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We study analytically the dynamics and the microstructural changes of a host medium caused by a driven
tracer particle moving in a confined, quiescent molecular crowding environment. Imitating typical settings of
active microrheology experiments, we consider here a minimal model comprising a geometrically confined
lattice system (a two-dimensional striplike or a three-dimensional capillary-like system) populated by two types
of hard-core particles with stochastic dynamics (a tracer particle driven by a constant external force and bath
particles moving completely at random). Resorting to a decoupling scheme, which permits us to go beyond the
linear-response approximation (Stokes regime) for arbitrary densities of the lattice gas particles, we determine the
force-velocity relation for the tracer particle and the stationary density profiles of the host medium particles around
it. These results are validated a posteriori by extensive numerical simulations for a wide range of parameters.
Our theoretical analysis reveals two striking features: (a) We show that, under certain conditions, the terminal
velocity of the driven tracer particle is a nonmonotonic function of the force, so in some parameter range the
differential mobility becomes negative, and (b) the biased particle drives the whole system into a nonequilibrium
steady state with a stationary particle density profile past the tracer, which decays exponentially, in sharp contrast
with the behavior observed for unbounded lattices, where an algebraic decay is known to take place.
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I. INTRODUCTION

Rheological properties of soft-matter systems at the mi-
croscale can be investigated by studying the motion of an
active tracer particle (TP), or some other probe, that can
sample length scales typical of the microstructure of the
host medium. The study of the system response to a local
perturbation is particularly relevant to complex and hetero-
geneous media, such as glasses, gels, and many biological
systems. Experimentally, the microscopic probe can be driven
externally by using magnetic or optical tweezers; such an ex-
perimental technique, called active microrheology (where the
term “active” emphasizes that the tracer is not in equilibrium
with the environment but rather induces some microstructural
changes in the host medium), has been successfully applied
to probe the microrheological properties of a variety of
different systems (see, e.g., Refs. [1,2] for recent reviews),
including living cells [3], colloidal suspensions [4], soft glassy
materials [5,6], and granular media [7–10], to name but a
few.

It was realized, in particular, that in all these systems the
presence of a boundary and interactions with it, as well as the
specific geometry of the sample, not only affect the dynamics
of the tracer particle but are also relevant for the response
properties of the medium. Indeed, the study of driven diffusion
in confined geometries [11], e.g., in microchannels, where the
surface-to-volume ratios are large, opened up a broad front
of research, with important applications in several fields, such
as, e.g., micro- and nanofluidics [12,13], hydrodynamics at
solid-liquid interfaces [14], reaction-diffusion kinetics [15],
dynamics of colloids [16–19] and polymers [20], dense
liquids [21], and crowded systems [22,23].

In order to characterize the dynamics of the TP, biased by
a constant force F , and its effect on the host medium, the
first goal is to establish the so-called force-velocity relation
V (F ); namely the dependence of the stationary velocity V

of the probe on the applied force. This characteristic curve
depends on the mutual interaction between the tracer and the
surrounding medium. In the context of active microrheology
of colloidal suspensions, different theoretical approaches to
relate the tracer dynamics with the structural properties of
the host medium have been proposed: In the low-density
limit, the friction coefficient in the nonlinear response regime
can be obtained from a simplified many-body Smoluchowski
equation, where the knowledge of the density profile around
the tracer is required [24]; in the dense limit, a mode-coupling
approximation allows one to compute the friction coefficient
from the probe’s position correlation function [25–27]. A
general finding is that V (F ) can show nontrivial nonlinear
behaviors, such as force-thinning or thickening [4,28].

A second important point in the characterization of the
system response is to understand how the motion of the TP
perturbs the surrounding medium and whether this pertur-
bation is localized or, on the contrary, is long ranged. This
information is contained in the particle density profiles around
the tracer. Due to the driving force acting on the TP, one
expects to observe an accumulation of particles in front of
it—a “traffic jam”—and a low-density wake, depleted by the
bath particles behind it [29]. This traffic jam produces an extra
contribution to the frictional force exerted on the TP, resulting
in an increased friction [30]. Clearly, the unperturbed value
of the equilibrium particle density should be approached at
infinitely large distances from it. Such asymmetric density
profiles are observed, for instance, in simulations of colloidal
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dispersions [31,32] or lattice gases [33], in experiments of
colloidal suspensions [34], and in glass-forming soft-sphere
mixtures [35,36]. This inhomogeneous spatial distribution of
the bath particles induced by the TP and traveling along
together with it signifies that the TP drives the whole system
out of equilibrium bringing it to a nonequilibrium steady state.
This has important physical consequences, e.g., it can give rise
to effective bath- and bias-mediated interactions in the sys-
tem [33,37]. Quantitatively, an exact calculation of the density
profiles around stationary moving tracer particle is impossible,
since here one faces a genuine essentially many-body problem
and one has to resort to approximate approaches. In particular,
for colloidal suspensions important results have been obtained
using the dynamic density functional theory [18,38,39].

Analytical results describing the nonlinear coupling be-
tween the TP and the dynamical environment can be obtained
within the framework of lattice gases—minimalistic models
that are able to reproduce some of the main features of more
complex systems. Lattice gas models consist of particles that
can jump from one site of the lattice to another, with the
only constraint that each site can be occupied at most by
one particle (excluded-volume interactions). This physically
means that apart from constraining particle dynamics on the
lattice, we take into account only the repulsive part of the
particle-particle interaction potential. The host medium is
represented by bath particles, performing a (symmetric in all
directions) random walk among the neighboring lattice sites.
The TP is also considered as a mobile hard-core particle,
equal in size to the bath particles, but may have a different
characteristic jump time and, in active microrheology settings,
be subjected to a constant external force favoring its jumps
in a preferential direction, see Fig. 1, in agreement with the
local detailed balance (LDB) [40]. The model can then be
viewed as an asymmetric exclusion process (the so-called
ASEP) evolving in a sea of symmetric exclusion processes
(SEPs) [41] and represents a combination of two paradigmatic
models for transport phenomena in nonequilibrium statistical
mechanics.

Recently, the behavior of V (F ) beyond the linear regime in
lattice gas models has received great attention, triggered by the
observation of the striking phenomenon of negative differential
mobility (NDM), namely a nonmonotonic dependence of the
TP velocity on the applied force [42–48]. Upon a gradual in-
crease of the force F , the velocity grows linearly, as prescribed
by the linear response, then approaches a maximal value and

FIG. 1. Lattice gas with driven tracer. The hard-core tracer
particle (in red) is subjected to an external force F and performs
a biased random walk, while the bath particles (in blue) perform
nearest-neighbor lattice random walks, constrained by excluded-
volume interactions.

further decreases with an increase of F . This remarkable
“getting more from pushing less” behavior [49] occurs not
only in lattice models, but it is observed in several systems,
such as systems in nonequilibrium steady states coupled
to thermal baths at different temperatures [49], Brownian
motors [50,51], and kinesin models [52]. In particular, in
the context of kinetically constraint models, NDM has been
observed in numerical simulations in Refs. [43,53] and related
to the heterogeneity and intermittency of the dynamics in
the glassy phase [43]. More recently, an analytical theory
accounting for NDM in a Lorentz lattice gas, where the
TP travels among fixed obstacles, has been presented by
Leitmann and Franosch [44] in the dilute limit (i.e., at linear
order in the obstacle density). Later, Basu and Maes [46]
observed via numerical simulations the same phenomenon
in a dynamical environment, where obstacles can diffuse
with excluded-volume interactions, and related NDM with
the “frenetic” contributions appearing in a nonequilibrium
fluctuation-dissipation relation [54–58]. A general analytical
approach, accounting for NDM in dynamical environments,
and valid for arbitrary density and arbitrary choice of transition
rates, has been then proposed and discussed in Ref. [47], where
the trapping effect induced on the TP by the coupling between
the density and the characteristic time scale of bath particles,
was indicated as the main physical mechanism responsible for
the phenomenon. The study of the dependence of NDM on
the microscopic dynamical rules has been further investigated
by Baiesi and coworkers [48], who stressed that the particular
shape of the obstacles and their coupling with the TP can play
a central role in determining the effective trapping mechanism.

In this paper we present a general analytical treatment
which unifies and extends previous studies and allows us
to compute the force-velocity relation of the TP and the
density profiles around it for arbitrary densities and for
arbitrary values of the exerted force, in experimentally relevant
geometrically restricted systems—striplike or capillary-like
confinement; namely for bounded lattices which have an
infinite extent in the direction of the applied force and are
finite in other directions, perpendicular to the direction of the
applied force, see Fig. 2. Our theoretical approach is based
on a decoupling of correlation functions of the site occupation
variable and can be applied to any choice of the transition rates,
including, in particular, the cases studied in the recent literature

FIG. 2. Sketch of strip- and capillary-like confined geometries.
The external force is applied along the direction in which the system
has an infinite extent.
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mentioned above. This approximation has been previously
introduced for one-dimensional models in Refs. [59–61]
and subsequently generalized for higher-dimensional infinite
lattices in Refs. [30,62,63]. Here we extend this analysis over
an experimentally relevant, but technically more involved,
case of dense crowded environments placed in confined,
geometrically restricted systems. As mentioned above, these
particular boundary conditions have important applications in
many systems and therefore it is worth to study how they
influence the system’s response.

Our first main result is the derivation of the analytic
expression for the velocity V (F ) from the decoupling approxi-
mation, valid for any choice of jump probabilities and arbitrary
density. The comparison of this result with extensive numerical
simulations reveals that the approximation is very accurate in a
wide range of parameters. We proceed to show that, in a certain
region of the parameter space but not always, the force-velocity
relation is a nonmonotonous function, so when F exceeds a
certain value, at which V attains a maximum, the velocity
starts to decrease. In this regime, remarkably, the differential
mobility becomes negative. Moreover, we study in detail the
behaviors arising from two specific choices of the TP jump
probabilities, considered recently in Refs. [44,46,47], both
satisfying the LDB but differing in the explicit dependence
on F in the directions orthogonal to the force. We derive the
phase chart in the parameter space of the model where NDM
is expected to occur for both kinds of jump probabilities. Our
study unifies and clarifies quantitatively the recent analyses
mentioned above, on the role of the microscopic dynamical
rules in nonequilibrium systems, driven beyond the linear
response regime [47,48].

The second issue we address concerns the effect of
boundary conditions on the density profiles around the TP. In
particular, it is unclear in which way such a confinement will
influence the emergent nonequilibrium microstructure of the
host medium. On the one hand, in Ref. [62] the computation
of the density profiles around a TP in an adsorbed monolayer
of hard-core particles showed that if the particle density in
the monolayer is conserved, the approach to the equilibrium
density with the distance past the tracer is described by a
power-law function [64]. On the other hand, it is known [61,65]
that in strictly one-dimensional systems—the so-called single-
files, there are no stationary profiles past the driven tracer.
The systems we consider here are physically two (stripes)
and three dimensional (capillaries), but effectively they are
quasi one dimensional since they are of an infinite extent
only in one direction. Therefore, the outcome is a priori not
evident. We show that the approach of the local host particles
density at large distances past the tracer is exponential, in sharp
contrast with the power-law behavior observed in unbounded
systems [62]. More precisely, in the case of striplike geometry
of size L, our analytical approach allows us to identify a
characteristic length, marking the passage from an initial
algebraic decay at short distances to an asymptotic exponential
relaxation. This length scale diverges with the size L of the
stripe, resulting in a pure algebraic decay for infinite lattices,
as expected. Our study reveals that the strong memory effects
in the spatial distribution of particles in the wake of the
tracer are suppressed by the confining geometry, due to a fast
homogenization effect.

The paper is organized as follows. In Sec. II we describe
the model and define the relevant parameters. In Sec. III we
present our results for V (F ) in the case of confined geometries
and compare the analytical predictions against Monte Carlo
numerical simulations. In Sec. IV we study the phenomenon
of NDM and discuss the effects of different microscopic
dynamical rules. In Sec. V we report the analytical results for
the density profiles around the tracer for a striplike geometry
and compare them with the case of infinite lattices. Finally, in
Sec. VI we conclude with a brief recapitulation of our results
and outline further research. In Appendices A and B, details
on the analytical computations for the force-velocity relation
and the density profiles, respectively, are provided.

II. THE MODEL

We consider a d-dimensional hypercubic lattice with unit
lattice spacing, bounded or not, populated by hard-core
particles, with total average density ρ (see Fig. 1). The particle
dynamics is defined by the following rules: Each bath particle
waits an exponentially distributed time with mean τ ∗ and then
selects one of the nearest-neighboring sites with probability
1/2d. If the chosen site is empty at this time moment, then the
particle jumps; otherwise, if the target site is occupied, then
the particle stays at its position. We also introduce a tracer
particle, with a different mean waiting time τ , and with jump
probabilities in the direction ν (ν ∈ {±1, . . . , ± d}),

pν = e(β/2)F·eν∑
μ e(β/2)F·eμ

, (1)

where β is the inverse temperature (measured in the units of
the Boltzmann constant), eμ are the 2d base vectors of the
lattice, and F ≡ F e1 is the external force. In the following,
we will refer to Eq. (1) as Choice 1. Notice that in this case, in
the limit F → ∞, the TP performs a totally directed motion,
where only the steps in the field direction are permitted. This
situation can be relevant for modeling molecular motors, such
as the protein kinesin moving on microtubules [66].

Let us stress that the choice in Eq. (1) is not univocal. It
coincides with that of Ref. [44], but the transition rates in the
transverse direction with respect to the field can have different
expressions, as considered, for instance, in Refs. [43,46]. The
theoretical treatment proposed in the following is, however,
general and does not rely on a specific form of pν . In order
to illustrate this point, and in order to analyze the effect of
different forms of jump probabilities, we will also explicitly
consider the case of Ref. [46], which, in two dimensions,
corresponds to the definition

p′
±1 = 1

2

e±βF/2

eβF/2 + e−βF/2
, (2)

and p′
±2 = 1/4. In this case, the jump probabilities in the

directions orthogonal to the force are constant, and we will
refer to this expression as Choice 2 in the rest of the paper.
Note that both Choice 1 and Choice 2 satisfy the LDB, which
guarantees that, at linear order in F , the Einstein relation
is verified. However, out of equilibrium, or in the nonlinear
regime, the explicit dependence of the transition rates on F

can have important effects, as we will discuss in detail in
Sec. IV.
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III. STATIONARY VELOCITY IN CONFINED
GEOMETRIES

In this section we present an analytical computation of
the stationary velocity of the tracer, based on a decoupling
approximation.

A. General formalism

Let the Boolean variable η(R) = {1,0} denote the instanta-
neous occupation variable of the site at position R by any
of the bath particles, η ≡ {η(R)} denote the instantaneous
configuration of all such occupation variables and RTP—the
instantaneous position of the TP. The evolution of the joint
probability P (RTP,η; t) that at time t the TP is at site RTP

with the configuration of obstacles η, is ruled by the master
equation

∂tP (RTP,η; t)

= 1

2dτ ∗

d∑
μ=1

∑
r �=RTP−eμ,RTP

[P (RTP,η
r,μ; t) − P (RTP,η; t)]

+ 1

τ

d∑
μ=1

pμ{[1 − η(RTP)]P (RTP − eμ,η; t)

−[1 − η(RTP + eμ)]P (RTP,η; t)}, (3)

where ηr,μ is the configuration obtained from η by exchanging
the occupation numbers of sites r and r + eμ. The first term in
right-hand side of the above equation describes the change in
P (RTP,η; t) due to the bath particles jumps, while the second
and third lines take into account the TP moves.

Multiplying both sides of the master equation by (RTP · e1),
summing over all configurations (RTP,η), and taking the long
time limit t → ∞, we obtain the following expression for the
TP velocity:

V = 1

τ
{p1[1 − k(e1)] − p−1[1 − k(e−1)]}, (4)

where the function k(λ) is the stationary value of k(λ; t),
defined by

k(λ; t) =
∑
RTP,η

η(RTP + λ)P (RTP,η; t). (5)

The function k(λ; t) represents the density profile around
the tracer position. The equation of motion for k(λ; t) is
obtained by multiplying the master equation by η(RTP + λ)
and summing over all the configurations of (RTP,η). We get
the following equation:

2dτ ∗∂tk(λ; t) =
∑

μ

(∇μ − δλ,eμ
∇−μ

)
k(λ; t)

+ 2dτ ∗

τ

∑
ν

pν〈[1 − η(RTP + eν)]

×∇νη(RTP + λ)〉, (6)

where we introduced the differential operator ∇μf (λ) =
f (λ + eμ) − f (λ) and the average 〈X(RTP)〉 ≡∑

RT P ,η X(RTP)P (RTP,η; t).

Equation (6) is not closed, because two-point correlation
functions of the occupation variable appear in the right-hand
side. In order to close and solve this equation, we use the
decoupling approximation:

〈η(RTP + λ)η(RTP + eν)〉 ≈ 〈η(RTP + λ)〉〈η(RTP + eν)〉,
(7)

which is expected to be valid for λ �= eν . This approximation
has been discussed in a series of previous papers in unconfined
geometries [30,59,60]. It is expected to hold in the dilute
regime, ρ 
 1, and for values of τ ∗ not too large with
respect to τ , namely when the dynamics of bath particles is
sufficiently fast. More specifically, it has been shown that this
approximation provides exact results for V (F ) in the limits of
very low and very high densities in unconfined geometries [47].
Notice that the regime of validity of the approximation can be
dependent on the specific choice of transition rates.

B. Solution in confined geometries

The formalism developed up to here is general and holds for
both unconfined and confined lattices. The computation in the
case of infinite lattices has been reported in previous works,
see, e.g., Ref. [62]. Here we focus on the novel and interesting
case of confined geometries, namely infinite in the direction of
the applied field and finite of length L in the other ones, with
periodic boundary conditions [67]. In particular, for d = 2 we
have stripes and for d = 3 we have rectangular capillaries, see
Fig. 2 [68]. For convenience, let us introduce the functions
h(λ; t), defined by

h(λ; t) ≡ k(λ; t) − ρ, (8)

with the convention h(0; t) = 0, and the shorthand nota-
tion h(n1e1 + · · · + nd ed ; t) = hn1,...,nd

(t). As detailed in Ap-
pendix A, the function hn1,...,nd

introduced above is finally
given by the following system of 2d equations:

αhn1,...,nd
=

∑
ν

Aνhν∇−νFn1,...,nd

− ρ(A1 − A−1)(∇1 − ∇−1)Fn1,...,nd
, (9)

where (n1, . . . ,nd ) are taken equal to the coordinates of
the base vectors {±e1, . . . , ± ed}, the coefficients Aμ = 1 +
(2dτ ∗/τ )pμ[1 − ρ − h(eμ)], α = A1 + A−1 + 2(d − 1)A2,
and we have introduced the functions

Fn = 1

Ld−1

L−1∑
k2,...,kd=0

1

2π

∫ π

−π

dq
e−in1q

∏d
j=2 e−2iπnj kj /L

1 − λ(q,k2, . . . ,kd )
,

(10)

with

λ(q,k2, . . . ,kd ) = A1

α
e−iq + A−1

α
eiq

+ 2A2

α

d∑
j=2

cos

(
2πkj

L

)
. (11)

Note that Fn is the long-time limit of the generating function
of a biased random walk on a striplike lattice [69]. Using the
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fact that h±2 = . . . h±d for symmetry reasons, this system of
2d equations may be reduced to a system of three equations for
the coefficients Aν (ν = ±1,2). Although highly nonlinear, the
system (9) can be solved numerically and the tracer velocity
can be obtained for arbitrary values of the parameters using
the relation (4), which can be rewritten as

V = 1

2dτ ∗ (A1 − A−1). (12)

The system (9) and Eq. (12), with the definition (10),
represent the first main result of our paper. They allow us to
obtain the prediction for V (F ) following from the decoupling
approximation (7), for general dimension d and arbitrary
values of the model parameters.

C. Linearized solution in the dilute regime

The system (9) can be simplified in the dilute limit, ρ → 0.
Noting that the coefficients Aν can be approximated as Aν ∼
1 + 2dpντ

∗/τ , and introducing the variables qn through the
relation

hn1,...,nd
= ρ qn1,...,nd

, (13)

one can express the stationary TP velocity as

V (ρ → 0) = 1

τ
(p1 − p−1) − ρ

τ
(p1 − p−1

+p1q1 − p−1q−1) + o(ρ), (14)

where now the quantities qn satisfy the linear system

2d

(
1 + τ ∗

τ

)
qn =

∑
ν

(
1 + 2d

τ ∗

τ
pν

)
qeν

∇−νFn

− 2d
τ ∗

τ
(p1 − p−1)(∇1 − ∇−1)Fn. (15)

From Eqs. (14) and (15), and using definition (10), one can
explicitly obtain the TP velocity in the dilute limit for arbitrary
choice of jump probabilities and time scales τ,τ ∗. Notice that
the comparison between the expression for V (F ) obtained
in the dilute limit for unconfined geometries [47], following a
computation analogous to that reported here, and the analytical
result of Ref. [44], revealed that the decoupling approximation
is indeed exact at lowest order in ρ, for arbitrary values of the
time scales τ,τ ∗. We claim that this statement also holds for
confined geometries.

D. Comparison with numerical simulations

In order to check the validity of the approximation (7)
and of the result (12), we have performed Monte Carlo
numerical simulations of our model. We have considered
a two-dimensional striplike lattice with M = L1 × L2 sites,
with L1 = 6000 and L2 = 3, and periodic boundary conditions
in both directions. The initial configuration is random with
density ρ = N/M , N being the number of particles on the
lattice. In Fig. 3, we report the analytic results (continuous
lines) obtained from the solution of the system for the
coefficients Aν , and the numerical data (symbols) from Monte
Carlo simulations for the force-velocity relation, for different
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FIG. 3. Analytical predictions (continuous lines) and numerical simulations (symbols) for V (F ) in the strip-like geometry with L = 3, and
jump probabilities of Choice 1. Parameters are: τ = τ ∗ = 1 (a), τ = 1,τ ∗ = 10 (b), τ = 1 and ρ = 0.5 (c), τ = 1 and ρ = 0.9 (d). Notice the
nonmonotonic behavior in case (b).
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FIG. 4. Analytical predictions (continuous lines) and numerical simulations (symbols) for V (F ) in the strip-like geometry with L = 3,
and with jump probabilities of Choice 2, with τ = 0.5 and τ ∗ = 0.25, for different values of ρ (a), and ρ = 0.2,τ = 0.5 and different values
of τ ∗ (b).

values of density and time scales, in the case of Choice 1. A
very good agreement is observed in a wide range of parameters.
As expected, at finite densities, the decoupling approximation
turns out to be less accurate at large values of τ ∗. We also
notice that in the case of high density ρ = 0.9, we found
that the relaxation times of the system become very long and
an accurate numerical estimation of the stationary velocity
requires long simulations.

IV. NEGATIVE DIFFERENTIAL MOBILITY AND ROLE
OF MICROSCOPIC DYNAMICAL RULES

As shown in Fig. 3(b), in the case with τ = 1 and τ ∗ =
10, the stationary velocity of the TP shows NDM, namely
a nonmonotonic behavior with the applied force. In the
framework of lattice gases [44,46,47] this behavior occurs due
to the formation of long-lived traps caused by the crowding of
bath particles in front of the tracer. Since the TP cannot push
the obstacles away, when the dynamics of bath particles is slow
enough, namely for large τ ∗, an increasing of the external force
produces a longer escape time from the traps, resulting in a
reduction of the average drift.

The complete phase chart identifying the region in the
parameter space {ρ,τ ∗/τ } where the phenomenon is expected
to occur has been obtained in Ref. [47] for infinite lattices, in
the case of Choice 1. Here we focus on the case of confined
geometry and on the role of the microscopic dynamical rules.
Indeed, these can deeply modify the region in the parameter
space where NDM occurs. In order to elucidate this important
point, we also apply our theory to the model where the
transition rates are independent of the field in the transverse
direction. These rates have been used, for instance, in the
numerical simulations described in Ref. [46] and, in our
formalism, correspond to Choice 2. As mentioned above, in our
theory the specific form of transition rates only enters the last
step of the computation, where the numerical solution of the
nonlinear system for the coefficients Aν , Eq. (9), is carried out.
Therefore, the application to the model with jump probabilities
of Choice 2 is straightforward. In Fig. 4 we compare the
prediction of our analytic solutions for this model with the
results of numerical simulations for some cases, finding a very
good agreement for not-too-large values of τ ∗.

As shown numerically in Ref. [46] for unconfined geome-
tries, and as also discussed in Ref. [47], a nonmonotonic
behavior of V (F ) for Choice 2 is observed for large values
of τ ∗/τ [70]. In this regime, the decoupling approximation
is expected not to be accurate, because the bath particles are
very slow and their motion is strongly correlated. Moreover,
it is important to notice that, in the case of Choice 2, in two
dimensions, trapping arises as a three-particle effect: Indeed, in
order to form a trap one needs an obstacle in front of the TP and
two others on the adjacent sites, in the orthogonal directions
(see also the discussion in Ref. [48]). Therefore, in the case of
confined geometries, a NDM cannot be observed for a stripe
with L = 3, because in this case the trapping time becomes
independent of the applied force (the TP has no chance to
escape the trap and has to wait for the obstacles to step away,
for any value of the external field). However, interestingly, as
shown in Fig. 5 via numerical simulations, the phenomenon
occurs for L � 4, and sufficiently large values of τ ∗/τ .

In order to obtain a complete picture and to explicitly
show the qualitative difference of behavior that the choice of
transition rates can produce, we have reconstructed the phase
charts where the effect of NDM is expected to occur, in the
parameter space τ ∗/τ versus ρ, for both Choice 1 and Choice

0 2 4 6 8
F

0

0.05

0.1

0.15

0.2

V

L=5

L=4

L=3

ρ=0.2  τ∗=250

FIG. 5. Numerical simulations for V (F ) in the striplike geometry
with L = 3,4,5 for the model with transition probabilities of Choice 2,
with τ = 0.5, τ ∗ = 250, and ρ = 0.2 (dashed lines are a guide to the
eye). The nonmonotonic behavior can be observed for L � 4.
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(b)

FIG. 6. (a) Phase chart for the NDM region in the plane τ ∗/τ vs ρ in the case of Choice 1, for a strip-like geometry with L = 4. The
bold dashed line represents the line separating the region where NDM occurs, according to the analytical solution based on the decoupling
approximation. (b) Phase chart for the model with jump probabilities of Choice 2. The dot-dashed line is a guide to the eye. The red squares
(black circles) represent numerical simulations where the NDM effect is (is not) observed.

2, focusing on the case of a striplike geometry with L = 4, see
Fig. 6. In the case of Choice 1, the decoupling approximation
turns out to be very accurate in predicting quantitatively the
range of parameters for which the NDM occurs, as represented
by the bold dashed line in Fig. 6(a). Moreover, in this case, from
the linearized solution, Eqs. (14) and (15), an exact criterion
for NDM can be obtained in the low-density limit. Following
the procedure described in Ref. [47], we find that the line
separating the region of NDM from that where the effect does
not occur in the plane τ ∗/τ versus ρ obeys the same scaling
observed in unconfined geometries, namely τ ∗/τ ∼ 1/

√
4ρ,

for τ ∗/τ → ∞.
In the case with jump probabilities of Choice 2, it turns out

that the analytical approach based on the decoupling approxi-
mation predicts NDM in a region of the parameter space where
it is actually not observed via numerical simulations. This is
due to the larger values of τ ∗/τ required for NDM to occur,
so the decoupling approximation is not accurate, and cannot
account quantitatively for NDM. The phase chart for this
choice of transition rates obtained via numerical simulations
is reported in Fig. 6(b) [71].

Our results bring to the fore the important and general
issue concerning the choice of microscopic dynamical rules
for nonequilibrium systems. Indeed, in the nonlinear regime,
different transition rates, all satisfying the LDB, can produce
different behaviors. The correct choice should be dictated by
physical considerations and depends on the real system under
study. On the one hand, Choice 1 includes the case of totally
directed motion, which can be useful to model the dynamics
of molecular motors, or the case of a force which reduces
the excursions of the TP in the transverse directions. On the
other hand, Eq. (2) can be more realistic for systems where
the motion in the different directions is totally decoupled, as,
e.g., for Brownian dynamics in two or three dimensions, with
a force applied along a given direction.

To summarize: (i) the general formalism proposed holds
for any form of jump probabilities, in particular for Choice
1 and Choice 2; (ii) NDM is observed in both cases in
confined geometries, as soon as L � 4 for the case of Choice 2;
(iii) our analytical results based on the decoupling approxima-
tion account quantitatively for the phenomenon in the case of

Choice 1; and (iv) the theory predicts only qualitatively NDM
in the case of Choice 2.

V. DENSITY PROFILES AROUND THE TRACER
PARTICLE

In this section we focus on the study of the bath particle
density distribution around the tracer. This quantity plays
a central role in the characterization of the microstructural
changes induced by the probe in the host medium and these
heterogeneous deformations are responsible for the effective
drag coefficient acting on the tracer.

A. Two-dimensional infinite lattice

The density profile at large distance from the probe for the
case of a two-dimensional infinite lattice has been described in
Ref. [62]. It is found that the decay of the density profile in front
and past the TP shows two different behaviors. In particular,
the asymptotic large distance behavior for the density profile
in front of the tracer is exponential:

hn,0 ∼ K+
e−n/λ+

n1/2
, (16)

where K+ is a coefficient depending on {Aν} and ρ (the explicit
expression is given in Ref. [62]), and λ+ is the decay length,
see Ref. [62]. Remarkably, the wake past the tracer particle
shows a different, algebraic, behavior

h−n,0 = − K−
n3/2

[
1 + 3

8n
+ O(1/n2)

]
, (17)

where the coefficient K− depends on {Aν} and ρ, and is
reported in Ref. [62]. Note that this algebraic decay has also
been shown to occur in soft dense colloids [36].

B. Striplike geometry

In confined geometries the theoretical prediction of the
density profile around the TP can be obtained numerically
for arbitrary values of the distance n from Eq. (9). An explicit
analytical form can be derived for large distances from the
TP. In Appendix B we present the detailed computation of the
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asymptotic density profile around the tracer focusing on the
case of a striplike geometry, namely for a two-dimensional
lattice, infinite in the field direction and of size L in the
transverse direction, with periodic boundary conditions. The
main result of our computation is that, at variance with the
unconfined case, the density profile displays an exponential
decay both in front and past the tracer.

1. Density profiles in the wake of the tracer

As shown in Appendix B, the density profiles in the wake
of the tracer in the limit n → −∞ is

hn,0 ∼
n→−∞ H−en/�−

, (18)

with

H− = 2

LÃ1[U1(1) − U2(1)]

{
Ã1h1[U1(1)−1 − 1]

+ Ã−1h−1[U1(1) − 1] + 2Ã2h2

(
cos

2π

L
− 1

)
− ρ(Ã1 − Ã−1)[U1(1) − U1(1)−1]

}
, (19)

�− = 1

ln[U1(1)]
, (20)

where Ãμ and the function U1 are defined in Appendix B. One
can check that U1(1) > 1 so �− > 0. Our computation shows
that, in contrast with what was found for infinite lattices, the
density profile past the tracer in confined geometries presents
an exponential decay. This is a surprising result, because one
could have expected a behavior intermediate between that of
an infinite lattice and that of a one-dimensional single file
for which there is no stationary density profile [61]. On the
contrary, what we find here is analogous to the behavior
observed in the study of biased diffusion in a one-dimensional
adsorbed monolayer [60]. The exponential decay is related
to the fast homogenization in the transverse direction due to
confinement. Let us also notice that from the solution of the
system (9) and the expression (20), we obtain that the decay
length �− diverges with the stripe width L.

In Fig. 7(a) we show the (rescaled) density profile h(n)
past the tracer obtained from the complete analytic solution of
Eq. (9), for different stripe lengths L. Interestingly, we observe
a change of behavior from an initial algebraic relaxation,
to a final exponential decay. This allows us to identify a
characteristic length scale n∗, governing the crossover between
the two regimes. This length diverges with increasing L,
as expected from the known results for infinite lattices. In
particular, it is found that the behavior of the crossover length
as a function of L follows a power law, n∗(L) ∼ Lγ , with
γ � 2, see inset of Fig. 7(a). This can be understood by
considering that the diffusional time t∗ for homogenization
in the transverse direction is t∗ ∼ L2/D, where D is a
diffusion coefficient. Since the TP travels at average velocity
V , the characteristic crossover length can be then estimated as
n∗ ∼ V t∗ ∼ V L2/D.
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*
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(a)
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10-4

10-3

10-2

-h
(-

n)

L=3
L=5
L=10
L=50
Infinite lattice

ρ=0.1  F=3

(b)

FIG. 7. (a) Analytical predictions from Eq. (9) for the (rescaled)
density profile past the tracer h(n), for different values of the
stripe length L = 3,5,10,20,30,50, with parameters τ = τ ∗ = 1,
density ρ = 0.1, and F = 3. The black continuous line represents
the asymptotic prediction in the case of an infinite lattice, Eq. (17).
The stars represent the estimated values of the crossover length
n∗. Inset: characteristic crossover length n∗ as a function of L.
(b) Analytical predictions from Eq. (9) (dashed lines), asymptotic
analytic predictions, Eqs. (18)–(20) and (17) (continuous lines), and
numerical simulations (symbols) of h(n), for different values of the
strip length L = 3,5,10,50, with τ = τ ∗ = 1.

2. Density profiles in front of the tracer

In Appendix B we show that, considering for simplicity the
special case where L is even, the density profiles in front of
the tracer at large distances are given by

hn,0 ∼
n→∞ H+e−n/�+

, (21)

with

H+ = 2

LÃ1[U1(L/2) − U2(L/2)]

{
Ã1h1[U2(L/2)−1 − 1]

+ Ã−1h−1[U2(L/2) − 1] + 2Ã2h2

(
cos

2π

L
− 1

)
− ρ(Ã1 − Ã−1)[U2(L/2) − U2(L/2)−1]

}
, (22)
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FIG. 8. (a) Numerical simulations results for the stationary density profile k(n) [defined in Eq. (5)] in the infinite lattice and in the strip-like
geometry, with τ = τ ∗ = 1, ρ = 0.1 and different values of the force F . (b)-(d) Asymptotic analytical predictions, Eqs. (18)–(20) and (17)
(continuous lines) and numerical simulations (symbols) for the (rescaled) density profile past the tracer h(n) in the infinite lattice and in the
strip-like geometry, with τ = τ ∗ = 1 and different values of ρ.

�+ = − 1

ln[U2(L/2)]
, (23)

where the function U2 is defined in Appendix B. One can
check that U2(L/2) < 1 so �+ > 0. The characteristic length
�+ rapidly converges to the value of the unconfined geometries
with the stripe size L.

C. Comparison with numerical simulations

In Fig. 7(b), we compare results of numerical simulations
and analytical predictions for different values of the stripe
length L, at fixed density ρ = 0.1 and fixed characteristic times
τ = τ ∗ = 1, finding a very good agreement. The continuous
lines represent the asymptotic results, Eqs. (18)–(20) and (17),
while the dashed lines represent the complete solution for
h(n), valid for arbitrary n, obtained from Eq. (9). Notice that
for intermediate values of L a crossover between the algebraic
and the exponential decay can be observed, as predicted by
our analytical solution.

The density profiles around the tracer k(n) measured in
numerical simulations for density ρ = 0.1 and two values of
the force F = 3,9, are reported in Fig. 8(a), in the case of
Choice 1 [72]. In Figs. 8(b)–8(d) we report the (rescaled)
bath particle density profiles h(n) in the wake past the TP in
both infinite and confined geometries for different values of
ρ and F . The analytical asymptotic predictions for infinite
lattices, Eq. (17), and confined geometries, Eqs. (18)–(20),
represented by continuous lines, are in very good agreement
with the numerical simulations (symbols). In simulations the

infinite lattice is realized with L1 = L2 = 200, with periodic
boundary conditions, and the striplike geometry with L1 =
6000 and L2 = 3.

VI. CONCLUSION

We have studied analytically the dynamics of a driven tracer,
traveling in a sea of unbiased hard-core particles on a lattice, in
the relevant case of confined geometries. Our general theory
unifies and extends previous results, can be applied to any
choice of jump probabilities and for arbitrary particle density,
and allows us to obtain the force-velocity relation of the TP
and the density profiles around it. The central point of our
approach is based on a decoupling approximation for the site
occupation variable correlation function.

Our treatment allowed us to address some important issues
in the study of the nonlinear response of a many-body
interacting system. First, regarding the force-velocity relation
of the TP, we have shown that our analytical theory is in very
good agreement with Monte Carlo numerical simulations, in a
wide range of model parameters. In particular, we have found
that, in confined geometries also, V (F ) in the nonlinear regime
can display a nonmonotonic behavior, namely a negative
differential mobility. This phenomenon is due to the trapping
effect induced by the bath particle on the tracer when the
applied field is strong. If the mean characteristic time of the
bath particles is sufficiently large, then the traps can be long
lived and this produces a decrease of the stationary drift as a
function of the force. The microscopic mechanism inducing
the trapping effect can depend on the specific dynamical rules
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of the model [47,48]. We have discussed in detail the different
behaviors arising from two particular definitions of jump
probabilities [46,47], identifying the region in the parameter
space where NDM can take place. In the case of transition rates
corresponding to the case of Choice 1, our theory successfully
predicts the phase chart where NDM is expected to occur. In the
case of Choice 2, the decoupling approximation qualitatively
predicts NDM, but cannot be quantitatively accurate, because
NDM takes place only when the bath particles are very slow,
and their motion is strongly correlated.

The second important issue we have addressed regards the
study of the density profiles around the TP, and the local
deformations induced in the surrounding medium. We have
found that, quite surprisingly, the density profile past the
tracer strongly depends on the geometry of the system. In
the case of an infinite lattice with d > 1, it is known that
the decay is algebraic [62], while for striplike geometries our
theory predicts an exponential decay. Our analytical results
also allow us to describe the passage from the algebraic decay
to the exponential relaxation, as a function of the strip size.
Remarkably, we found that this change of behavior is governed
by a characteristic length arising in the density profile that
scales with the stripe size as ∼L2. For short distances with
respect to this length scale an algebraic decay is expected,
while at larger distances the exponential relaxation takes place.
Since this length scale diverges with the stripe size, for infinite
lattices only the algebraic decay survives. Moreover, we found
that the effect of NDM is not manifested in the behavior of the
decay length of the density profiles in the wake of the tracer,
which remains a monotonic function of the force.

Our findings show how the structure and shape of the
density profile are significantly affected by the lattice geom-
etry. This can have important implications for many known
phenomena related to the perturbation profile induced by
a tracer in a host medium, such as drifting steady-state
structures [73], bath-mediated interactions of driven parti-
cles [33,74], and “negative” mass transport [75]. Moreover,
it would be interesting to check if a change of behavior
similar to that observed for discrete lattices between infinite
and confined geometries is also found in off-lattice systems,
such as colloidal suspensions or granular media.
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APPENDIX A: STATIONARY VELOCITY

In this Appendix we present the details on the computations
of the TP stationary velocity in a confined geometry in
dimension d. The functions h(λ; t), defined by

h(λ; t) ≡ k(λ; t) − ρ, (A1)

with the convention h(0; t) = 0, satisfy the following equations
of motion:

2dτ ∗∂th(λ; t) = L̃h(λ; t) for λ /∈ {0, ± e1, . . . , ± ed},
(A2)

2dτ ∗∂th(λ; t) = L̃h(λ; t) + ρ(Aν − A−ν)

for λ ∈ {0, ± e1, . . . , ± ed}, (A3)

with L̃ ≡ ∑
μ Aμ∇μ and Aμ = 1 + (2dτ ∗/τ )pμ[1 − ρ −

h(eμ)].
We introduce the auxiliary variable ξ = (ξ1, . . . ,ξd ) and the

generating function

H (ξ ; t) =
∞∑

n1=−∞

L−1∑
n2,··· ,nd=0

hn1,··· ,nd
(t)

d∏
j=1

ξ
nj

j , (A4)

where the shorthand notation h(n1e1 + · · · + nd ed ; t) =
hn1,...,nd

(t) has been used. If (n1, . . . ,nd ) = eν , then we denote
heν

= hν . From Eqs. (A2) and (A3) we can show that
H (ξ ; t) is the solution of the following partial differential
equation:

2dτ ∗∂tH (ξ ; t) =
⎡⎣A1

ξ1
+ A−1ξ1 + A2

d∑
j=2

(
1

ξj

+ ξj

)
− α

⎤⎦
×H (ξ ; t) + K(ξ ; t), (A5)

with α = A1 + A−1 + 2(d − 1)A2 and

K(ξ ; t) = A1(ξ1 − 1)h1(t) + A−1

(
1

ξ1
− 1

)
h−1(t)

+A2

d∑
j=2

[
(ξj − 1)hj (t) +

(
1

ξj

− 1

)
h−j (t)

]

+ ρ(A1 − A−1)

(
ξ1 − 1

ξ1

)
. (A6)

The stationary solution of Eq. (A5) is

H (ξ ) = K(ξ )

α

1

1 − [
A1
α

1
ξ1

+ A−1

α
ξ1 + A2

α

∑d
j=2

(
1
ξj

+ ξj

)] .

(A7)

We then rewrite the auxiliary variables as ξ1 = eiq and ξj =
e2iπkj /L (for j �= 1), and introduce the function

Fn = 1

Ld−1

L−1∑
k2,...,kd=0

1

2π

∫ π

−π

dq
e−in1q

∏d
j=2 e−2iπnj kj /L

1 − λ(q,k2, . . . ,kd )
,

(A8)
with

λ(q,k2, . . . ,kd ) = A1

α
e−iq + A−1

α
eiq

+ 2A2

α

d∑
j=2

cos

(
2πkj

L

)
, (A9)

so H (ξ ) can be cast in the form

H (q,k2, . . . ,kd ) = K(q,k2, . . . ,kd )

α

1

1 − λ(q,k2, . . . ,kd )
.

(A10)
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Using the definition of Fn, we get

1

1 − λ(q,k2, . . . ,kd )

=
∞∑

n1=−∞

L−1∑
n2,...,nd=0

ein1q

d∏
j=2

e2iπnj kj /LFn1,...,nd
(A11)

and

H (q,k2, . . . ,kd ) = 1

α

∞∑
n1=−∞

L−1∑
n2,...,nd=0

K(q,k2, . . . ,kd )

×Fn1,...,nd
ein1q

d∏
j=2

e2iπnj kj /L. (A12)

Finally, the definition of K in Eq. (A6) allows us to show that
hn1,...,nd

is given by the system of 2d equations (9).

APPENDIX B: DENSITY PROFILES

In this Appendix we present details on the computation of
the density profiles around the TP in the case of a striplike
geometry. For simplicity, we introduce Ãν = Aν/α (and then∑

ν Ãν = 1). Note that Eq. (9) is not closed with respect to the
density profiles hn. A closed form can be obtained as follows:
Evaluating Eq. (9) for n = e1,e−1,e2, one obtains a closed
set of equations satisfied by h1, h−1, and h2. These boundary
values of hn can be obtained, and hn for arbitrary n can be
computed using Eq. (9).

In order to obtain an explicit expression for the density
profiles, in what follows, we study the asymptotic behavior
of hn,0 in the limits n → ±∞. To this aim, we consider the
behavior of the gradients ∇νFn,0 in the limits n → ±∞. We
will use the following expression of Fn, that can be obtained
with the change of variable u = eiq and by computing the
integral over u with the residue theorem:

Fn = 1

L

L−1∑
k=0

1

2π

∫ π

−π

dq
e−in1qe−2iπn2k/L

1 − λ(q,k)
, (B1)

= 1

L

L−1∑
k=0

e− 2iπkn2
L f (n1,k), (B2)

with

f (n1,k) =
⎧⎨⎩

1
Ã1

U2(k)n1

U1(k)−U2(k) if n1 � 0

1
Ã1

U1(k)n1

U1(k)−U2(k) if n1 < 0
, (B3)

and

U1
2

(k) = 1

2Ã1

(
1 − 2Ã2 cos

2πk

L

)

± 1

2

√
1

Ã2
1

(
1 − 2Ã2 cos

2πk

L

)2

− 4
Ã−1

Ã1
. (B4)

We first study the behavior of the gradients ∇νFn,0 behind
the tracer (n < 0).

1. Density profiles in the wake of the tracer

We assume that n < 0 and use the expression of Fn from
Eqs. (B3), (B4), and (B5):

∇1Fn,0 = Fn+1,0 − Fn,0

= 1

L

L−1∑
k=0

[f (n + 1,k) − f (n,k)]

= 1

LÃ1

L−1∑
k=0

U1(k) − 1

U1(k) − U2(k)
en ln[U1(k)]. (B5)

The gradient ∇1Fn,0 has then an exponential behavior when
n → −∞, dominated by the term of the sum over k for
which U1(k) is the smallest. It can be found by considering
the function of a continuous variable φ1 defined as: φ1(x) =
U1(Lx/2π ), for x ∈ [0,2π ]. φ1(x) is symmetric with respect
to the value x = π and reaches a maximum for this value.
Consequently,

U1(0) = U1(L), (B6)

U1(1) = U1(L − 1),

. . . (B7)

and the smallest value of U1(k) is reached for k = 0 and k = L.
We compute U1(0):

U1(0) = 1 − 2Ã2

2Ã1
+ 1

2

√
(1 − 2Ã2)2

Ã2
1

− 4
Ã−1

Ã1
, (B8)

and using the relation Ã1 + Ã−1 + 2Ã2 = 1, one obtains
U1(0) = 1. The first term of the sum over k in Eq. (B5) is
then null. We then conclude that the behavior of ∇1Fn,0 is
dominated by the terms k = 1 and k = L − 1:

∇1Fn,0 ∼
n→−∞

2

LÃ1

U1(1) − 1

U1(1) − U2(1)
en ln[U1(1)]. (B9)

With a similar calculation, one obtains

∇−1Fn,0 ∼
n→−∞

2

LÃ1

U1(1)−1 − 1

U1(1) − U2(1)
en ln[U1(1)] (B10)

and

∇2Fn,0 = Fn,1 − Fn,0 (B11)

= 1

L

L−1∑
k=0

[e− 2iπk
L f (n,k) − f (n,k)] (B12)

= 1

LÃ1

L−1∑
k=0

(
e− 2iπk

L − 1
) U1(k)n

U1(k) − U2(k)
. (B13)

Once again, the sum over k is dominated by the terms k = 1
and k = L − 1:

∇2Fn,0 ∼
n→−∞

1

LÃ1

en ln[U1(1)]

U1(1) − U2(1)

× (e− 2iπ
L − 1 + e− 2iπ(L−1)

L − 1)︸ ︷︷ ︸
=2[cos(2π/L)−1]

(B14)
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∼
n→−∞

2

LÃ1

(
cos

2π

L
− 1

)
en ln[U1(1)]

U1(1) − U2(1)
. (B15)

Using the asymptotic expansions from Eqs. (B9), (B10),
and (B15) in Eq. (9), we finally obtain Eqs. (18)–(20).

2. Density profiles in front of the tracer

We use the expression of f (n,k) for n > 0:

f (n,k) = 1

Ã1

U2(k)n

U1(k) − U2(k)
. (B16)

Studying the properties of the function φ2(x) = U2(Lx/2π )
on the interval [0,2π ], one can show that, depending on the
parity of L, the minimum value for U2(k) is reached:

(1) once at k = L/2 for L even
(2) twice at k = �L/2� ± 1 for L odd.
For simplicity, we consider the special case where L is even

and obtain

∇±1Fn,0 ∼
n→∞

2

LÃ1

U2(L/2)±1 − 1

U1(L/2) − U2(L/2)
en ln[U2(k=L/2)]

∇2Fn,0 ∼
n→∞

2

LÃ1

(
cos

2π

L
− 1

)
en ln[U2(L/2)]

U1(L/2) − U2(L/2)
,

and, using Eq. (9), we obtain Eqs. (21)–(23).
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