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Emergence of cooperative dynamics in fully packed classical dimers
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The classical dimer model on the square lattice is a paradigmatic example of a system subject to strong local
constraints. We study its behavior under local stochastic dynamics, by means of Monte Carlo simulations and
theoretical arguments. We observe clear signatures of correlated dynamics in both global and local observables and
over a broad range of time scales, indicating a breakdown of the simple continuum description that approximates
well the statics. We show that this collective dynamics can be understood in terms of one-dimensional “strings” of
high mobility, which govern both local and long-wavelength dynamical properties. We introduce a coarse-grained
description of the strings, based on the Edwards-Wilkinson model, which leads to exact results in the limit of low
string density and provides a detailed qualitative understanding of the dynamics in all flux sectors. We discuss
the implications of our results for the dynamics of constrained systems more generally.
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I. INTRODUCTION

Dimer models are archetypal systems for the study of
the effects of strong local constraints [1,2]. Despite their
simplicity, classical dimer models on bipartite lattices exhibit
a number of interesting phenomena, such as macroscopic
ground-state degeneracy, topological order, and deconfine-
ment of monomers [3]. Their static properties are well under-
stood and are captured by an effective coarse-grained theory,
involving a height field [4] in two dimensions or an effective
gauge field in higher dimensions [5]. In either case, the result
is a critical equilibrium phase, with power-law correlations
between local degrees of freedom. This class of systems
provides the simplest examples of “exotic” thermodynamic
behavior purely determined by entropy [3].

Even when the thermodynamic properties of a system
have a simple effective description, its dynamics can be more
intricate and interesting [6]. It is natural to ask whether this
is the case for dynamical extensions of the classical dimer
model, about which much less is known. In particular, Ref. [7]
considered the simplest extension of the coarse-grained de-
scription to dynamics, predicting simple relaxational decay of
correlations, while Ref. [8] considered the dimer model with
nonlocal loop dynamics. These works should be contrasted
with studies of defect-driven dynamics in dimer models [9]
and of monopole dynamics in spin ice [10,11].

In this work, we consider local stochastic dynamics in the
defect-free square-lattice dimer model, using both simulations
and theoretical arguments. As far as we are aware, what we
report here are the first systematic simulation results for the
natural dynamics in these systems, i.e., one of locally flipping
plaquettes. We show that the simple continuum picture can fail
to describe the true physics even over long time scales and that
the phenomenology is, in fact, far richer than the simplicity of
the model would suggest.

The first main contribution of this paper is to demonstrate,
using simulations, significant deviations from exponential
relaxation in global and local observables over a broad range
of time scales. We argue that a simple continuum description
fails because the dynamics is facilitated by local objects,
in this case one-dimensional strings [12–14], and hence
highly heterogeneous. The understanding of the importance

of these objects, which has broad implications for the study
of cooperative dynamical phenomena, is our second main
contribution.

Close-packed dimer models obey a topological con-
straint [3] that amounts to conservation of strings, or, equiv-
alently, of the flux of an effective magnetic field. Any local
rearrangement of dimers conserves flux, and we exploit this by
considering dynamics within a fixed flux sector. At large flux,
the system is spanned by a low density of strings, whose fluc-
tuations govern the relaxation. We introduce a coarse-grained
description of the strings, based on the Edwards-Wilkinson
model of fluctuating interfaces [15], from which we derive
exact expressions for dynamical observables, constituting the
third main contribution of this work. We confirm these results
using simulations at large flux, to which they can be compared
with at most one adjustable parameter.

We find that the behavior is qualitatively similar, and
consistent with the string picture, for smaller flux, including in
the isotropic limit of vanishing flux. In these latter cases, strings
can still be defined, and the string picture remains illuminating,
even though their density is so high that they cannot be treated
as independent. By application of dynamical scaling theory, we
furthermore predict a crossover to the Coulomb-phase results
of Ref. [7] at a time scale that diverges on approaching the
critical point at saturation flux (zero string density).

Outline

In Sec. II, we introduce the dimer model and the local
dynamics that we study in the remainder of the paper. We
also briefly review, in Sec. II D, the coarse-grained theory
introduced by Henley [7] to describe dynamics of the height
field, which predicts exponential decay of correlations. The
majority of our original results are presented in Sec. III, where
we use an effective theory of string dynamics based on the
Edwards-Wilkinson equation to derive results for correlations
and for the persistence, a local probe of dynamics. We conclude
in Sec. IV with a brief discussion of the broader significance
of our results for dynamics in strongly constrained systems.
Some technical details and additional simulation results are
presented in appendixes.

2470-0045/2016/93(3)/032129(10) 032129-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.032129


TOM OAKES, JUAN P. GARRAHAN, AND STEPHEN POWELL PHYSICAL REVIEW E 93, 032129 (2016)

FIG. 1. Left: A dimer configuration with a single string, relative to a fully staggered configuration with maximal flux �x = 1
2 L2 along the

horizontal direction. A single string spanning the system once reduces the flux �x by −L, the smallest possible amount, irrespective of its path.
Flippable plaquettes, which appear when the dimers are shifted, are marked with stars; the fully staggered configuration has none. Middle and
right: Configurations with φx = 1

4 evolved for time t . Persistent plaquettes are white, while those that have flipped are blue; strings are yellow.
The dynamics is spatially heterogeneous: Even at relatively long times, extended regions are unvisited by strings and hence persistent.

II. MODEL

We study a dimer model on an L × L square lattice with
periodic boundaries. The occupation variable dμ(r) gives the
number, zero or one, of dimers on the link joining sites
r and r + δμ, where μ ∈ {x,y} and δμ is a lattice vector.
A configuration is allowed only if every site is occupied
by a single dimer. We refer to a plaquette as flippable
when it contains two parallel dimers; the flippability f of a
configuration is defined as the proportion of plaquettes that
are flippable,

f = 1

L2

∑
r

∑
μν

dμ(r)dμ(r + δν). (1)

We define the effective “magnetic field” Bμ(r) =
εr [dμ(r) − 1

4 ], where εr = ±1 on the two sublattices [3]. The
constraint on dimer configurations then becomes Gauss’s law,
divr B = 0, where

divr B =
∑

μ

[Bμ(r) − Bμ(r − δμ)] (2)

is the lattice divergence. The flux � corresponding to B can be
defined by �μ = ∑

r Bμ(r) = ∑
r εrdμ(r). Because εr+δν

=
−εr , a pair of neighboring parallel dimers, of either orientation,
gives zero net contribution to �, and so plaquette-flip dynamics
conserves the flux.

A. Staggered configurations and strings

The flux is maximized by a staggered dimer configuration.
For example, if dy(r) = 0 for all r , dx(r) = 1 for εr = +1, and
dx(r) = 0 otherwise, then � = +�max x̂, where �max = 1

2L2.
The other three staggered configurations, related by symmetry,
have flux of the same magnitude, |�| = �max, along other
lattice directions. We define the flux relative to its maximum by
φ = �/�max, and for flux along the x direction, the deviation
from maximum θ = 1 − φx .

To reduce the flux from maximum, one can shift a row of
dimers spanning the system, which changes �x by −L. We
refer to such a set of shifted dimers as a string [13,16]. After
the shift, plaquettes along its length become flippable; flipping
these deforms the string but conserves the flux. A possible
path for a single string and the resulting configuration are
shown in Fig. 1. With Ns strings introduced into a staggered
configuration, θ = 2Ns/L; the linear density is therefore 1

2θ .

B. Height mapping

The constraint divr B = 0 can be resolved by defining the
height z on each plaquette [7], in terms of which Bμ(r) =
− 1

4 curl(r,μ) z, where the curl is the difference between the
plaquettes on each side of a link. Global shifts of z do not
affect B, corresponding to the gauge redundancy in three di-
mensions [3]. With an appropriate gauge choice, flipping a pla-
quette modifies z only on that plaquette [7]. If B has periodic
boundary conditions, z(r + Lδμ) = z(r) + 4L−1 ∑

ν εμν�ν ,
where ε is the Levi-Civita tensor. The spatial average of the
derivative of the height (the tilt) is therefore intensive and
proportional to φ. We define ζ (r) = z(r) − 2

∑
μν εμνrμφν ,

with periodic boundary conditions.

C. Dynamics

The most natural dynamics for the dimer system is one
where individual plaquettes flip randomly. This dynamics
is efficiently implemented numerically via continuous-time
Monte Carlo (MC) [17], in which, when flippable, plaquettes
flip according to a Poisson process with rate constant γ .
Dynamics at equilibrium within a sector of fixed flux φ can be
studied by starting from a fixed configuration and equilibrating
using plaquette-flip dynamics. We will denote by 〈· · · 〉 an
average both over the equilibrium ensemble (where all allowed
states with flux φ have equal weight) and, where applicable,
over subsequent trajectories.
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The dynamical correlation function of the height is defined
by Gζ (q,t) = 〈ζ̃ (q,t)ζ̃ (−q,0)〉, where ζ̃ is the Fourier trans-
form of ζ . We also consider the persistence p(t), the proportion
of plaquettes that have not flipped at any point up to time t ,
which provides a local probe of the evolution.

D. Continuous height-field theory

The static properties of the dimer model can be described
by a continuum theory in terms of the coarse-grained height
h(r) resulting from averaging ζ (r) over short length scales [3].
Apart from terms irrelevant at long distances, the effective
dimensionless free energy is

F = 1

2

∫
d2r[Ky(∇xh)2 + Kx(∇yh)2] (3)

for φ along x̂, implying correlations 〈h̃(q)h̃(−q)〉 = [ω(q)]−1

for the Fourier transform h̃, where ω(q) = Kyq
2
x + Kxq

2
y .

The simplest extension of the continuum description to
dynamical properties is the Langevin equation [7]

∂

∂t
h(r,t) = −�

δF
δh(r,t)

+ ηh(r,t), (4)

where the noise has correlations 〈ηh(r,t)ηh(r ′,t ′)〉 = 2�δ(r −
r ′)δ(t − t ′). The resulting two-time correlations are [7]

Gh(q,t) ≡ 〈h̃(q,t)h̃(−q,0)〉 = e−�ω(q)t

ω(q)
, (5)

implying exponential decay at long time scales. We show
below that this prediction can break down, even when the
height-field approach is accurate for the statics, due to
cooperative effects that dominate the dynamics.

III. STRING DYNAMICS

The collective character of the dynamics can be uncovered
by considering the behavior near maximal flux (i.e., for small
θ ), where most of the system is unflippable. This regime can be
understood in terms of a low density of well-separated strings.
We first consider the dynamics of a single string, using a
continuum description based on the Edwards-Wilkinson equa-
tion, before turning to the consequences for the two classes of
observables, correlation functions and the persistence.

For a single string traversing the system horizontally, let
y(x,t) be the vertical position at horizontal position x and
time t . By using a transfer matrix to enumerate all possible
string configurations (see Ref. [14] and Appendix A), we
find the following two exact results regarding the equilibrium
distribution of a single string: (i) The mean number of flippable
plaquettes is given by

Nf = (2 −
√

2)L + O(ln L). (6)

(ii) For 1 	 |x − x ′| 	 L, y(x,t) − y(x ′,t) is normally dis-
tributed with zero mean and variance |x − x ′|/√2.

A. Edwards-Wilkinson equation

At large length and time scales, we expect y(x,t) to obey
the Edwards-Wilkinson equation [15,18],

∂

∂t
y(x,t) = 1

2
�

∂2

∂x2
y(x,t) + η(x,t) , (7)

where 〈η(x,t)η(x ′,t ′)〉0 = D�δ(x − x ′)δ(t − t ′) and � and
D parametrize, respectively, the stiffness of the string and
the strength of the noise. The average 〈· · · 〉0 is taken over
trajectories starting from a given initial configuration y(x,0).

Accounting for the periodicity in the x direction (but not
in y), the Green’s function for Eq. (7) is

�(x,t) = 1

L

∑
k

eikxe− 1
2 �tk2

, (8)

where kL/2π ∈ Z. To calculate the two-time correlation
function in the equilibrium ensemble, we take both times to
infinity with their difference finite,

VL(x,t) ≡ 〈[y(x,t) − y(0,0)]2〉 (9)

= lim
t0→∞〈[y(x,t0 + t) − y(0,t0)]2〉0

= D�t

L
+ 2D

L

∑
k �=0

1 − eikxe− 1
2 �tk2

k2
. (10)

The typical width of a string in equilibrium can be
characterized by the mean-square displacement between the
points x and 0 at equal time, which is given, for 0 � x � L,
by VL(x,0) = Dx(1 − x/L). The time scales for dynamics
can similarly be understood through VL(0,t), which is shown
in Appendix B to obey

〈[y(0,t) − y(0,0)]2〉 ≈
⎧⎨
⎩D

√
2�t
π

for �t 	 L2,

D
L
�t for �t � L2.

(11)

The short-time result, �t 	 L2, gives the dynamical scaling
relation between the characteristic length in the y direction
and time through the “growth exponent” β [18],

ly ∼ tβ, β = 1
4 . (12)

At long times, �t � L2, the whole string can be treated as a
random walker, with effective diffusion constant D�/L.

These results, along with those from the string microscop-
ics, fix the values of D and �. Comparison of VL(x,0) with
the exact result for the equal-time displacement variance gives
D = 1/

√
2. The mean rate of plaquette flips in equilibrium

is γNf . Since each flip changes the mean vertical position
by ±L−1, the variance of the total shift is γ tNf /L2 in the
long-time limit. Comparison of Eqs. (6) and (11) therefore
gives � = 2(

√
2 − 1)γ .

B. Height correlation function

To calculate height correlations based on the coarse-grained
string description, we write

∇yh(r,t) ∝
∫ L

0
dx δ2(r − {x,y(x,t)}) − 1

L
, (13)
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which treats the string as a step in the height plus a uniform
gradient to preserve the boundary conditions. The height
correlation function for q �= 0 can then be written, for a single
string, as Gh(q,t) ∝ (Lq2

y )−1Cs(q,t), where

Cs(q,t) = 1

L

∫ L

0
dx

∫ L

0
dx ′ e−iqx (x−x ′)〈e−iqy [y(x,t)−y(x ′,0)]〉.

For small-enough density 1
2θ , string contributions add inco-

herently, resulting in Gh(q,t) ∝ θq−2
y Cs(q,t). Since y(x,t) −

y(x ′,0) is Gaussian distributed with zero mean, we get

Cs(q,t) =
∫ L

2

− L
2

dx e−iqxxe− 1
2 q2

yVL(x,t), (14)

where the periodicity of VL(x,t) under x → x ± L has been
used to shift the limits of integration.

Asymptotic expressions for the correlations can be found in
various limits. For the static correlations, Gh(q,0) ∝ θ/ωs(q),
where ωs(q) = q2

x + 1
8q4

y in the thermodynamic limit. For
t 	 L2, we find time dependence

Gh(q,t)

Gh(q,0)
∝

{
exp

[− 1
2�t ωs(q)

]
for �t 	 q

−1/β
y ,

tβ exp
[−√

�t ω̃s(q)
]

for q
−1/β
y 	 �t ,

(15)

where ω̃s(q) = (4π )−1q4
y exp[2(erfi−1

√
8qx/q

2
y )2]; the pro-

portionality constants are calculated exactly in Appendix C.
A crossover from simple to stretched exponential therefore
occurs at �t∼q

−1/β
y , the time scale corresponding, according

to Eq. (12), to the wavelength ∼q−1
y . The stretching is the

result of contributions from the continuum of modes of the
string. These expressions, along with the full result found
by numerical integration of Eq. (14), are compared with
simulations in Fig. 2. We find close agreement, with no
adjustable parameters, at large flux and small wave vector
and qualitative agreement at smaller φx and larger q; see
Appendix D.

The independent-string approximation should be valid for
�t 	 θ−1/β , the time corresponding to a y displacement equal
to the mean string separation. The stretched-exponential form
therefore applies up to a time that diverges at θ = 0. For
larger t , string interactions are important for the dynamics, and
Eq. (15) is no longer valid. When �t � θ−1/β , many strings
contribute, their discreteness becomes unimportant, and so we
expect a crossover to the Coulomb-phase behavior of Eq. (5).
These crossovers can be understood via dynamical scaling
theory, based on the critical point at θ = 0 [13,16], whose
critical theory is that of hard-core bosons, or, equivalently,
free fermions, in one dimension. All critical exponents are
therefore rational and follow from dimensional analysis.

C. Persistence

The persistence p(t) can similarly be understood in terms
of the behavior of strings. At very short times, p(t) = e−〈f 〉γ t :
plaquettes which are flippable at t = 0 will flip independently
with rate γ . For times γ t � 1, each point x on a string
performs a subdiffusive random walk, according to Eq. (11).
As only plaquettes adjacent to strings are flippable, the mean
persistence is equal to the probability that a plaquette is not
reached by any string up to time t and is therefore given by the
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FIG. 2. Normalized height correlations Gζ (q,t) =
Gζ (q,t)/Gζ (q,0) at wave vector q = { π

16 , π

4 } and flux φ = {φx,0}.
Symbols show MC results (error bars are smaller than symbols),
while the thick black line is the theoretical prediction for the
large-flux limit (i.e., close to the maximum φx = 1). The short- and
long-time limits, Eq. (15), are shown with dot-dashed and dashed
lines, respectively. The system size is L = 256; besides restricting
φx to discrete values, finite-size effects are minimal. Inset: Same
data with double-logarithmic vertical scale. On this plot, a stretched
exponential e−(t/τ )β appears as a straight line with slope −β. A
dot-dashed straight line with a slope of 1 is shown for comparison;
the data deviate from this slope, indicating stretching, even for zero
flux.

survival probability for a stationary target in the presence of a
density 1

2θ of subdiffusive traps. Using the results of Ref. [19]
relating the dynamic exponent to the persistence, we get

〈p(t)〉 ∝ exp

[
− θ

�(5/4)
(�t)β

]
for γ −1 	 t 	 �−1θ−1/β .

(16)

This form ceases to apply for �t ∼ θ−1/β , when string
interactions become important, or for �t ∼ L2, beyond which
the long-time behavior in Eq. (11) applies and 〈p(t)〉 ∝ e−ct1/2

.
Our simulation results, Fig. 3, are in qualitative agreement

with these arguments, showing an initial exponential followed
by a stretched exponential for all fluxes. The stretching
exponent decreases continuously with φx , approaching β =
1/4, in agreement with Eq. (16), as φx → 1. At longer times, a
faster decay, consistent with a single exponential, is observed.

IV. CONCLUSIONS

We have shown that the close-packed square-lattice dimer
model, subject to local, plaquette-flip dynamics, displays
emergent collective relaxation that is not anticipated by simple
extensions of its static properties. Approximations to the
dynamics based on free-energy gradients plus noise, such as
Eq. (4), fail to capture the intrinsic heterogeneity: Due to the
constrained nature of the system, motion is only allowed in
the vicinity of strings, and relaxation is dominated by spatial
fluctuations. In a sense, the noise that triggers rearrangements
is not uniform in space and time; rather, its strength depends
sensitively on the local configuration. Strings facilitate local
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127/128
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FIG. 3. MC results for persistence p(t) at flux φx labeled as in
Fig. 2, except where indicated. (Error bars are smaller than symbols.)
System size L = 4096 is required to reach flux φx = 2047/2048 (see
Sec. II A); for the other flux values, L = 256. As expected based on
the string picture, an initial exponential decay (straight line with a
slope of 1) is followed by a stretched exponential (slope < 1), lasting
until �t ∼ (1 − φx)−1/β . The dashed line on the right, with a slope
of 1/4, is the function p(t) ∝ e−ct1/4

, in agreement with Eq. (16) for
the limit φx → 1.

rearrangements, dynamics is heterogeneous and collective (see
Fig. 1), and relaxation functions are nonexponential.

This situation is reminiscent of glass-forming systems [20]:
In a slowly relaxing material such as a glass former, “fa-
cilitation” indicates the fact that local relaxation can occur
only near an already locally relaxing region [21]. Similarly,
in the dimer model, plaquette moves are only possible in
the vicinity of a string. This is the reason that the Langevin
dynamics of Eq. (4) is not accurate for relaxation in regions
where string density is low. The additive noise assumed
in that approximation would allow rearrangements to occur
anywhere in space. But if dynamics is facilitated, the noise that
drives local rearrangements is not uniformly distributed, but
rather concentrated near already mobile regions. A Langevin
description along the lines of Eq. (4) would therefore require
a form of noise that is multiplicative and whose magnitude is
strongly dependent on the local flippability.

Instead, we have developed a string description of the
dynamics, which directly incorporates the local nature of the
relaxation. At low string density (high flux), we are able to
make exact theoretical predictions for the correlations and
persistence, which are confirmed by our simulations. We in
fact find that much of the qualitative behavior is unchanged at
smaller flux, where interactions between strings are certainly
important. This indicates that the usefulness of the string
picture, as well as the concept of facilitated and heterogeneous
dynamics, extends well beyond the regime of high flux.

Besides their fundamental importance, our results are likely
to be of relevance to spin ice, where closely analogous string
excitations have been evidenced directly using neutron scat-
tering [22] and where correlations with stretched-exponential
decay have been noted [23]. Dynamical results for classical
dimers are also relevant to the corresponding quantum dimer
model at its Rokhsar-Kivelson point [24,25].

FIG. 4. Four types of segments that can be combined to form a
string. The first two are steps at which the vertical position of the
string changes by ±1, while the last two are the two segments of a
horizontal step. (This step is split so that all four segments involve
the same horizontal displacement.)
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APPENDIX A: TRANSFER-MATRIX CALCULATION
OF STRING CONFIGURATIONS

A string can be divided into four types of segments,
illustrated in Fig. 4; the ensemble Cs

L of configurations for
a single string is given by the set of ways in which these
segments can be combined to produce a closed path of length
L. One can write a transfer matrix

T(k,μ) =

⎛
⎜⎜⎝

e−ik e−ike−μ 0 e−ik

eike−μ eik 0 eik

1 1 0 1
0 0 e−2μ 0

⎞
⎟⎟⎠, (A1)

such that Tβα(k,μ) is nonzero only when a segment of type
α can be followed by one of type β (labeled according to the
order in Fig. 4). Each successive pair of segments is weighted
by e−μ for every flippable plaquette it produces and by e−ik for
every step in the positive y direction. We define the partition
function Zo

L as the weighted sum over all open paths of length
L with any net vertical displacement y,

Zo
L(k,μ) =

∑
Co

L

e−ikye−μNf , (A2)

where Co
L denotes the ensemble of such paths and Nf is

the number of flippable plaquettes in the resulting dimer
configuration. Summing over all sequences of path segments
and (vertical) starting positions gives [26]

Zo
L(k,μ) = L

2
Tr[T(k,μ)]L (A3)

= L

2

∑
λ∈σT(k,μ)

λL, (A4)

where the sum is over the set σT(k,μ) of eigenvalues λ of T(k,μ).
The allowed paths for a single string are those that return to

their starting point after winding once around the system and
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hence have net displacement y = 0. The partition function for
such paths is

Zs
L(μ) =

∑
Cs

L

e−μNf (A5)

=
∑
Co

L

δy,0e
−μNf =

∫ π

−π

dk

2π

∑
Co

L

e−ikye−μNf (A6)

= L

2

∫ π

−π

dk

2π

∑
λ∈σT(k,μ)

λL. (A7)

For large L, the saddle-point approximation gives

lnZs
L(μ) = L ln |λmax(μ)| + O(ln L), (A8)

where

|λmax(μ)| = max
k

|λmax(k,μ)| (A9)

= max
k

max{|λ| : λ ∈ σT(k,μ)} (A10)

is the largest eigenvalue (by magnitude) of T(k,μ) for
any k. The maxima are λmax(μ) = 1 + √

2 − √
2μ + O(μ2),

occurring at the points k = 0 and ±π , and hence
1

L
lnZs

L(μ) � ln(1 +
√

2) − (2 −
√

2)μ. (A11)

Setting μ = 0 gives the entropy of a single string,

Ss
L = lnZs

L(0) (A12)

= L ln(1 +
√

2) + O(ln L). (A13)

The mean number of flippable plaquettes in the presence of a
single string is given by

N s
f = − d

dμ
lnZs

L(μ)

∣∣∣∣
μ=0

(A14)

= (2 −
√

2)L + O(ln L). (A15)

At flux φ = {1 − θ,0}, the number of strings is Ns = 1
2Lθ .

If the strings can be treated as approximately independent, as
expected for sufficiently small θ , then the number of flippable
plaquettes is simply NsN

s
f , and so the mean flippability in

equilibrium is

〈f 〉 =
(

1 − 1√
2

)
θ + O

(
ln L

L

)
. (A16)

Numerical results, shown in Fig. 5, confirm Eq. (A16)
in the limit of small θ and are in approximate agreement
even for fairly large θ , suggesting that the independent-string
picture is reasonable. (The logarithmic corrections modify the
coefficient of θ and are of the order of a few percent for
L = 256.)

The width distribution of a single string can be determined
by a similar approach: The probability distribution for the net
vertical displacement Y of a section of string with horizontal
extent X is [27]

P s(X,Y ) =
∑

Co
X
δy,Y

Zo
X(0,0)

(A17)

=
∫ π

−π

dk

2π
eikY

∑
λ∈σT(k,0)

λX∑
λ∈σT(0,0)

λX
. (A18)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

FIG. 5. Mean flippability in equilibrium 〈f 〉 as a function of
deviation from maximum flux, θ = 1 − φx . The solid green line
shows Monte Carlo results for system size L = 256 (error bars
are smaller than symbols), while the dashed black line shows the
analytical prediction from Eq. (A16).

For large X, the ratio of sums can be found by expanding
λmax(k,0) in a Taylor expansion around its maxima, giving a
pair of Gaussians of variance

√
2

X
centered at k = 0 and ±π .

Taking the Fourier transform, one finds that P s(X,Y ) is given
by a normal distribution of variance 1√

2
X when X and Y have

the same parity and vanishes otherwise (as required by the
structure of a string).

If, for a single string traversing the system in the horizontal
direction, we denote by y(x) the vertical position at horizontal
position x, this result can be restated as follows: At length
scales much larger than the lattice scale but smaller than
the system size, 1 	 |x − x ′| 	 L, the vertical displacement
y(x) − y(x ′) is normally distributed with zero mean and

〈[y(x) − y(x ′)]2〉 = 1√
2
|x − x ′|. (A19)

This result is confirmed by the small-displacement limit in
Fig. 6.

APPENDIX B: COARSE-GRAINED STRING PICTURE

The Edwards-Wilkinson equation, Eq. (7), has the general
solution (for t � 0)

y(x,t) =
∫ L

0
dx ′ �(x − x ′,t)y(x ′,0)

+
∫ L

0
dx ′

∫ ∞

0
dt ′ �(x − x ′,t − t ′)η(x ′,t ′) (B1)

(accounting for the periodicity in the x direction but not in the
y direction), where

�(x,t) =
{

L−1 ∑
k∈ 2π

L
Z eikxe− 1

2 �tk2
for t � 0,

0 for t < 0
(B2)

is the retarded propagator.
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FIG. 6. Mean-square transverse displacement of a string y(x,t) in
equilibrium, given by the equal-time correlation 〈[y(x,t) − y(x ′,t)]2〉,
as a function of displacement along the string, |x − x ′|. The solid
green line shows Monte Carlo results using a dimer configuration
containing a single string in a system of size L = 1024. (Error bars
are smaller than symbols.) The dashed black line shows the analytical
result of Eq. (B7), with D = 1/

√
2 determined using Eq. (A19).

The two-time correlation function, within an ensemble of
trajectories with fixed initial configuration, is therefore given
by

〈[y(x,t) − y(x ′,t ′)]2〉0

=
{∫ L

0
dx ′′ [�(x − x ′′,t) − �(x ′ − x ′′,t ′)]y(x ′′,0)

}2

+D�

∫ L

0
dx ′′

∫ ∞

0
dt ′′ [�(x − x ′′,t − t ′′)

−�(x ′ − x ′′,t ′ − t ′′)]2. (B3)

To calculate the equivalent correlation function in an equi-
librium ensemble, 〈· · · 〉, we take both times to infinity while
keeping their difference finite:

〈[y(x,t) − y(x ′,t ′)]2〉
= lim

t0→∞〈[y(x,t0 + t) − y(x ′,t0 + t ′)]2〉0. (B4)

In this limit, �(x,t0 + t) = L−1, and so the first term in
Eq. (B3), which depends on the initial configuration, vanishes.
The integrals in the second term can be performed to give

〈[y(x,t) − y(x ′,t ′)]2〉 = VL(|x − x ′|,|t − t ′|), (B5)

where VL is given in Eq. (10).
For t = 0, the sum in Eq. (10) can be evaluated exactly,

using

∞∑
n=1

1 − cos nθ

n2
= θ (2π − θ )

4
(B6)

for 0 � θ � 2π , to give

〈[y(x,t) − y(0,t)]2〉 = VL(x,0) = Dx

(
1 − x

L

)
(B7)

10
1

10
2

10
3

10
410

0

10
1

FIG. 7. Growth of mean-square transverse displacement of a
string, 〈[y(x,t) − y(x,0)]2〉, at a fixed position x as a function of
time t . The solid green line shows Monte Carlo results using a dimer
configuration containing a single string in a system of size L = 1024.
(Error bars are smaller than symbols.) The dashed black line shows
the analytical result of Eq. (B9), using values of D and � fixed using
Eqs. (A19) and (A16).

for 0 � x � L. Comparison with the microscopic result of
Eq. (A19) fixes D = 1/

√
2. In Fig. 6, both Eq. (B7) and the

value of D are confirmed using results of Monte Carlo (MC)
simulations of the dimer model.

In calculating VL(0,t) for small t/L2, the sum can be
replaced by an integral,

∞∑
n=1

1 − e− 1
2 n2τ

n2
�

∫ ∞

0
dn

1 − e− 1
2 n2τ

n2
=

√
π

2
τ , (B8)

giving

〈[y(x,t) − y(x,0)]2〉 = VL(0,t) = D

√
2�t

π
(B9)

for �t 	 L2. As argued in the main text, Eq. (A16) can be
used to fix � = 2(

√
2 − 1)γ . This result, including the value

of �, is confirmed using MC results in Fig. 7.
At large t and x = 0, the first term in Eq. (10) dominates,

and so

〈[y(x,t) − y(x,0)]2〉 = VL(0,t) = D

L
�t (B10)

for �t � L2.

APPENDIX C: LIMITING FORMS OF
DYNAMICAL CORRELATIONS

In the thermodynamic limit, L → ∞, Eq. (10) can be
replaced by

V∞(x,t) = D

π

∫ ∞

−∞
dk

1 − eikxe− 1
2 �tk2

k2
, (C1)
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where the Cauchy principal value is to be taken, and the
correlation functions can be expressed in terms of

Cs(q,t) =
∫ ∞

−∞
dx e−iqxxe− 1

2 q2
yV∞(x,t). (C2)

For t = 0, one has V∞(x,0) = D|x|, and so

Cs(q,0) = Dq2
y

q2
x + 1

4D2q4
y

= Dq2
y

ωs(q)
, (C3)

where ωs(q) = q2
x + κ4

y , with κy =
√

D
2 qy .

For small but nonzero t , consider the difference

Cs(q,t) − Cs(q,0)

=
∫ ∞

−∞
dx e−iqxx[e− 1

2 q2
yV∞(x,t) − e− 1

2 q2
yV∞(x,0)] (C4)

� −1

2
q2

y

∫ ∞

−∞
dx e−iqxxe− 1

2 q2
yV∞(x,0)[V∞(x,t) − V∞(x,0)]

(C5)

= −Dq2
y

2π

∫ ∞

−∞
dx e−iqxxe− 1

2 q2
yD|x|

×
∫ ∞

−∞
dk eikx 1 − e− 1

2 �tk2

k2
. (C6)

For �t 	 q−4
y , the integral over k can be replaced by 1

2�t ×
2πδ(x), and so the result is

Cs(q,t) − Cs(q,0) � − 1
2Dq2

y�t. (C7)

Using Eq. (C3) gives

Cs(q,t)

Cs(q,0)
� exp

[
−1

2
�tωs(q)

]
for �t 	 q−4

y ,L2. (C8)

For large time (but with �t 	 L2), one can use the saddle-
point approximation. The closest saddle points to the real line
are at x = ±ix0, where

x0 =
√

2�t erfi−1

(
qx

κ2
y

)
, (C9)
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FIG. 8. Normalized height correlations Gζ (q,t) = Gζ (q,t)/Gζ (q,0) at flux φ = {φx,0} and wave vectors (a) q = { π

8 , π

8 }, (b) q = { π

4 , π

4 },
and (c) q = { π

4 , π

16 }. In each case, the symbols show MC results with system size L = 256 (error bars are smaller than symbols), while the
thick black line shows the theoretical prediction for the large-flux limit (i.e., close to the maximum φx = 1). The short- and long-time limits are
shown with dot-dashed and dashed lines, respectively. Insets: Same data with double-logarithmic vertical scale; stretched exponentials appear
as straight lines. The saturation at long times is an artifact resulting from the statistical uncertainty.
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and the resulting correlation function is

Cs(q,t)

Cs(q,0)
�

(
π

2

)3/4 (�t)1/4ωs(q)

κ3
y�

1/2
0

exp

(
−�0κ

2
y

√
2

π
�t

)

for q−4
y 	 �t 	 L2, (C10)

where �0 = exp[(erfi−1 qx

κ2
y
)2]. (The precise condition for the

validity of the saddle-point approximation also involves qx , but
the quoted inequality is always sufficient and also necessary
except for very large qx/κ

2
y .)

APPENDIX D: NUMERICAL RESULTS FOR
DYNAMICAL CORRELATIONS

Our analytical results for the correlations are based on a
coarse-grained description of the strings and so are expected
to be quantitatively accurate only for small q. According to
Eq. (C10), however, the stretched-exponential decay is visible
only for �t � q−4

y , a time scale that grows rapidly as qy is
decreased. The value q = { π

16 , π
4 } used in Fig. 2 of the main text

is chosen to show the stretching most clearly on time scales
accessible in the continuous-time MC simulations. (Because
we have neglected the periodicity in the y direction, we also
require Lqy � 1.)

Results for other values of q are shown in Fig. 8. As
expected, the quantitative accuracy of the analytical results
decreases as |q| is increased. Consistent with Eq. (C10),
clear evidence of stretched-exponential decay is visible, as
a decreased slope on a double-logarithmic scale, only for the
larger values of qy .

APPENDIX E: PERSISTENCE TIME

Given a trajectory, a plaquette is referred to as “persistent”
if it has not flipped at any point during the trajectory. At each
time t during the trajectory, the persistence is defined as the
proportion of plaquettes that are persistent, i.e.,

p(t) = 1

N

∑
r

{
1 if plaquette r is persistent,
0 otherwise.

(E1)

10
-1
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-2

10
-5

10
-4

10
-3

10
-2

10
-1

-1

FIG. 9. Inverse persistence time τ−1
p as a function of deviation

from maximum flux, θ = 1 − φx . The symbols show Monte Carlo
results for system sizes L = 64 (red), 128 (blue), and 256 (green).
(Error bars are smaller than symbols.) The dashed black line shows
the analytical prediction τp ∼ θ−4, which applies for 0.05 � θ � 0.2
(close, but not too close, to maximum flux). For larger θ , the density
of strings is sufficiently high that their interactions become important,
and the picture of independent strings breaks down. When θ � L−1,
finite-size effects become important.

The persistence time τp is the average over starting configura-
tions and trajectories of the integral of the persistence,

τp =
〈∫ ∞

0
dt p(t)

〉
. (E2)

According to Eq. (11), in the thermodynamic limit the
typical spread of y(x,t) is proportional to t1/4. The typical
time to reach a plaquette at a distance � from the starting
position of the string is therefore �4. Since a plaquette can
only flip when a string is nearby, its persistence time is given
by the time at which a string first reaches it. The linear density
of strings is ∼θ , and so the typical distance from a plaquette
to the nearest string is ∼θ−1. The typical persistence time τp

is therefore ∼θ−4.
In Fig. 9, this prediction is confirmed using MC simulations

for intermediate values of θ . For larger θ , the string density
is sufficiently high that interactions between strings become
important, while for the smallest values of θ , the distance from
a plaquette to its nearest string is bounded by the system size L.
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