be proportional to fugacities, so
calculations of the latter offer direct physical insight into the
optimal profiles. In addition to verifying the hydrodynamic
limit with the above scaling, studying the SCGF also provides
a convenient way to test the AFR from a microscopic point of
view.

In Fig. 2 we plot the RHS of (49) and (50) for increasing
lattice sizes and values of λ for which Eq. (A16) is satisfied.
We assume bulk and boundary hopping rates

α = 1/2, γ = β = 1, δ = 1/10,
(51)

px = qx = 1, py = qy = 1/2,

which make particle diffusion anisotropic; of course, it is
also possible to test the IFR for isotropic rates. The rescaled
microscopic results are compared with the numerical Legendre
transform of the macroscopic RF obtained in Appendix C
with reservoir densities ρl = α and ρr = δ. We can see that
both microscopic SCGFs converge to the same function when
L → ∞. As might be expected (due to a larger number of
bonds), with the triangular lattice the SCGF has a quicker
convergence towards the hydrodynamic limit than with the

FIG. 2. The SCGF for λ(θ ) on concentric ellipses around E =
1/2[ln(αβ/γ δ),0] with principal axes in the x direction of length
rx = {0,0.266,0.533,0.8} from top to bottom for a square lattice
with L = {6 (�),10 (•),105 (•)}, a triangular lattice with L =
{6 (
),10 (©),105 (�)}, and the macroscopic approach (solid line).
Hopping rates are given by Eq. (51).

square lattice. However, it can also be observed that this limit
does not agree with the result obtained using the MFT under
the assumption of homogeneous OCPs.

Turning our attention to the AFR, note that in Fig. 2 we
parametrize in polar coordinates (with angle θ ) the values λ

for ellipses centered at

E = 1

2

(
ln

(
αβ

γ δ

)
,0

)
(52)

on which the SCGF is predicted to be constant. As shown
in [9], here the AFR is satisfied by the macroscopic results
for all points on the ellipse but only for certain angles from
the microscopic point of view. Importantly, agreement in the
hydrodynamic limit of the microscopic SCGFs of the two
lattices indicates that the discrepancies are not related to the
underlying structure. We continue to investigate further the
ODP from both approaches.

The microscopic ODP is obtained as explained in Sec. III,
but also has to be rescaled before we can compare it with
the macroscopic ODP computed in Appendix C. First, notice
that within the modified Hamiltonian dynamics the ODP at
site i is given by the mean occupation 〈ni〉 and has to be
compared with the macroscopic ODP at x = i/L. Second,
scaling of the conjugate variables is done the same as in
the arguments of (49) and (50). This way, we are able to
compare ρS(λx/(L + 1),λy/L) and ρT (λ1/L cos φ,λ2/(L +
1) cos φ,λ3/(L + 1) cos φ) for the square and triangular lat-
tices, as well as ρ( J(λ)) for the macroscopic approach.

Since the ODP has no dependence in the y direction (due
to periodic boundary conditions), in Fig. 3 we plot the x

projection of the profiles for two values of λ that are predicted
to satisfy the AFR. We have used the same bulk and boundary
parameters as for the SCGFs plotted in Fig. 2. It can be seen
from Fig. 3(a) that our calculations for both lattices match
closely the macroscopic solution (solid line) for λ in the
x direction even for lattices with L = 10. In Fig. 3(b) we
choose a current in the y direction only, specifically a current
of appropriate magnitude such that the macroscopic ODP
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FIG. 3. Optimal density profiles on (L × L)-site lattices. The
hopping rates are α = 1/2, δ = 1/10, px = 1, py = 1/2, and wn = n.
The ODP from the microscopic approach on a square lattice (�) and
a triangular lattice (
) is shown with symbols of decreasing size
for L = {10,20,105}; the ODP from macroscopic theory is shown
with a blue solid line. (a) Current fluctuation in the x direction:
λ � (−0.6953,0), i.e., J � (0.9523,0). (b) Current fluctuation in the
y direction: λ � (0.8047, − 2.1213), i.e., J � (0,0.8928).

remains invariant with respect to Fig. 3(a). The microscopic-
approach ODPs from the two lattices converge towards the
same function in the hydrodynamic limit, but not to the
MFT prediction. This again indicates that the AFR is not
exact between these current fluctuations. We suggest that the
assumption of a space-homogeneous OCP in the MFT lies
behind this discrepancy and we will investigate it further in
the following section by looking for a more detailed structure
of the current fluctuations in L × L square lattices.

V. STRUCTURE OF OPTIMAL CURRENT PROFILES

In this section we extend our study of global current fluctu-
ations to gain a fine-grained understanding of the underlying
local structure. Specifically, we seek information about the
OCP giving rise to a particular global current fluctuation. In
contrast to hypothesis (iii) of the AFR (see Appendix A), we
anticipate finding some spatial dependence (with a similar
structure expected for isotropic systems as relevant for the
IFR). This conjecture can be motivated by remembering
the definition of the global current and the implications of

FIG. 4. We count particle jumps in the y direction within the
highlighted region of width ε and calculate the joint SCGF e(λ̃y ,λ).

measuring a rare realization of it. When we calculate the RF
of a certain fluctuation J , what we are considering is a space
and time average of the number of particle jumps throughout
the lattice. However, there could be many local current profiles,
with different spatial dependence, leading to this average.
From all such profiles we want to find the OCP and there
is no a priori reason why it should be spatially homogeneous.

In order to gain a deeper understanding of the fluctuations
in the 2D ZRP on a square lattice, we consider the joint
probability distribution function (PDF) of a global current
and a local current in the y direction of a vertical strip V ,
as indicated in Fig. 4. The relative area of V is kept constant
for all lattice sizes. This implies that the width of V is made
proportional to the lattice length as we increase the number of
sites in the system. Thus we anticipate that properly rescaled
microscopic results will approach a consistent hydrodynamic
limit for increasing L. For the purposes of discussing this
limit we use the macroscopic notation, but the underlying
calculations are still done using the microscopic approach.

To look for the structure of the OCP, we compute the joint
RF of the local and global currents

ê(J̃y(x0),J) = lim
tLd→∞

− 1

tLd
ln[P (J̃y(x0),J,t)]. (53)

Here J is defined as in the MFT according to Eq. (1) and the
local current corresponds to

J̃y(x0) = 1

t

∫ t

0
dτ

∫
V

d rjy(r,τ ), (54)

where x0 is the left boundary of V . We keep a fixed value of
J and move the location of V along the x direction in order to
capture the statistical behavior of the local current J̃y(x0) in a
more detailed way.

As before we first calculate the microscopic SCGF as the
lowest eigenvalue of a modified Hamiltonian; here counting
the number of particle jumps in V along the y direction
requires us to modify some terms of the stochastic generator
with the additional variable λ̃y , where the dependence of this
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modification on x0 is left implicit throughout. Specifically,
calculating the modified fugacities involves solving a recursion
relation similar to (30) and (31), where introducing λ̃y imposes
the new relation

Qẑj,i+1 + (Ỹ − R)ẑj,i + P ẑj,i−1 = 0 (55)

for sites within V . Here Ỹ = pye
−λy−λ̃y + qye

λy+λ̃y . Taking
into account this modification, we were not able to find an
exact analytical expression for the SCGF, but we still obtain
a complete system of linear equations that can be solved
numerically. Finally, the SCGF is rescaled similarly to (49)
to obtain the hydrodynamic limit.

To probe the spatial dependence of the current profile, we
begin by considering how the RF êJ (J̃y(x0)) := ê(J̃y(x0),J),
with fixed global current J = (Jx,0), changes as V sweeps
the lattice. This is equivalent to calculating the RF of the
conditional probability of measuring a local current, given a
fixed global current weighted by the probability of that global
current, i.e., P (J̃y(x0)|J)P ( J); the RFs of the conditional and
the joint probabilities differ only by a term independent of
J̃y(x0). In practice, we will focus on studying the correspond-
ing SCGFs.

In Fig. 5 we plot the joint SCGF of λ̃y and fixed λ, eλ(λ̃y).
From Fig. 5(a) (where λ is fixed in the x direction) we can
see that at the three chosen positions on the lattice, we have
∂eλ(λ̃y)/∂λ̃y |λ̃y=0 = 0, implying that the local mean current
in the y direction vanishes in all cases. Additionally, the
SCGF becomes broader as V approaches the right boundary
(a broader SCGF means that the absolute value of the second
derivative is smaller). Taking into account that the variance
of the local current can be calculated as −∂2eλ(λ̃y)/∂λ̃2

y |λ̃y=0

implies that J̃y(x0) is less prone to fluctuations near the right
reservoir. This can be understood physically as having a higher
chance to see variations of the current where the sites have
more particles available, as long as the system is in the fluid
state. The fact that the variance of J̃y(x0) is spatially dependent
means for its conditional PDF that in general when x0 
= x ′

0

P (J̃y(x0)|J) 
= P (J̃y(x ′
0)|J) (56)

even if J = (Jx,0).
In the same manner, we calculate the SCGF assuming a

fixed global current fluctuation away from the x axis (θ =
5π/4). The result is shown in Fig. 5(b). In this case, we recover
the same behavior as before for the broadness of the SCGF,
but with the maximum of the SCGF displaced. One can easily
check that the displacement corresponds to

Ẽy = −λy, (57)

which can be seen as an artificial field in the driven dynamics
caused by the global conditioning. Significantly, taking the
derivative of the SCGF we have

E[J̃y(x0)|J] = ∂eλ(λ̃y)

∂λ̃y

∣∣∣∣
λ̃y=0


= 0, (58)

which is no longer constant at different locations ofV , meaning
that in general when x0 
= x ′

0,

E[J̃y(x0)|J] 
= E[J̃y(x ′
0)|J]. (59)

FIG. 5. SCGF eλ(λ̃y) for λ’s predicted to satisfy the AFR and local
conjugate parameter λ̃y for a slit of relative width ε = 1/20 with its
left boundary located at x0 = {0,2/5,4/5} (parabolas of increasing
broadness); rescaled microscopic results are from a lattice with L =
103. Same boundary rates, bulk hopping rates, and wn as Fig. 3.
(a) Current fluctuation in the x direction: rx = 0.1 and θ = π , i.e.,
λ � (0.7047,0). (b) Current fluctuation in the diagonal direction:
rx = 0.1 and θ = 5π/4, i.e., λ � (0.7340,−0.1).

Here E[·|·] denotes the conditional expectation of a local
current. The inequality (59) implies physically that for a
specific global current, the average local current at x0 and
at x ′

0 is not the same, causing the OCP of the corresponding J
to be inhomogeneous.

To see in more detail the implication of the inequality (59),
we plot in Fig. 6 the local mean current in the y direction
for different global current fluctuations predicted to satisfy
the AFR (A13). Specifically, we fix λ on ellipses centered
at the constant field (52) and obtain E[J̃y(x0)|J] along
the lattice. In particular, we have chosen λ at angles θ =
{π,7π/6,5π/4,4π/3,3π/2} belonging to ellipses where the
distance to the center in the x direction (i.e., at θ = 0) is
rx = {0.1,1.5}. By taking values in the lower left quarter of
the ellipse around E, we obtain currents in the upper right
plane after being mapped by the Legendre transform (see the
caption to Fig. 6). Here we can see that the mean current is
homogeneous only when a fluctuation of the global current is
precisely in the x direction.

Indeed, the inhomogeneity of the local current is consistent
with the action functional of the macroscopic fluctuation
theory [see Eqs. (A2) and (A3)]: Notice that the RF is inversely
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FIG. 6. Local mean currents in the y direction as a function
of x0 for fixed J predicted to satisfy the AFR. Symbols show
numerical values for V of relative width ε = 1/100 at x0 ∈
{0,1/5,2/5,3/5,4/5,99/100} rescaled from a lattice with L = 103.
Solid lines show interpolation with a fourth degree polynomial.
Boundary and bulk hopping rates are given by (51). Global currents
are fixed at angles θ = {0 (�),π/6 (�),π/4 (•),π/3 (�),π/2 (•)}
on ellipses satisfying (A14) passing through (a) J � (0.0448,0) and
(b) J � (0.9522,0).

dependent on the mobility coefficient σ (ρ). In particular, in
the ZRP with interaction wn = n, σ (ρ) ∝ ρ so the mobility
is an increasing function of the density, which implies that
it is more cost effective for the system to generate a current
fluctuation where it has a higher density, typically near the
left reservoir. This argument can also be made for other ZRPs
where the mobility coefficient increases with the density, e.g.,
with interaction wn = w (constant w) the mobility coefficient
is related to the density according to σ (ρ) ∝ wρ/(ρ + 1).

We have also checked that adding the mean value of the
local currents on disjoint regionsV (covering the whole lattice)
is consistent with the value fixed for the y component of
the global current. This indicates that, by considering smaller
widths, the local mean current profile should converge to the
OCP. The analysis of this section therefore suggests that the
OCP can be space dependent, which could be responsible
for the discrepancies between the microscopic and (current-
homogeneous) macroscopic approaches, as well as the fact
that the AFR (and the IFR) is not exactly satisfied for currents
in the y direction.

VI. DISCUSSION AND OUTLOOK

We have studied the ZRP on square and triangular lattice
geometries, calculating exactly the fugacities throughout the
lattice, the SCGF for global current fluctuations, and the
density profiles associated with such fluctuations. We also
used these results to test a recently predicted symmetry for
anisotropic systems (the AFR). Since the ZRP we studied is
solved analytically, our results have an advantage compared
to other investigations of the same class of models where
numerical simulations are needed to test convergence towards
macroscopic predictions. For example, in [8] the IFR (for
isotropic systems) was tested using the Kipnis-Marchioro-
Presutti (KMP) process and a hard-disk fluid. In particular,
despite using an efficient algorithm, the KMP process was
simulated for a maximum lattice size of L = 32 (i.e., 322

sites).
In [9] we raised as an observation that, given the large

lattice sizes considered, up to L = 105, the SCGF and ODPs
obtained from the microscopic approach did not seem to
converge exactly to the macroscopic prediction. A similar
result was obtained here for the triangular lattice, with a
quicker convergence of the microscopic results to the same
hydrodynamic limit as observed with the square geometry.
We believe the discrepancy with the macroscopic prediction is
caused by the fact that, in the MFT, the OCP was assumed to be
spatially homogeneous. Our analysis here of the local structure
of the current fluctuations (within the quantum Hamiltonian
formalism) indicates that such an invariance does not hold in
general. In fact, one could also relax the assumption of space
homogeneity in the MFT and it would be interesting to check
the resulting OCP, ODP, and SCGF with the hydrodynamic
limit of our results. (Significant work in this direction has
appeared very recently in [36].)

Crucially, the hypothesis of spatial invariance of the OCP
was also used in the derivation of the AFR (and the original
IFR). The finding of spatial inhomogeneity thus explains
the fact that, for fluctuations away from the field direction,
the AFR does not hold exactly in this model. However, we
still expect some kind of fluctuation relation, along the lines
of the AFR, without assuming homogeneous OCPs. Such a
generalization would presumably not have the same simple
structure of (A13) and (A14) but relate only local rotations
of the current (compare with the discussion for the IFR
in [8,34]). We emphasize that the usual AFR is still significant
for experiments [16], because it is a good approximation
for fluctuations close to the forward direction and therefore
enables the testing of fluctuation symmetries without the
need to measure rare backward fluctuations. Furthermore, for
systems with periodic boundary conditions in every direction,
the OCP is not expected to have any local structure, so this type
of spatial fluctuation relation should be exactly satisfied [37].

Finally, we point out that knowing the local structure
can give information about the mechanism that generates a
global current fluctuation. In general, rather than creating a
global current fluctuation by a homogeneous contribution of
particle jumps throughout the system, larger local currents
are produced where the mobility is larger. For example,
in the fluid regime of the ZRP this happens where more
particles are available; in contrast, for the simple symmetric
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exclusion process we would expect to see larger contributions
to the global current for intermediate densities. It would be
worthwhile to extend this picture to cases where there are
dynamical phase transitions [38–40] leading to long-term
accumulation of particles within the lattice. Further open
questions relate to systems with nondiagonal diffusivity and
mobility matrices (for the triangular lattice this can be achieved
by setting p2 
= p3), as well as more general anisotropy with
different physical processes in each direction. Experimental
tests of fluctuation relations in such situations would also be
very enriching.
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APPENDIX A: DERIVATION OF THE ANISOTROPIC
FLUCTUATION RELATION

In this appendix, for completeness, we show a derivation of
the AFR [9] illustrating explicit details for the minimization of
the action functional for current fluctuations. This fluctuation
relation generalizes the IFR [8] to anisotropic systems and was
recently derived in [9] under the hypotheses that the system
satisfies (i) reversibility and local detailed balance, (ii) time
invariance of the ODP and OCP, and (iii) space invariance of
the OCP. We take as a framework the MFT to study systems
satisfying the continuity equation

∂ρ(r,t)
∂t

− ∇ · j (r,t) = 0, (A1)

where ρ(r,t) and j (r,t) are the local particle density
and local current, respectively. Here we consider for the
space variable the d-dimensional unit interval � = [0,1]d ,
which leads to the LDP for fluctuations of the global
current as stated in Eq. (4). As in the main text, we
consider a diffusive system in contact with two particle

reservoirs with densities obeying ρl > ρr in the x direction
and periodic boundary conditions in every other direction.

According to the MFT, to compute the macroscopic RF we
have to minimize [10,41]

ê( J) = min
ρ, j

1

t

∫ t

0
dτ

∫
�

d rL(τ,r,ρ,∇ρ), (A2)

with the Lagrangian

L(τ,r,ρ,∇ρ) = [ j (r,τ ) + D∇ρ]T �[ j (r,τ ) + D∇ρ]

4
. (A3)

Here we have that the local current is modeled by a deter-
ministic and a stochastic term. The deterministic part relates
the current to the density via Fick’s law with diffusivity D(ρ)
given by the diagonal matrix with elements Dk(ρ) = �kg(ρ).
Furthermore, the stochastic term corresponds to white noise
ξ (r,t) with covariance L−dσ (ρ)δ(r ′ − r)δ(t ′ − t). Here the
mobility coefficient is given by the diagonal matrix σ (ρ) with
elements σk(ρ) = �k(ρ)−1 = �−1

k f (ρ). Note that we have
assumed that the diffusivity and mobility matrices can be
factorized as a matrix of constant coefficients times a function
of the density. The physical meaning of such a factorization
is that particles diffuse at different rates in different directions
but according to a single type of process. In particular, if the
constant matrices � and �−1 are both the identity, we have the
isotropic dynamics for which the original IFR was derived.

Since minimizing (A2) is still a very general problem, we
now use hypotheses (ii) of a time-invariant ODP and OCP and
(iii) of a space-invariant OCP. Thus, the optimization problem
is reduced to

ê( J) = min
ρ

1

4

∫
�

d r( J + D∇ρ)T �( J + D∇ρ). (A4)

In contrast to [8,9], we here explicitly solve the Euler-Lagrange
equation

∂L
∂ρ

−
d∑

k=1

∂

∂xk

{
∂L

∂ρ
(1)
xk

}
= 0, (A5)

where we denote the space variables in d dimensions by
xk and ρ(n)

xk
= ∂ (n)ρ/∂xn

k with k ∈ {1, . . . ,d}. Following this
procedure, one can compute that

∂L
∂ρ

=
d∑

k=1

(
Jk + Dkρ

(1)
xk

)
ρ(1)

xk
∂ρDk

2σk

−
(
J 2

k + 2JkDkρ
(1)
xk

+ D2
k

(
ρ(1)

xk

)2)
∂ρσk

4σ 2
k

, (A6)

∂

∂xk

{
∂L

∂ρ
(1)
xk

}
= Dk

(
ρ(1)

xk

)2
∂ρDk

σk

+ D2
kρ

(2)
xk

+ Jkρ
(1)
xk

∂ρDk

2σk

−
(
Jk + Dkρ

(1)
xk

)
Dkρ

(1)
xk

∂ρσk

2σ 2
k

. (A7)

Then, substituting these two expressions in (A5), some simplification leads to the differential equation

d∑
k=1

−2Dk

(
ρ(1)

xk

)2
∂ρDk + 2D2

kρ
(2)
xk

4σk

+
[
D2

k

(
ρ(1)

xk

)2 − J 2
k

]
∂ρσk

4σ 2
k

= 0. (A8)

Moreover, notice that periodic boundary conditions imply for
the ODP that ρ(1)

xk
= 0 in all directions except for the one

with open boundary conditions x1 and allow us to replace
2D2

kρ
(2)
xk

by D2
k∂ρ(ρ(1)

xk
)2. Indeed, analogously to [42] in one
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dimension, we can now integrate Eq. (A8) with respect to the
space variable. This yields the nonlinear differential equation

d∑
k=1

D2
k (ρ(1)

xk
)2

4σk

=
d∑

k=1

J 2
k

4σk

+ C, (A9)

where C is a constant of integration related to the boundary
conditions. This way, to find the ODP that minimizes (A4) we
have to solve (A9), from which it can already be seen that for
global current fluctuations lying on ellipses (constant first term
on the RHS), the ODP will remain invariant.

As a final step, note that Eq. (A9) can be written in a more
compact way as

(D∇ρ)T �(D∇ρ) = JT � J + C. (A10)

It is easy to see that taking the difference between the RFs (A4)
of two global current fluctuations for which the RHS of
Eq. (A10) has the same value results in the relation

ê( J) − ê( J ′) = 1

2

∫
�

d r(D∇ρ)T �( J ′ − J), (A11)

where ρ is now the ODP. Here, due to hypotheses (ii) and
(iii), the OCP J can obviously be taken out of the integral.
Furthermore, from assumption (i) it follows that the remaining
integral in (A11) is constant and we define

E = 1

2

∫
�

d r(D∇ρ)T �. (A12)

This leads to the anisotropic version of Eq. (2), or in terms of
the RF,

ê( J) − ê( J ′) = E · ( J ′ − J) (A13)

for global currents satisfying

JT �J = J ′T �J ′. (A14)

Here the density dependence f (ρ) of the mobility matrix has
canceled out and as expected this equation reduces to (3)
for isotropic systems that satisfy the IFR. Furthermore, this
symmetry also implies that the SCGF satisfies

e(λ) = e(λ′) (A15)

for ellipses centered around the field E,

(λ − E)T �−1(λ − E) = (λ′ − E)T �−1(λ′ − E). (A16)

In order to test this relation explicitly, one can calculate the
ODP and the RF of the global current, which has been done
in two dimensions for the KMP process [43] and the ZRP
with interacting and noninteracting particles [9] (see also
Appendix C).

APPENDIX B: QUANTUM HAMILTONIANS FOR SQUARE
AND TRIANGULAR LATTICES

In this appendix we use the ladder operators (12) to write
explicitly the Hamiltonians of the ZRP on the square and
triangular lattices shown in Fig. 1. These Hamiltonians are
equivalent to the stochastic generators with the corresponding
geometry. At the boundaries, we use generic injection and
extraction rates as shown in Fig. 7, whereas hopping rates for

FIG. 7. Hopping rates for boundary sites of (a) a square lattice
and (b) a triangular lattice. Input rates are indicated in gray and output
rates in black.

bulk sites are taken as shown in the insets of Fig. 1. For the
square lattice we have

−HS =
L∑

j=1

{
α(a+

j,1 − 1) + γ (a−
j,1 − dj,1) + δ(a+

j,L − 1)

+β(a−
j,L − dj,L) +

L−1∑
i=1

px(a−
j,ia

+
j,i+1 − dj,i)

+ qx(a+
j,ia

−
j,i+1 − dj,i+1) +

L∑
i=1

py(a−
j,ia

+
j+1,i − dj,i)

+ qy(a+
j,ia

−
j+1,i − dj+1,i)

}
, (B1)

where assuming periodic boundary conditions in the y di-
rection means that we identify j = L + 1 with j = 1. Then,
to measure current fluctuations, the Hamiltonian is modified
by multiplying the terms corresponding to the bonds where
we count particle jumps by the factors e∓λk . Taking this
into account, the modified Hamiltonian for the square lattice
measuring current fluctuations globally and in the y direction
of region V (see Fig. 4) is given by

−ĤS =
L∑

j=1

{
α(a+

j,1e
−λx − 1) + γ (a−

j,1e
λx − dj,1)

+ δ(a+
j,Leλx − 1) + β(a−

j,Le−λx − dj,L)

+
L−1∑
i=1

px(a−
j,ia

+
j,i+1e

−λx − dj,i)
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+ qx(a+
j,ia

−
j,i+1e

λx − dj,i+1)

+
L∑

i=1

py(a−
j,ia

+
j+1,ie

−λy−λ̃yI(i,V) − dj,i)

+ qy(a+
j,ia

−
j+1,ie

λy+λ̃yI(i,V) − dj+1,i)

}
. (B2)

Here I(i,V) is the indicator function for the sites in V . For the
triangular geometry the stochastic generator is given by

−HT =
L∑

j=1

{
3∑

k=2

[αk(a+
j,1 − 1) + γk(a−

j,1 − dj,1)

+ δk(a+
j,L − 1) + βk(a−

j,L − dj,L)]

+
L∑

i=1

p1(a−
j,ia

+
j+1,i − dj,i) + q1(a+

j,ia
−
j+1,i − dj+1,i)

+
M−1∑
i=1

[p2(a−
j,2ia

+
j,2i+1 − dj,2i)

+ q2(a+
j,2ia

−
j,2i+1 − dj,2i+1)

+p3(a−
j,2ia

+
j+1,2i+1 − dj,2i)

+ q3(a+
j,2ia

−
j+1,2i+1 − dj+1,2i+1)]

+
M∑
i=1

[p2(a−
j+1,2i−1a

+
j,2i − dj+1,2i−1)

+ q2(a+
j+1,2i−1a

−
j,2i − dj,2i)

+p3(a−
j,2i−1a

+
j,2i − dj,2i−1)

+ q3(a+
j,2i−1a

−
j,2i − dj,2i)]

}
, (B3)

whereas for the modified Hamiltonian counting particle jumps
globally we have

−ĤT =
L∑

j=1

{
3∑

k=2

[αk(a+
j,1e

−λk − 1) + γk(a−
j,1e

λk − dj,1)

+ δk(a+
j,Leλk − 1) + βk(a−

j,Le−λk − dj,L)]

+
L∑

i=1

p1(a−
j,ia

+
j+1,ie

−λ1 − dj,i)

+ q1(a+
j,ia

−
j+1,ie

λ1 − dj+1,i)

+
M−1∑
i=1

[p2(a−
j,2ia

+
j,2i+1e

−λ2 − dj,2i)

+ q2(a+
j,2ia

−
j,2i+1e

λ2 − dj,2i+1)

+p3(a−
j,2ia

+
j+1,2i+1e

λ3 − dj,2i)

+ q3(a+
j,2ia

−
j+1,2i+1e

λ3 − dj+1,2i+1)]

+
M∑
i=1

[p2(a−
j+1,2i−1a

+
j,2ie

−λ2 − dj+1,2i−1)

+ q2(a+
j+1,2i−1a

−
j,2ie

λ2 − dj,2i)

+p3(a−
j,2i−1a

+
j,2ie

−λ3 − dj,2i−1)

+ q3(a+
j,2i−1a

−
j,2ie

λ3 − dj,2i)]

}
. (B4)

Here we again assume periodic boundary conditions in the y

direction and without loss of generality, an even number of
sites L = 2M .

APPENDIX C: MACROSCOPIC RF AND ODP

In this appendix we show in detail how to calculate,
according to the macroscopic fluctuation theory, the ODP
and the RF for the 2D ZRP. We follow [43], where a similar
calculation was done for the 2D KMP process. Again, we
consider open boundary conditions in the x direction and
periodic in the y direction. The left- and right-reservoir
densities ρl and ρr , respectively, satisfy the inequality ρl > ρr ,
which indicates that the NESS has a mean current profile in
the rightward direction. We assume here the same hypotheses
used to derive the AFR above (including space-homogeneous
OCPs), solving Eq. (A4) for the RF and Eq. (A9) for the ODP.

First, note that the general diffusion and mobility (diagonal)
matrices for the ZRP are given by D(ρ) = �z′(ρ) and σ (ρ) =
�−1z(ρ) [i.e., f (ρ) = z(ρ) and g(ρ) = z′(ρ)], where z′(ρ) =
dz(ρ)/dρ and the components are �k = �−1

k = pk [44,45].
To compute the ODP, we substitute these in Eq. (A9), which
leads to the nonlinear partial differential equation

2∑
k=1

pxk

z′(ρ)2

z(ρ)

(
∂ρ

∂xk

)2

=
2∑

k=1

J 2
xk

pxk
z(ρ)

+ 4C. (C1)

Here we denoted x by x1 and y by x2. Note that the fugacity
z(ρ) and its derivative z′(ρ) take different functional forms
according to the type of interaction term wn. Additionally, due
to the cylindrical symmetry of the space, we can assume that
the profiles are flat in the direction of the periodic boundary
conditions. Since we assume open boundary conditions in the x

direction only, the k = 2 term on the LHS of Eq. (C1) vanishes,
leading to

px

z′(ρ)2

z(ρ)

(
∂ρ

∂x

)2

=
2∑

k=1

J 2
xk

pxk
z(ρ)

+ 4C. (C2)

This equation is transformed into a differential equation for the
fugacity, which, depending on the type of interaction chosen,
can be mapped to the density to obtain the optimal profile.

1. Optimal density profile

In the ZRP, the relation between the diffusivity and mobility
matrices allows us to transform Eq. (A9) into a relation for the
fugacity that can be solved independently of the interaction
wn. The interaction plays a role when we relate the fugacity
to the density, e.g., for noninteracting particles z(ρ) = ρ. For
now, we eliminate the explicit dependence on the density and
write Eq. (C2) in terms of the fugacity as(

∂z

∂x

)2

= J 2
x

p2
x

+ J 2
y

pxpy

+ 4Cz

px

. (C3)
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The nonlinearity of this equation requires us to consider two
cases. The first one corresponds to a (decreasing) monotonic
ODP where the largest density is at the left reservoir and
the second corresponds to a nonmonotonic profile with a
maximum fugacity z∗ at a distance x∗ from the left particle
reservoir.

First, for the monotonic regime, we have to solve

∂z

∂x
= −√

a + bz, (C4)

where a = J 2
x /p2

x + J 2
y /pxpy and b = 4C/px . This leads to

the solution

z(x) = zl − x
√

a + bzl + bx2

4
, (C5)

where to satisfy the open boundary conditions z(0) = zl and
z(1) = zr the constant of integration is determined by

b = 4(zl + zr ±
√

a + 4zlzr ), (C6)

with the negative sign corresponding to the physical solution.
In the nonmonotonic regime the optimal profile has a

maximum z∗ = z(x∗); the transition to this regime appears
when the RHS of (C4) vanishes for the first time (i.e.,
when x∗ = 0 and z∗ = zl). Moreover, from (C4) we identify
b = −a/zl and from (C5) we get that the change of regime
appears for currents

J 2
x

px

+ J 2
y

py

= 4zlpx(zl − zr ). (C7)

Clearly, these currents lie on an ellipse and will all have the
same ODP.

In the nonmonotonic regime, we separate the solution of
Eq. (C3) into two branches: one to the LHS of x∗ and one to
the RHS. Due to the nonlinearity of this equation the derivative
of the profile must be positive when x < x∗ and negative when
x > x∗. Additionally, since z∗ is constant for any current on a
fixed ellipse, we can use it to replace b by −a/z∗. This way,
we write the RHS of (C3) as a(1 − z/z∗), finding that the ODP
has fugacities

z(x) =
⎧⎨
⎩

zl − ax2

4z∗ + x

√
a
(
1 − zl

z∗
)
, x � x∗

zr − a(x−1)2

4z∗ + (1 − x)
√

a
(
1 − zr

z∗
)
, x > x∗.

(C8)
Here the maximum fugacity z∗ and its position x∗ are
determined self-consistently, resulting in

z∗ = a(zl + zr + √
a + 4zlzr )

4
(
a − �2

z

) ,

(C9)

x∗ = a − �z(2zl + √
a + 4zlzr )

2
(
a − �2

z

) ,

where �z = zl − zr .

2. Global current rate function

In addition to the ODP, we can calculate exactly the RF
of the ZRP. This means solving Eq. (A4) constrained by
Eq. (A10), which, by the symmetry of our system, reduces

to calculating the integral

ê( J) =
∫ 1

0

{[
Jx + z′(ρ)px

∂ρ

∂x

]2
4pxz(ρ)

+ J 2
y

4pyz(ρ)

}
dx, (C10)

with the minimizing constraint (C2). Similarly to the procedure
above, we use Eq. (C3) to work in terms of the fugacity
(instead of the density) and substitute in Eq. (C10) to calculate
the RF. Note that we still have to account for the change of
regime for currents larger than the threshold given in (C7).
This means that, in the monotonic scenario, the RF is obtained
by integrating

ê( J) = −
∫ zr

zl

⎧⎨
⎩

px

(
a + 2zC

px

)
2z
√

a + 4zC
px

− Jx

2z

⎫⎬
⎭dz, (C11)

while, for the nonmonotonic regime, it becomes

ê( J) =
∫ z∗

zl

⎧⎨
⎩ pxa

(
1 − z

2z∗
)

2z

√
a
(
1 − z

z∗
) + Jx

2z

⎫⎬
⎭dz

−
∫ zr

z∗

⎧⎨
⎩ pxa

(
1 − z

2z∗
)

2z

√
a
(
1 − z

z∗
) − Jx

2z

⎫⎬
⎭dz, (C12)

where the constants C and z∗ are determined by (C6) and (C9).
The exact solutions of the integrals (C11) and (C12) are given
respectively by

ê( J) = Jx

2
ln

(
zr

zl

)
+ px

2

[√
a + bzl +

√
a + bzr

− 2
√

a sinh−1

(
a

bzl

)
−2

√
a sinh−1

(
a

bzr

)]
(C13)

for the monotonic regime and

ê( J) = Jx

2
ln

(
zr

zl

)
+ px

√
a

⎡
⎢⎣
√

1 − zl

z∗ +
√

1 − zr

z∗

2

− ln

⎛
⎜⎝

√
zlzr

(
1 −

√
1 − zl

z∗

)(
1 −

√
1 − zr

z∗

)
z∗

⎞
⎟⎠
⎤
⎥⎦(C14)

for the nonmonotonic regime. For each specific ZRP interac-
tion, the corresponding relation between density and fugacity
can be used to obtain the RF in terms of the reservoir densities.
In particular, for the case wn = n we can simply replace z by
ρ, whereas for wn = w we replace z by ρ/(ρ + 1). Finally, to
compare with the microscopic approach we have to relate the
boundary fugacities to the boundary rates as mentioned in the
main text.
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Nowak, G. Papp, and I. Zahed, Wealth condensation in pareto
macroeconomies, Phys. Rev. E 65, 026102 (2002).
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