
PHYSICAL REVIEW E 93, 032127 (2016)

Thermal rectification and negative differential thermal conductance in harmonic chains
with nonlinear system-bath coupling
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Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this
work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies
considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on
recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011)]. When the linear coupling constant is weak, the
multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath
interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential
thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear
coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling
suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed
compared to the results of weak linear coupling constant.
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I. INTRODUCTION

In the past decade, phononics—a science and engineering
of manipulating heat—has attracted intense interest from
fundamental research as well as applied research [1–6]. There
are two essential effects in phononics, thermal rectification and
negative differential thermal conductance (sometimes referred
to as negative differential thermal resistance). Thermal rectifi-
cation allows heat current to flow preferably in one direction.
The first nanoscale thermal rectifier was proposed theoretically
in 2002 based on a one-dimensional (1D) nonlinear chain
[7]. Since then, a variety of theoretical thermal rectifiers were
proposed based on diverse nonlinear systems [8–17]. Inspired
by the seminal experimental work demonstrating that heat
current flow preferentially along the direction of decreasing
mass density in asymmetrically mass-loaded nanotubes [18],
a lot of studies on thermal rectification were performed
in nonlinear mass graded systems [19–25] and asymmetric
carbon-based nanostructures [26–29], including asymmetric
graphene nanoribbons [30–36]. All studies attribute thermal
rectification to the intrinsic nonlinearity (anharmonicity) of
the studied systems.

Negative differential thermal conductance refers to the
effect that the heat current decreases as the applied temperature
difference increases. This effect is the critical element to realize
thermal transistors [37], thermal logic gates [38], and thermal
memory [39]. Negative differential thermal conductance can
be obtained in many nonlinear lattices [19,21,37,40–50].
Graphene nanoribbons are also the suitable platforms for
practically realizing the negative differential thermal conduc-
tance [36,51,52]. The intrinsic nonlinearities of the systems
are the necessary conditions to achieve negative differential
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thermal conductance, although the interface resistance be-
tween two-segment nonlinear systems [37,40–46] or the
boundary resistance between heat baths and nonlinear systems
[48,49] are important.

However, the phonon mean-free path in graphene (∼775 nm
near room temperature [53]) is much longer than the sizes of
graphene nanoribbons. Therefore, the intrinsic nonlinearity is
insignificant and thus graphene nanoribbons can be regarded
as harmonic systems. In harmonic systems, although excep-
tions exist [11–13], negative differential thermal conductance
cannot be achieved and thermal rectification can only be
obtained in quantum regime by asymmetric coupling with
an additional self-consistent heat bath [54–59]. However, the
nanoscale self-consistent heat bath is hard to realize [60].
Therefore, harmonic systems did not receive much interest
in researches on thermal rectification and negative differential
thermal conductance.

In almost all theoretical models mentioned above, the
system-bath couplings were supposed to be linear. This is
because the energy dissipations (dampings) in previous studied
systems were supposed to be linear in general. However,
recent researches have revealed that the nanostructures with
high aspect ratio such as nanotubes and graphene nanoribbons
can easily be driven into nonlinear dissipation regime [61].
As shown in Ref. [61], nonlinear dissipation can be treated
as a generalized Caldeira-Leggett model with nonlinear
system-bath coupling [62,63]. Nonlinear system-bath coupling
corresponds to the inelastic boundary phonon scattering.
In low-dimensional systems, thermal boundary conductance
(also referred to as interfacial thermal conductance) becomes
increasingly important [2,3,64]. At high temperature, many
experimental [65–78], computational [79–93], and empirical
[94–98] approaches have uncovered that the thermal boundary
conductance at weakly bonded interface (or interface between
highly dissimilar materials) exceeds the upper bound of
elastic thermal conductance and nearly increases linearly with
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temperature. These results reveal that inelastic phonon scatter-
ing at interface contributes significantly to thermal boundary
conductance. Therefore, nonlinear system-bath coupling is
nontrivial for studying heat transport in low-dimensional
systems.

In contrast to linear system-bath coupling, in thermal
transport community, nonlinear system-bath coupling has
received a little consideration in the previous works. In
Refs. [11–13], using small polaron transformation and based
on master equation analysis, nonlinear system-bath coupling
was considered and consequently the thermal rectification and
negative differential thermal conductance were achieved in
nonlinear two-level system and even in a harmonic molecular
junction (a single harmonic oscillator). We noted that the
nonlinear coupling is so strong that the linear coupling is
omitted as shown in the Appendix of Ref. [13]. Therefore,
the relative contributions of nonlinear coupling and linear
coupling to thermal rectification and negative differential
thermal conductance were not addressed.

In this work, we modeled the high-aspect-ratio nanostruc-
ture as an 1D harmonic chain. Two heat baths are coupled to
it at the ends. The couplings are allowed to be nonlinear in
addition to linear. Heat transport in the chain is studied at high
temperature limit. When the linear system-bath couplings are
weak, the numerical results reveal four effects of nonlinear
system-bath coupling on heat current. First, heat current is
enhanced when nonlinear couplings are taken into account.
When the nonlinear coupling constant is weak, heat current is
proportional to the square of the nonlinear coupling constant.
Second, heat current increases linearly with the average tem-
perature of the two baths when the temperature difference is
fixed. When the nonlinear coupling constant is weak, the slope
of increasing is proportional to the square of the nonlinear
coupling constant. Third, negative differential thermal conduc-
tance can be obtained in any temperature region by properly
choosing the coupling constants. Last, thermal rectification is
also obtained when the chain asymmetrically couples to the
two baths. When both linear couplings are weak, the higher
heat current is obtained when the hot bath couples to the chain
with the stronger nonlinear coupling. All numerical results are
consistent with our analytical results by approximately solving
the generalized Langevin equation. When the linear system-
bath couplings are strong, there is no available analytical
result. Heat current is calculated numerically. Comparing with
the results of weak coupling, heat current is suppressed by
the nonlinear couplings. And heat current decreases with the
average temperature of the two baths when the temperature
difference is fixed. The slope of decreasing is also dependent
on the nonlinear coupling constant. Moreover, the direction
of thermal rectification is reversed. The higher heat current is
obtained when the hot bath couples to the chain with the weaker
nonlinear coupling. However, negative differential thermal
conductance is not achieved in strong linear coupling regime.

The rest of the paper is organized as follows. In Sec. II, the
model and the analytical formulas and results are presented.
The numerical results are presented in Sec. III. Finally, we
draw the conclusions and discuss the potential experimental
realization of the nonlinear system-bath coupling as well as
the range of validity of our approximate analytical results in
Sec. IV.

II. MODEL AND METHODS

A. Model

Harmonic chain containing N particles is considered. These
particles are connected by harmonic springs with equal spring
constants, which are chosen as equal to 1. The Hamiltonian of
the chain is

HS =
N∑

l=1

p2
l

2ml

+
N+1∑
l=0

(xl − xl+1)2

2
, (1)

where xl , pl , and ml denote, respectively, the displacement of
the lth particle from its equilibrium position, the momentum,
and the mass of the lth particle. The fixed boundary conditions
are chosen as x0 = xN+1 = 0. Two uncorrelated heat baths
(L and R), which are initially in thermal equilibrium at
temperatures TL and TR , are connected to the 1st particle
and the N th particle. Each bath is modeled by a collection
of M oscillators with harmonic interactions. The Hamiltonian
of each bath is

HB =
M∑

α=1

P 2
α

2
+

∑
α,β

1

2
KαβQαQβ, (2)

where Qα and Pα are the displacement and the momentum of
the αth unit-mass oscillator of the bath, and Kαβ is the spring
constant between the αth and βth oscillator of the bath.

The Lth (Rth) oscillator of the left (right) bath is connected
to the 1st (N th) particle of the chain. The system-bath coupling
Hamiltonian is

HI = −g(x1)QL − f (xN )QR, (3)

where g(x1) and f (xN ) are functions of x1 and xN for
describing the coupling strength. If g(x1) [or f (xN )] is
proportional to the higher exponent of x1 (or xN ) than 1, the
coupling is nonlinear in the coordinate of chain but linear in
the heat-bath coordinates. Then the bath coordinates can be
integrated out and we can obtain the generalized Langevin
equations with multiplicative noises for the coordinates of
chain. It should be mentioned that the coupling Hamiltonian in
here is equal to those in Refs. [62] and [63] by just transforming
the heat-bath coordinate into its normal-mode coordinate space
(as show in Appendix A). However, Hamiltonian Eq. (3)
exhibits the direct meaning of coupling between two particles.

In the Markovian limit, the following generalized Langevin
equations of the chain can be obtained according to the
standard procedure [62,63,99–101] as (see Appendix A)

mlẍl = −(2xl − xl−1 − xl+1) − γl(xl)ẋl + ξl(xl), (4)

where γl(xl) = γL[g′(x1)]2δl,1 + γR[f ′(xN )]2δl,N denotes dis-
sipation and ξl(xl) = g′(x1)ηLδl,1 + f ′(xN )ηRδl,N is the noise
term. The prime (′) indicates derivative with respect to
the corresponding argument. At high temperature (classical
limit), the fluctuation-dissipation relations 〈ηL(t1)ηL(t2)〉η =
2kBTLγLδ(t2 − t1) and 〈ηR(t1)ηR(t2)〉η = 2kBTRγRδ(t2 − t1)
are satisfied. Where 〈· · · 〉η denotes an average over the noise.

To analytically study the heat current flowing in the
chain, the Fokker-Planck equation corresponding to Eq. (4)
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is expressed as [102]

∂P

∂t
= −

N∑
l=1

∂

∂xl

(vlP ) −
N∑

l=1

∂

∂vl

[−(2xl−xl−1−xx+1)

ml

P

]

+ γL

m1
[g′(x1)]2 ∂

∂v1
(v1P ) + γLkBTL

m2
1

[g′(x1)]2 ∂2

∂v2
1

P

+ γR

mN

[f ′(xN )]2 ∂

∂vN

(vNP )

+ γRkBTR

m2
N

[f ′(xN )]2 ∂2

∂v2
N

P, (5)

where vl = pl/ml = ẋl is the velocity of the lth particle of
the chain. P = P ({xl},{vl},t) is the phase-space probability
density function. From the Fokker-Planck Eq. (5), the time
derivative for the energy of the chain ∂〈HS〉/∂t can be
calculated. Where 〈· · · 〉 implies an ensemble average over
the whole phase space of the chain. Then the heat current
in steady state with ∂〈HS〉st/∂t = 0 can be defined via the
continuity equation. For simplicity, in this work, we choose
the coupling functions as polynomial in x1 and xN only up to
the quadratic terms as in Ref. [63]: g(x1) = kLx1 + μLx2

1/2
and f (xN ) = kRxN + μRx2

N/2, where kL and kR are linear
coupling constants, and μL and μR are nonlinear coupling
constants. As a consequence, the steady-state heat current is
defined as

J st = 1
2

(
J st

L − J st
R

)
, (6)

with

J st
L(R) = γL(R)kBTL(R)

m1(N)

(
k2
L(R) + μ2

L(R)

〈
x2

1(N)

〉)

− γL(R)
(
k2
L(R)

〈
v2

1(N)

〉 + μ2
L(R)

〈
x2

1(N)v
2
1(N)

〉)
, (7)

where the subscripts without brackets correspond to the heat
current flowing into the chain from the left bath, and the

subscripts with brackets correspond to the heat current flowing
into the chain from the right bath.

B. Perturbation approximation

For nonlinear system-bath coupling, there are no rigorous
results about J st even for harmonic chain. However, when the
couplings are linear, heat current flowing through harmonic
chain can be obtained exactly as shown in Refs. [99–101,103].
Therefore, approximate analytical results can be obtained
by using a proper perturbation scheme when the nonlinear
couplings are weak. Only considering the linear system-bath
coupling by letting μL = μR = 0 as the zeroth approximation,
x1(N) and v1(N) can be calculated for harmonic chain via the
equations of motion, Eq. (4) [99–101,103]. Then the heat cur-
rent can be obtained by inserting these zeroth approximations
of x1(N) and v1(N) into Eqs. (6) and (7).

In the linear coupling approximation with μL = μR = 0,
following Refs. [99–101,103], the equations of motion, Eq. (4),
can be solved exactly by taking the Fourier transformation. The
results can be expressed as

xl(t) = 1

2π

∫ ∞

−∞
dωẐlm(ω)ξ̂m(ω)eiωt , where

Ẑ = Ŷ−1, with

Ŷ = �̂ − ω2M̂ − �̂(ω),

�̂lm = −δl,m+1 + 2δl,m − δl,m−1, (8)

M̂lm = mlδl,m,

�̂lm = δl,m

[−iγLk2
Lωδl,1 − iγRk2

Rωδl,N

]
,

ξ̂l = ηL(ω)kLδl,1 + ηR(ω)kRδl,N .

Letters with hat symbol represent the matrices. The superscript
−1 means the inversion of the corresponding matrix. The cor-
responding fluctuation-dissipation relations in Fourier space
are 〈ηL(R)(ω1)ηL(R)(ω2)〉η = 4πγL(R)kBTL(R)δ(ω1 + ω2).

Substituting Eq. (8) into Eq. (7), the results can be expressed
as

J st
L = γLk2

LkBTL

m1
− γLk2

L

〈
v2

1

〉 + μ2
L

(
γLkBTL

m1

〈
x2

1

〉 − γL

〈
x2

1v
2
1

〉)

= γLk2
LγRk2

RkB

π
(TL − TR)

∫ ∞

−∞
dωω2Ẑ1N (ω)Ẑ1N (−ω)

+μ2
L

2γL

π2

[
γLk2

LkBTL

∫ ∞

−∞
dωωẐ11(ω)Ẑ11(−ω) + γRk2

RkBTR

∫ ∞

−∞
dωωẐ1N (ω)Ẑ1N (−ω)

]2

+
[
γLk2

LγRk2
RkB

π
(TL − TR)

∫ ∞

−∞
dωω2Ẑ1N (ω)Ẑ1N (−ω)

]

× μ2
L

πk2
L

[
γLk2

LkBTL

∫ ∞

−∞
dωẐ11(ω)Ẑ11(−ω) + γRk2

RkBTR

∫ ∞

−∞
dωẐ1N (ω)Ẑ1N (−ω)

]
, (9)

where

M̂−1 = 1

π

∫ ∞

−∞
dωẐ(ω)ω2�̂Ẑ(−ω) (10)

is used to obtain the second equality [104,105]. We should mention that Eq. (10) is satisfied only when TL = TR . Therefore,
Eqs. (11), (12), and (14) are approximate results for TL ≈ TR . Furthermore, the second term of the last equality equals to zero
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because ωẐ11(ω)Ẑ11(−ω) and ωẐ1N (ω)Ẑ1N (−ω) are odd functions of ω. Then Eq. (9) can be simplified as

J st
L = κ0(TL − TR)

[
1 + μ2

L

πk2
L

(
γLk2

LkBTLI11 + γRk2
RkBTRI1N

)]
. (11)

Similarly, one can obtain

J st
R = κ0(TR − TL)

[
1 + μ2

R

πk2
R

(
γRk2

RkBTRINN + γLk2
LkBTLIN1

)]
, (12)

where κ0 = γLk2
LγRk2

RkBK1N/π , Klm = ∫ ∞
−∞ dωω2Ẑlm(ω)Ẑlm(−ω), and Ilm = ∫ ∞

−∞ dωẐlm(ω)Ẑlm(−ω). κ0(TL − TR) is just the
heat current obtained in Refs. [99–101,103] for linear system-bath coupling, which is valid for high-temperature difference.
Therefore, in spite of the approximation Eq. (10) being used, our results are supposed to be valid also for high-temperature
difference.

As shown in Ref. [13], the temperature difference �T can be imposed in two different ways. First, we set

(A) TL = T0 + �T/2, TR = T0 − �T/2. (13)

Then, the heat current Eq. (6) can be expressed as

J st = κ0

{
1 + 1

2π

[(
μ2

LγLI11 + μ2
RγRINN

) +
(

k2
R

k2
L

μ2
LγR + k2

L

k2
R

μ2
RγL

)
I1N

]
kBT0

}
�T

+ 1

4π
κ0

[(
μ2

LγLI11 − μ2
RγRINN

) +
(

k2
L

k2
R

μ2
RγL − k2

R

k2
L

μ2
LγR

)
I1N

]
kB(�T )2. (14)

When the system-bath couplings are linear with μL =
μR = 0, the heat current J st = κ0�T depends linearly on the
temperature difference �T but is independent on T0 as shown
in Eq. (14). However, when the couplings are nonlinear (e.g.,
μL = μR = μ �= 0, γL = γR = γ , and kL = kR = k, then
J st = κ0�T + κ0μ

2γ (I11 + I1N )kBT0�T/π ), heat current is
enhanced relative to κ0�T and it increases linearly with
T0 because Ilm � 0 [as shown in Appendix B, Ẑlm(−ω) =
Ẑ∗

lm(ω)]. These results are consistent with the results in
Refs. [65–98].

As one can expect, thermal rectification is absent when
the couplings are linear with μL = μR = 0. But the situation
becomes very different when the system-bath couplings are

nonlinear. Thermal rectification is achieved when the second
term of Eq. (14) is nonzero. If the system-bath couplings are
symmetric with kL = kR , γL = γR , and μL = μR , thermal
rectification is absent. However, if the couplings are asymmet-
ric, thermal rectification can be achieved. These approximate
analytical results are verified by the following numerical
results.

For the second way to impose the temperature difference,
we set

(B) TL = Ts, TR = Ts − �T, (15)

where �T � Ts to ensure TR � 0. The heat current Eq. (6) is
thus expressed as

J st = κ0

{
1 + 1

2π

[(
μ2

LγLI11 + μ2
RγRINN

) +
(

k2
R

k2
L

μ2
LγR + k2

L

k2
R

μ2
RγL

)
I1N

]
kBTs

}
�T − 1

2π
κ0

(
μ2

RINN + k2
R

k2
L

μ2
LI1N

)
γRkB(�T )2.

(16)

It indicates that, when �T > 0, heat current first increases
with �T , and then decreases after reaching a maximum.
From Eq. (16), the temperature difference corresponding to
the maximum heat current is

(�T )m = Ts

2
+

2π + (
μ2

LI11 + k2
L

k2
R

μ2
RI1N

)
γLkBTs

2
(
μ2

RINN + k2
R

k2
L

μ2
LI1N

)
γRkB

>
Ts

2
.

(17)
When letting kR/kL 
 1, by choosing the suitable μL and
μR , one can expect that (�T )m < Ts from Eq. (17) and thus
TR > 0. Therefore, negative differential thermal conductance
occurs with the onset temperature difference being (�T )m.
One should note that TR has to less than Ts/2 to achieve the

negative differential thermal conductance. However, there is no
limitation on temperature region to realize negative differential
thermal conductance. In contrast to the results of Ref. [13],
if the system-bath couplings are symmetric, the temperature
difference calculated from Eq. (17) is larger than Ts and thus
negative differential thermal conductance cannot be achieved.

III. NUMERICAL RESULTS

To obtain the heat current in harmonic chains, we use the
implicit midpoint algorithm [106] to integrate the equations
of motion, Eq. (4). (The results have been compared with
those obtained by using Mannella’s leapfrog algorithm [106]
and the velocity Verlet algorithm [107]. The differences are
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negligible.) Equilibration times ranged from 108 to 109 time
steps of step size 0.05 and steady-state averages were taken
over another 108–109 time steps. (The results have been com-
pared with those obtained by setting time step size as 0.005.
The differences are negligible.) The steady state is reached by
checking whether the results of different equilibration times
are equal and checking whether the local heat currents are
constant along the chain. In all simulations, we study the
equal-mass harmonic chains with ml = 1. Moreover, we set
kB = 1 and N = 24. Therefore, the cutoff frequency of the
harmonic chain is 2. Comparing with the cutoff frequency of
the out-of-plane acoustic (ZA) phonon polarization branches
of graphene (∼14 THz [53]), the real temperature Treal is
related to the dimensionless temperature T through the relation
Treal ≈ 336 T (K). In this work, T is chosen in the range from
1 to 2, thus the corresponding Treal is in the range from 336 to
672 K.

The local heat current at site l is defined as Jl = 〈(ẋl +
ẋl−1)fl,l−1〉/2, where fl,l−1 is the force exerted by the (l − 1)th
particle on the lth particle and 〈· · · 〉 denotes a steady-state
average. At steady state, Jl is independent on the site position
l. In our simulations, the heat current flows from the left bath to
the right bath is defined as J+ = ∑N

l=2 Jl/(N − 1). Reversing
the temperature difference, the heat current flows in the reverse
direction is denoted as J−.

A. Weak linear coupling constant

We set μR = 0 in Fig. 1 and the inset. Only the left system-
bath coupling is nonlinear. The linear coupling constants
are set as kL = 0.1 and kR = 1 in Fig. 1. As revealed
in Ref. [108], without the nonlinear coupling, phonons in
the whole frequency domain can transport across the right
system-bath interface with the transmission equal to one.
However, only the low-frequency phonons can transport across

FIG. 1. Heat currents J+ and J− as functions of μL. The
temperature difference is imposed as model A, Eq. (13). The
parameters are T0 = 1.5, �T = 1 for J+ and �T = −1 for J−,
γL = γR = 1, μR = 0, kL = 0.1, and kR = 1. The open diamond
corresponds to J− for μL = 1 in the inset. The open up-triangle
and the open down-triangle correspond to J+ and J− for μL = 1 in
Fig. 2. In the inset, no parameter is changed but kR = 0.1. The solid
down-triangle corresponds to the intercept d1 in Fig. 3.

the left system-bath interface. If the left system-bath coupling
is nonlinear, high-frequency phonons can transport across the
left interface via the multiphonon process and thus the heat
current is enhanced just as depicted in Fig. 1 and the inset.
The enhancement is consistent with our analytical results
in Sec. II B and the results of weak coupling in Refs. [65–
67,70,74,75,77,81,84,90,94,97,98]. Moreover, J+ and J− are
proportional to the square of μL in Fig. 1 when μL is small as
predicted in Eq. (14).

Thermal rectification is apparent in Fig. 1. Heat current
flows preferably from the right bath to the left bath (i.e.,
J− > J+) when μL �= 0. This is because the right system-bath
interface is transparent to phonons. If the right bath is hotter,
more phonons can be excited in the chain to participate in
the multiphonon processes. Therefore, thermal rectification
with J− > J+ is obtained. With the increasing of nonlinear
coupling constant μL, the transmission of phonons across the
left interface approaches saturation. Consequently, the heat
currents saturate as shown in Fig. 1. However, when the
right coupling is weak with kR = 0.1, thermal rectification
is not evident. J+ is only a little higher than J− when
μL < 0.6, as shown in the inset of Fig. 1. This is because
kR = 0.1 allows only low-frequency phonons transport across
the right interface. Benefiting by the left nonlinear system-bath
coupling, more low-frequency phonons can be excited in
harmonic chain. Therefore, J+ is a little higher than J−
when μL < 0.6. When μL > 0.6, the heat currents (J+ and
J−) approach the saturated value. This saturated value at
μL = 1 is marked as an open diamond point in Fig. 1 by
corresponding the right interface in the inset to the left interface
in Fig. 1. The agreement reveals the fact that the transmissions
of low-frequency phonons across the left interface approach
one when μL > 0.6 in the inset.

Heat current is further enhanced when the right coupling
is nonlinear. Comparing with the inset of Fig. 1, we set
μR = 0.1 in Fig. 2. Thermal rectification is apparent with
J+/J− ≈ 1.336 at μL = 1. In addition, the direction of thermal
rectification is reversed at μL = μR = 0.1. This reversing of

FIG. 2. Heat currents J+ and J− as functions of μL. The tem-
perature difference is imposed as model A, Eq. (13). The parameters
are T0 = 1.5, �T = 1 for J+ and �T = −1 for J−, γL = γR = 1,
μR = 0.1, and kL = kR = 0.1. In the inset, no parameter is changed
but μR = 0.7.
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FIG. 3. Heat currents J+ as functions of the average temperature
T0. The temperature difference is imposed as model A, Eq. (13). The
parameters are �T = 1 and γL = γR = 1. The solid symbols and the
open symbols correspond to μL = μR = 0.1 and μL = μR = 0.2,
respectively. The square symbols and the circle symbols correspond
to kL = kR = 0.1 and kL = kR = 0.05, respectively. The long-dash,
solid, short-dash, and dot-dash lines are linear fits of the data.
The fitting parameters are a1 = 0.00464141, b1 = 0.00130853, c1 =
0.00441571, d1 = 0.0052321, a2 = 0.0159123, b2 = 0.00345535,
c2 = 0.0155388, and d2 = 0.00712554.

thermal rectification indicates that heat current is higher when
the hot bath is coupled to the chain with stronger nonlinear
coupling constant. It is consistent with the results of nonlinear
coupling in Ref. [13]. This is based on the aforementioned
mechanism that the stronger the nonlinear coupling is, the
more the phonons can be excited in the chain to participate in
the multiphonon process. The saturated values of J+ and J−
at μL = 1 are marked as the open up-triangle and the open
down-triangle in Fig. 1 by corresponding the right interface
in Fig. 2 to the left interface in Fig. 1. We can find that the
corresponding values are equal. This indicates that the left
interface is transparent for all the phonons that can transport
across the right interface when μL > 0.6. Based on this
mechanism, thermal rectification will be absent (i.e., J+ = J−)
when both μL and μR are higher than 0.6. This is confirmed
in the inset of Fig. 2 with μR = 0.7. Moreover, in the inset,
J− > J+ when μL < 0.6 because μR > μL.

In the high-temperature limit, the phonon population in heat
bath increases linearly with temperature. As a consequence,
the heat conductivity increases with temperature when the
system-bath coupling is nonlinear. The heat conductivity is
defined as lim�T →0 Jst/�T . When the system-bath couplings
are symmetric with μL = μR and kL = kR , heat current Jst

is proportional to the temperature difference �T . Therefore,
fixing �T , heat current Jst increases linearly with the average
temperature T0, which is predicted by Eq. (14). The numerical
results in Fig. 3 confirm this prediction. Moreover, a1 ≈ c1

and a2 ≈ c2 are obtained, which indicates that the slopes of
the linear fits are μL(R) dependent when kL = kR . The same
μL(R) corresponds to the same slope. The higher the μL(R)

is, the higher the slope is. This is consistent with Eq. (14)
and Ref. [86]. As predicted in Eq. (14), when the system-bath

FIG. 4. Heat current J+ as function of �T . The temperature
difference is imposed as model B, Eq. (15). The parameters are TL =
2, TR = TL − �T , γL = γR = 1, μR = 0, kR = 1, and kL = 0.05.

couplings are symmetric, the slope is proportional to μ2
L and

the intercept equals to κ0�T . The intercept d1 is plotted in the
inset of Fig. 1 as a solid down-triangle point. It approaches
the predicted value κ0�T for kL = kR = 0.1. However, the
intercept d2 corresponding to μL = μR = 0.2 is larger than
κ0�T for kL = kR = 0.1. In addition, the ratios of the slopes
are a2/a1 ≈ 3.43 and c2/c1 ≈ 3.52. They are smaller than the
corresponding ratio of μ2

L, which is (0.2/0.1)2 = 4. Besides
the fitting errors and the numerical errors, we attribute these
discrepancies to the fact that the approximation in Eq. (14) is
crude and it is only valid for small μL(R).

When the temperature difference is imposed as model B,
Eq. (15), negative differential thermal conductance can be
obtained as predicted in Eq. (17). According to Eq. (17), we
set μR = 0, kR = 1, and kL = 0.05, and thus kR/kL = 20;
the negative differential thermal conductance is obtained in
Fig. 4. As predicted in Eq. (17), all the onset temperature
differences are larger than TL/2 = 1. In addition, the higher
the μL is, the higher the onset temperature difference is. The
appearance of negative differential thermal conductance can
be attributed to the same mechanism as in Ref. [51]. With
the increasing of �T , the average temperature (TL + TR)/2
decreases. When the heat conductivity decreases with the
decreasing (TL + TR)/2, the negative differential thermal
conductance may be obtained. This mechanism is verified in
Fig. 5. The heat current J+ decreases with the decreasing T0.
The higher the μL is, the faster the decreasing of J+ is, and
thus the faster the decreasing of the corresponding J+ in the
negative differential thermal conductance region is, as shown
in Fig. 4.

B. Strong linear coupling constant

With the increasing of the linear coupling constant, more
high-frequency phonons can transport across the system-bath
interface [108]. Therefore, the heat current increases with the
linear coupling constant as shown in the inset of Fig. 6.
In addition, when the linear coupling is weak, the heat
current is proportional to the square of the linear coupling,
which is predicted by κ0�T in Eq. (14) and is consistent
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FIG. 5. Heat current J+ as function of the average temperature
T0. The temperature difference is imposed as model A, Eq. (13). The
parameter is �T = 1. The other parameters are the same as those
described in the caption of Fig. 4.

with the results in Refs. [83,109,110]. (One should note
that γLk2

L and γRk2
R in this work correspond to the friction

constant λ in Ref. [110].) Without the nonlinear coupling,
thermal rectification is absent as shown in the inset. However,
when the asymmetric nonlinear couplings are present, thermal
rectification appears in Fig. 6. Moreover, the direction of
thermal rectification reverses as kL(=kR) increases. When the
linear coupling is weak, the nonlinear system-bath coupling
can enhance the heat current as aforementioned (if kL is weak,
heat currents depicted as square symbols are higher than heat
currents depicted as up-triangle symbols in Fig. 6). The higher
nonlinear coupling enables more phonons to transport across

FIG. 6. Heat currents J+ and J− as functions of the linear
coupling kL. Square symbols and up-triangle symbols correspond
to asymmetric nonlinear couplings and symmetric linear couplings,
respectively. The temperature difference is imposed as model A,
Eq. (13). The parameters are T0 = 1.5, �T = 1 for J+ and �T = −1
for J−, γL = γR = 1, and kR = kL. The cross symbol and the star
symbol correspond to the intercepts b1 and b2 in Fig. 8. In the inset,
kR is fixed at 1.

FIG. 7. Heat currents J+ and J− as functions of the nonlinear
coupling μL. The temperature difference is imposed as model A,
Eq. (13). The parameters are T0 = 1.5, �T = 1 for J+ and �T = −1
for J−, γL = γR = 1, μR = 0.4, and kR = kL = 1.

the interface, and thus the heat current is larger when the hot
bath is coupled to the system with higher nonlinear coupling
constant. With the increasing of kL and kR , the linear coupling
becomes strong. Consequently, more high-frequency phonons
can transport across the interface. Therefore, the umklapp
process becomes dominating and thus the nonlinear coupling
suppresses the heat current (if kL is strong, heat currents
depicted as square symbols are lower than heat currents
depicted as up-triangle symbols in Fig. 6). The higher the
nonlinear coupling is, the more the heat current is suppressed
and thus J+ < J− when kL > 0.4. It should be mentioned that
even without the nonlinear couplings, the heat current will also
be suppressed when the linear couplings are strong enough as
shown in Ref. [110]. However, the mechanism of suppression
is potentially the mismatching between frequencies of the bath
and the system. Which is different from the mechanism of
suppression by the nonlinear couplings.

The impacts of nonlinear system-bath coupling on heat
current is shown in Fig. 7 when the linear couplings are
strong (kL = kR = 1). The heat currents J+ and J− are
suppressed by the nonlinear couplings and thus decrease with
μL. Higher nonlinear coupling suppresses more heat current.
Hence, thermal rectification appears when μL �= μR and the
direction of thermal rectification reverses at μL = μR with the
increasing of μL.

At high temperature, the population of phonons increases
linearly with temperature. Consequently, when the nonlinear
coupling is present and the linear coupling constant is strong,
there are more high-frequency phonons participating in the
umklapp processes with the increasing temperature. Therefore,
the heat conductivity decreases linearly with temperature.
As described above, heat current J+ will decrease linearly
with the average temperature T0. This is confirmed in Fig. 8.
We obtained that c1 ≈ c2, which means the slopes of the
linear fits for μL = μR = 0.2 are equal. Although a1 �= a2,
the corresponding fitting lines (the long-dash line and the
short-dash line) in Fig. 8 approach parallel. We attribute this
discrepancy to the fitting errors and the numerical errors.
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FIG. 8. Heat currents J+ as functions of the average temperature
T0. The temperature difference is imposed as model A, Eq. (13).
The parameters are �T = 1 and γL = γR = 1. The circle symbols
and the square symbols correspond to μL = μR = 0.1 and μL =
μR = 0.2. The solid symbols and the open symbols correspond to
kL = kR = 0.7 and kL = kR = 1. The long-dash, solid, short-dash,
and dot-dash lines are linear fits of the data. The fitting parameters
are a1 = −0.00243144, b1 = 0.169865, c1 = −0.00620639, d1 =
0.16686, a2 = −0.00176978, b2 = 0.190841, c2 = −0.00620473,
and d2 = 0.190064.

Therefore, the slopes of the linear fits are also μL(R) dependent
when kL = kR . The higher the μL(R) is, the higher the
slope is. This is coincident with the results of weak linear
coupling. Furthermore, the intercepts are equal; i.e., b1 ≈ d1

and b2 ≈ d2. According to the results of weak linear coupling,
these intercepts approach the corresponding heat currents of
harmonic chain with only the linear system-bath couplings.
This is confirmed in Fig. 6, where the cross symbol and the
star symbol correspond to the intercepts b1 and b2, respectively.

Although the heat conductivity decreases with the temper-
ature when the linear coupling is strong, we have not achieved
the negative differential thermal conductance by fixing TL but
increasing TR (or fixing TR but increasing TL). We attribute
the absence of negative differential thermal conductance to
the slope of decreasing (see Fig. 8) being much lower than the
slope of increasing (see Fig. 3).

IV. CONCLUSION AND DISCUSSION

In summary, heat flow in harmonic chain with nonlinear
system-bath coupling is studied based on the generalized
Caldeira-Leggett model in this work. The obtained Langevin-
like equations of motion are solved analytically and nu-
merically. When the linear coupling constant is weak, the
numerical results are consistent with the predictions of the
approximate analytical results. The heat current is enhanced
by the nonlinear system-bath coupling. This is attributed to
the fact that the weak linear system-bath coupling allows only
the low-frequency phonons to transport across the system-
bath interface. When the nonlinear coupling is present, the
high-frequency phonons can transport across the interface
through the multiphonon processes. Hence, the heat current

is enhanced. The stronger nonlinear coupling enables more
phonons to transport across the interface. Therefore, thermal
rectification is obtained when the nonlinear couplings are
asymmetric. When both linear couplings are weak, higher
heat current is obtained when the hot bath is coupled to the
chain with the stronger nonlinear coupling. Moreover, the
populations of phonons increase linearly with temperature at
high temperature. Therefore, the heat conductivity increases
linearly with temperature when the nonlinear system-bath
coupling is present. As predicted by the analytical results,
by suitable choosing of coupling constants, the negative
differential thermal conductance is achieved.

However, when the linear coupling constant is strong,
high-frequency phonons can transport across the system-bath
interface through linear coupling. The umklapp processes
dominate the multiphonon processes when the nonlinear
coupling is present. Hence, the heat current is suppressed.
The stronger nonlinear coupling suppresses more heat current.
Therefore, in contrast to the results of weak linear coupling
constant, the direction of thermal rectification is reversed;
namely, higher heat current is obtained when the hot bath
is coupled to the chain with the weaker nonlinear coupling.
However, although the heat conductivity decreases with the
temperature, the negative differential thermal conductance is
not achieved in this work. The potential reason is attributed to
the slow decreasing of heat conductivity with temperature.

As stated in Sec. II B, the zeroth approximation is derived
for weak nonlinear coupling constant. In addition, the nu-
merical results indicate that the validity of the approximate
analytical results is limited to the weak linear coupling
constant. It is not valid for the strong linear coupling constant
unless the nonlinear coupling constant equals zero. In deriving
the analytical results, Eq. (10) is used. It is satisfied only when
TL = TR . However, when the nonlinear coupling constants
equal zero, the analytical results coincide with the reported
results in Refs. [99–101,103]. Therefore, we expect that the
analytical results are valid for high temperature difference.
This is consistent with the numerical results of weak linear
coupling constant.

All the results obtained in this work are based on the
nonlinear system-bath coupling. Nonlinear system-bath cou-
pling is nontrivial. The experiments on thermal boundary
conductance (interfacial thermal conductance) [65–78] reveal
that the inelastic phonon scattering at interface between
highly dissimilar materials is the dominant reason for the
enhancement of heat current. Additionally, at the interface
between similar materials, the suppression of heat current
relative to the elastic thermal conductance is also observed
[66,77]. Our results of strong linear coupling constant indicate
that the nonlinear coupling is one potential reason for the
suppression of heat current. Therefore, the nonlinear coupling
between different materials is intrinsic. Especially for the
nanostructures with high aspect ratio, the nonlinear dissipation
is easily achieved. The nonlinear dissipation is significant for
nanostructures under tensile stress, but is negligible for them
with slack [61]. This is consistent with the results of thermal
boundary conductance in Ref. [90], in which, under tensile
stress, the transmission of phonons through the linear coupling
is suppressed but the transmission of inelastic energy is nearly
unaffected. This can be understood as follows. The applied
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tensile stress weakens the linear coupling constant but almost
does not impact the nonlinear coupling constant. Therefore,
the relative strength of linear coupling and nonlinear coupling
can be tuned by applying pressure [77,90].

We hope that our study motivates further research on ther-
mal rectification and negative differential thermal conductance
in nanostructures with nonlinear dissipation.
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APPENDIX A: TRANSFORMATION OF HAMILTONIAN

According to Refs. [99–101], the Hamiltonian of each bath,
Eq. (2), can be transformed into the normal-mode form by a
canonical transformation,

Qα =
M∑

s=1

UαsQ̃s,

Pα =
M∑

s=1

UαsP̃s, (A1)

where Uαs satisfies

M∑
β=1

KαβUβs = ω2
s Uαs,

M∑
α=1

UαsUαs ′ = δss ′ . (A2)

Hence, Hamiltonian Eq. (2) is transformed as

HB =
M∑

s=1

(
1

2
P̃ 2

s + 1

2
ω2

s Q̃
2
s

)
. (A3)

Additionally, the coupling Hamiltonian Eq. (3) can be trans-
formed into

HI = −
M∑

s=1

g(x1)ULsQ̃s −
M∑

s ′=1

f (xN )URs ′Q̃s ′ . (A4)

The transformed Hamiltonian Eqs. (A3) and (A4) coin-
cide with them in Refs. [62,63]. Therefore, the generalized
Langevin Eq. (4) can be obtained according to Refs. [62,63].

APPENDIX B: ENTRIES OF MATRIX Ẑ

As shown in Eq. (8), matrix Ẑ is just the inversion of matrix
Ŷ . According to Ref. [111], the entries of matrix Ẑ can be
calculated as

Ẑ11 = A2,N

A1,N

,

Ẑ1N = ẐN,1 = 1

A1,N

, (B1)

ẐNN = A1,N−1

A1,N

,

with

A1,N = D1,N − �̂11D2,N − �̂NND1,N−1 + �̂11�̂NND2,N−1,

A1,N−1 = D1,N−1 − �̂11D2,N−1, (B2)

A2,N = D2,N − �̂NND2,N−1,

where Al,m and Dl,m are defined as the determinants of the
submatrices of Ŷ and �̂ − ω2M̂ beginning with the lth row and
column and ending with the mth row and column. Obviously,
Al,m(−ω) = A∗

l,m(ω) is satisfied, where the star (∗) implies the
complex conjugate. Therefore,

A1,N−1(ω)A1,N−1(−ω) = D2
1,N−1 + γ 2

Lk4
Lω2D2

2,N−1,

A2,N (ω)A2,N (−ω) = D2
2,N + γ 2

Rk4
Rω2D2

2,N−1, (B3)

with

D1,N−1 = (2 − m1ω
2)D2,N−1 − D3,N−1,

D2,N = (2 − mNω2)D2,N−1 − D2,N−2. (B4)

Hence, when γLk2
L = γRk2

R and the harmonic chain is equal-
mass, one can obtain Ẑ11 = ẐNN and then Î11 = ÎNN in
Eq. (14).
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