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Finite-size critical scaling in Ising spin glasses in the mean-field regime
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We study in Ising spin glasses the finite-size effects near the spin-glass transition in zero field and at the
de Almeida–Thouless transition in a field by Monte Carlo methods and by analytical approximations. In zero
field, the finite-size scaling function associated with the spin-glass susceptibility of the Sherrington-Kirkpatrick
mean-field spin-glass model is of the same form as that of one-dimensional spin-glass models with power-law
long-range interactions in the regime where they can be a proxy for the Edwards-Anderson short-range spin-glass
model above the upper critical dimension. We also calculate a simple analytical approximation for the spin-glass
susceptibility crossover function. The behavior of the spin-glass susceptibility near the de Almeida–Thouless
transition line has also been studied, but here we have only been able to obtain analytically its behavior in the
asymptotic limit above and below the transition. We have also simulated the one-dimensional system in a field in
the non-mean-field regime to illustrate that when the Imry-Ma droplet length scale exceeds the system size one
can then be erroneously lead to conclude that there is a de Almeida–Thouless transition even though it is absent.
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I. INTRODUCTION

The nature of the ordered state of spin glasses remains
controversial, despite decades of research. There are compet-
ing theories for the order parameter of the low-temperature
phase. The oldest is based on the broken replica symmetry
(RSB) theory of Parisi and co-workers [1–5], which gives the
correct solution of the spin-glass problem in infinite space
dimensions (mean-field regime), that is, for the Sherrington-
Kirkpatrick (SK) model [6]. Alternative theories based on
scaling arguments include the droplet model [7–11]. There
are also theories based on rigorous calculations [12–17] which
attempt to describe the behavior of these complex and poorly
understood systems, yet contradict the mean-field picture of
Parisi. Recently, it has been argued that the RSB picture applies
in space dimensions d > 6, while the droplet picture holds
for d � 6 [18,19]. That 6 might be the special dimension
down to which RSB might be applicable has been rigorously
established for a particular extreme choice of the spin-spin
interactions [20].

The thrust of the argument brought forward in Ref. [18]
concerns the phase transition which would take place in spin
glasses in an external field if there were RSB—the so-called
de Almeida–Thouless (AT) transition [21]. Furthermore, it
was argued in Ref. [18] that when d > 6 the AT transition
line is mean-field like so that du = 6 is the upper critical
dimension. In renormalization group (RG) language this
means its critical behavior is controlled by a Gaussian fixed
point. This point of view is supported by the work of Castellana
and Barbieri [22], who obtained an equivalent result for a
Dyson model on a hierarchical lattice. However, the arguments
of Refs. [18,22] were based on perturbative results and it

has been recently suggested [23] that there might be a new
non-Gaussian fixed point controlling the behavior in a field in
high space dimension. In addition, Castellana and Parisi [24]
further suggested on the basis of a numerical study of the
Dyson hierarchical model that a nonperturbative fixed point
might also be controlling the critical regime in the parameter
range which corresponds to d � 6. We decided therefore to
reexamine previously published Monte Carlo data in search
of the nonpertubative fixed points. Based on our analysis, we
conclude that at least for d > 6 there is strong evidence that the
critical behavior both in a field and in zero field is controlled
by the trivial Gaussian fixed point. In addition, in Sec. VI
below we argue that finite-size effects will always make it
difficult when d → 6− to judge whether there is or is not an
AT line.

Monte Carlo simulations have of course been extensively
used in an attempt to understand the nature of spin glasses.
Unfortunately in spin glasses, even these state-of-the-art
simulations are often plagued by strong finite-size effects. In
this paper we study in detail the form which finite-size scaling
(FSS) takes as this yields useful information as to whether for
d > 6 a nonperturbative fixed point or a Gaussian fixed point
is controlling the critical behavior.

The paper is structured as follows. In Sec. II we introduce
the models studied, as well as the measured observables and
scaling functions. In Sec. III we study the universality of the
finite-size scaling function for the one-dimensional model with
σ < 2/3 [25,26], followed by a calculation of the scaling
function in Sec. IV. Sections V and VI show results for
finite-size scaling at the AT transition, above and below the
upper critical dimension, respectively.
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II. MODEL, OBSERVABLES, AND SCALING FUNCTIONS

In practice, it is difficult to perform finite-size scaling
studies on large spin-glass systems when d > 6 because the
number of sites in a system of linear dimension L increases
very rapidly, as Ld , so that the range of L which can be
studied is extremely limited. However, it has been realized for
some years now that a class of models in one dimension with
long-range interactions falling off with a power of the distance
between the spins can serve as a useful proxy for short-range
models in high dimension [25–27]. The Hamiltonian of these
power-law long-range models is given by

H = −
∑
ij

Jij SiSj −
∑

i

hiSi, (1)

where the sites i = 1, . . . ,N lie on a one-dimensional ring to
automatically enforce periodic boundary conditions. The sum
is over all pairs of sites and the Ising spins Si ∈ {±1} interact
via random couplings Jij . The latter are independent random
variables of the form

Jij = εij /R
σ
ij , (2)

where εij is a random Gaussian variable with zero mean. It is
convenient to take the distance between spin i and spin j, Rij ,
to be the chord distance between sites i and j , so that Rij =
(N/π ) sin(π |i − j |/N). The variance of εij is fixed so that
(1/N )

∑
i,j J 2

ij = 1. The fields hi are drawn from a Gaussian
distribution with zero mean and variance H 2. We shall refer to
the case when all the hi = 0 as the zero-field case. Most of our
simulational data have been obtained for this one-dimensional
proxy for the d dimensional system in previous numerical
studies [26,28–30]. Some of our data have also been obtained
for diluted versions of the models [31,32], where an average
coordination number zb = 6 is chosen. Details of these diluted
models are also to be found in Refs. [27,33].

For σ = 0, this model is the Sherrington-Kirkpatrick (SK)
model [6], and for 0 < σ < 1/2 it shares the SK universality
class [26,34]. With our normalization of the bonds, Tc = 1
for all σ < 1/2 when the field H = 0. Increasing σ above
1/2 is thought to be analogous to changing an effective space
dimension d of a corresponding short-range model. In the
mean-field regime (d > du = 6) the connection between σ and
the equivalent space dimension d is given by [26,27,35,36]

d = 2

2σ − 1
. (3)

According to Eq. (3) our data for the case σ = 0.55 therefore
corresponds to working in an effective space dimension
d = 20.

We measure the wave-vector-dependent spin-glass suscep-
tibility defined by

χSG(k) = 1

L

∑
i,j

[(〈SiSj 〉 − 〈Si〉〈Sj 〉)2]ave
ik(i−j ). (4)

Note that we shall usually simply call χSG(0) the spin-glass
susceptibility χSG. In Eq. (4) 〈· · · 〉 represents a thermal
average, whereas [· · · ]av represents an average over the
disorder. The finite-size two-point correlation length ξL in a

system of linear dimension L is given by [33,37,38]

ξL = 1

2 sin(km/2)

[
χSG(0)

χSG(km)
− 1

]1/(2σ−1)

, (5)

where km = 2π/L is the smallest nonzero wave vector
compatible with the periodic boundary conditions. Note that
for the one-dimensional model, L = N , as d = 1, i.e., the
linear size of the system is the same as the number of spins
N . These two quantities, χSG and ξL, are commonly studied in
the spin-glass literature, and it is the form of finite-size effects
on these quantities which is the subject of this paper.

The scaling form presented in Refs. [34,39,40] is different
depending on whether behavior is being controlled by a
Gaussian fixed point or a nontrivial fixed point. For example, if
there is a nontrivial fixed point controlling the critical behavior,
the FSS form of the correlation length ξL in a system of Ld

spins takes the form

ξL/L = ξ̃ [(T − Tc)L1/ν], (6)

where the exponent ν is the exponent which describes the
growth of the correlation length in the infinite system, where
ξ ∼ 1/(T − Tc)ν , and ξ̃ is the finite-size scaling function.
However, when the critical behavior is controlled by the
Gaussian fixed point, i.e., when one is above the upper critical
dimension, du = 6 [41], ξL scales as

ξL/Ld/du = ξ̃ [(T − Tc)L2d/du ]. (7)

Thus, by finding which kind of FSS scaling works best, one
can determine the nature of the fixed point which controls the
critical behavior.

To apply Eq. (7) to the one-dimensional proxy model, we
use Eq. (3) for d on the left of Eq. (7), and on the right side of the
equation, we set Ld = L ≡ N for d = 1 [34,40]. Equation (7)
therefore becomes for σ = 0.55

ξL/L1/[3(2σ−1)] → ξL/L10/3 = ξ̃ [(T − Tc)L1/3]. (8)

Figure 1 shows the two scaling forms based on critical
scaling [Eq. (6)] and the mean-field scaling form expected
above the upper critical dimension [Eq. (8)]. We had expected
that the crossing of the curves for different L values would have
been superior for the mean-field scaling form, but this is clearly
not the case for the studied system sizes. A similar behavior
when searching for the AT line was found by Angelini and
Biroli in Ref. [23] and they suggested as a consequence that
du might not be 6 for spin glasses in a field and that the critical
behavior for d > 6 might not be controlled by the Gaussian
fixed point but by some (as yet) undetermined nonperturbative
fixed point.

If one believes in the conventional wisdom that 6 is the
upper critical dimension both in zero field and for the AT, then
the only possible explanation for the poor mean-field scaling
is large corrections to scaling in Fig. 1. On this explanation, if
one could obtain data for much larger systems than L = 512,
then the crossing with mean-field scaling would eventually
become better than that for critical scaling. We cannot obtain
such data for the fully connected system, but we can for the
diluted model and the results for the two kinds of scaling
functions are shown in Fig. 2.
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FIG. 1. (a) Critical scaling form ξL/L vs temperature T for
the fully connected (complete) system with σ = 0.55 in zero random
field H . (b) Mean-field scaling form ξL/L vs temperature T for the
fully connected (complete) system with σ = 0.55 in zero random
field H .

There is some evidence that the crossing is indeed improv-
ing for the mean-field scaling in these larger systems, but one
could not really argue that it is superior to the critical scaling
form. Hence, using these simple scaling plots, we are unable to
provide strong evidence for du = 6. Instead, we have to resort
to an alternate approach to show that mean-field scaling is the
correct description of the critical behavior. Our approach is
to analytically determine the scaling function ξ̃ [(T − Tc)L1/3]
and show that the simulational data fits well to this analytically
calculated form. We find that it is possible to do this in zero
field and we believe that this is good evidence for the validity of
mean-field scaling. In a field, finite-size effects are even larger
in numerical work and on the analytical side we have only been
able to extract the asymptotic forms for the scaling functions.

Rather than study the scaling function ξ̃ , it is simpler
to study the equivalent scaling function for the spin-glass
susceptibility χSG(0) obtained from the second moment of
the spin-glass order parameter q where

q = 1

N

∑
i

S
(1)
i S

(2)
i . (9)
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FIG. 2. (a) Critical scaling form ξL/L vs temperature T for the
diluted model with σ = 0.55 in zero random field H . (b) Mean-field
scaling form ξL/L vs temperature T for the diluted model with σ =
0.55 in zero random field H .

Here “(1)” and “(2)” refer to two independent copies of the
system with the same interactions Jij . We have studied in
particular the second moment q2 = [〈q2〉]av and the quantity

χSG = N [〈q2〉]av, (10)

which is the spin-glass susceptibility in zero field. (Note that
in a finite system in zero field 〈Si〉 = 0.) The analog of the
mean-field scaling form in Eq. (8) is [34]

χSG/L1/3 = χ̃ [(T − Tc)L1/3]. (11)

The analog of the critical scaling of Eq. (6) is [34]

χSG/L2−η = χ̃ [(T − Tc)L1/ν], (12)

where 2 − η = 2σ − 1. Again, χ̃(x) denotes the scaling
function, which will also be called f (x). The advantage of
studying χSG rather than ξL is that we can study it in the SK
universality class where σ < 1/2, whereas ξL is ill defined
for these values of σ . The crossing of χSG/L1/3 when plotted
against the temperature T for various values of the system size
L were studied in Ref. [34] for σ = 0 and 0.25. For σ = 0.55
we present in Fig. 3 the corresponding scaling plots.
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FIG. 3. (a) Critical scaling form of the susceptibility χ/L2σ−1

vs temperature T for the fully connected (complete) system with
σ = 0.55 when the random field H = 0. (b) Mean-field scaling form
χ/L1/3 of the susceptibility χ/L2σ−1 vs temperature T for the fully
connected (complete) system with σ = 0.55 when the random field
H = 0. Note that χ ≡ χSG.

Notice that in the case of the susceptibility the quality of
the crossing is comparable for both the mean-field and critical
scaling, whereas for the correlation length the critical scaling
form seemed superior, at least for the fully connected system.
However, the temperature at which the curves cross provides
an estimate of Tc, and for both χSG and ξL critical scaling
is indicating a Tc > 1, whereas mean-field scaling indicates
a Tc < 1. At the level of mean-field theory the transition
temperature would be Tc = 1, and the fluctuations about the
mean field normally reduce the value of the critical temperature
Tc. This clearly is an argument in favor of using the mean-field
scaling form. The same observation can be made for the
diluted model. For it the mean-field transition temperature
is 2.0564 [34], and the estimate of Tc in Fig. 2 for the case of
σ = 0.55 is certainly less than this number using mean-field
scaling, but larger than this for the critical scaling form.

Standard finite-size scaling for mean-field scaling takes the
form [34]

χSG(T ,L) = L1/3[f (L1/3t) + L−ωg(L1/3t) + · · · ]

+ d0L
2σ−1h(L1/3t) + c0 + c1t + · · · , (13)

where t = T/Tc − 1, and the correction-to-scaling exponent
is ω = 2 − 3σ [25]. In the limit L → ∞ with L1/3t fixed, this
equation reduces to the simpler form

χSG/L1/3 = f (L1/3t), (14)

as then the corrections to scaling become negligible. In what
follows, we shall refer to the limit with x = L1/3t fixed as
“L → ∞” as the finite-size scaling limit, and “f (x)” as the
finite-size scaling function for χSG/L1/3.

In Sec. III we outline the Brézin and Zinn-Justin proce-
dure [42] for calculating the universal scaling function f (x) for
any space dimension d > du = 6 (or σ < 2/3) and show that
our simulational data at σ = 0.0, 0.25, and 0.55 are consistent
with being in the same universality class. In Sec. IV we
determine f (x) by using the mean-field equations of Thouless,
Anderson, and Palmer (TAP) [43], as modified by Plefka
(TAPP) [44]. We shall use in Sec. V these same equations
to determine the analog of the scaling function f (x) at the
AT transition in nonzero field, however, only in the limit of
large x. Finally, in Sec. VI we discuss finite-size problems
which might make one believe there is an AT line for d � 6
(σ � 2/3) even though it is absent.

III. UNIVERSALITY OF THE FINITE-SIZE SCALING
FUNCTION FOR σ < 2/3

If the critical behavior is controlled by the Gaussian fixed
point, Brézin and Zinn-Justin [42] showed how the finite-size
scaling function f (x) can, in principle, be calculated. The
procedure basically reduces to calculating the integral

Zn =
∫

dQαβ exp[−F [{Qαβ]/kT ], (15)

where

F [{Qαβ}]/kT

=
∫

ddx

⎡
⎣1

2
r
∑
α<β

Q2
αβ + w

6

∑
α<β<γ

QαβQβγ Qγα + O(Q4)

⎤
⎦.

(16)

The coefficient r is essentially a measure of the distance from
Tc, i.e., it is related to the reduced temperature t . The Q4 terms
are irrelevant when calculating the scaling function, as are the
usual density gradient terms (∇Qαβ)2 seen in such free-energy
functionals [41], although they would have been needed if we
had tried to calculate the scaling function associated with ξL.
Qαβ is related to the spin-glass order parameter, and α takes
the values 1,2, . . . ,n, with n → 0. This integral should be
adequate for calculating the crossover scaling function f (x)
in the mean-field scaling regime, i.e., for all σ < 2/3. The
form of the function is universal, and the differences between
fully connected spins or the diluted version of the model,
or the value of σ , just feed into the value of Tc, the overall
amplitude of χSG/L1/3, and a multiplicative factor associated
with t . For σ > 2/3, when the behavior is not controlled by the
Gaussian fixed point but instead by the critical fixed point [41],
the calculation of the scaling function is more complicated. Its
argument changes to L1/ν t and the scaling function is different
from the universal form expected to apply for all σ < 2/3.
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FIG. 4. Reduced spin-glass susceptibility χSG/N 1/3 vs x =
N 1/3(T/Tc − 1) (recall N ≡ L), i.e., the finite-size scaling function
f (x) in zero field for all system sizes N studied. For the SK
model (σ = 0) we simulated N = 1024, . . . ,4096. For the diluted
model and σ = 0 we studied N = 2048, . . . ,16384. For σ = 0.25
we studied N = 512, . . . ,4096 for the complete (fully-connected)
model and N = 2048, . . . ,16384 for the diluted model. Data taken
from Ref. [34]. For σ = 0.55 we studied N = 32, . . . ,512 for the
complete (fully connected) model and N = 128, . . . ,2048 for the
diluted model. Data taken from Refs. [26,27]. For σ = 0.55 for the
complete (fully connected) case we have taken Tc ≈ 0.94, while for
the diluted case we use Tc ≈ 1.98. Note the vertical logarithmic scale.

In Fig. 4 we plot results for χSG/N1/3 vs the scaling
variable x = (T/Tc − 1)N1/3 for σ = 0.0, 0.25, and 0.55 for
both the fully connected (complete) model and for the diluted
model. The points include data for all the system sizes N

simulated (see caption). In the range 1 > x > −3 there is a
fairly satisfactory collapse of the data onto a single curve for
the differing values of σ and for both the fully connected and
dilute models. None of the data have been linearly scaled on
either the horizontal or vertical axes of the figure, which would
have been permissible while staying in the same universality
class. The data for x > 1 are strongly affected by finite-size
effects, some of which can be seen in Fig. 5, which is why in
Fig. 4 we have limited the horizontal range to x < 1.

Overall the data are consistent with a universal scaling
function f (x) for σ < 2/3. If the behavior were controlled
by a nonperturbative fixed point rather than by the Gaussian
fixed point, then such universality of f (x) would have to be
understood. Furthermore, as we shall see in Sec. IV below, it is
possible to calculate the function f (x) explicitly. Our results
in Fig. 5 turn out to be in satisfactory agreement with our
approximation.

It is possible to determine the behavior of f (x) as x → ±∞
by simple arguments: when x → −∞, χSG → Nq2, and as
q → −t in the scaling limit where t → 0, that means that
f (x) → x2. The data in Fig. 5 are approaching this estimate
at large negative x. For x → ∞, χSG → 1/(1 − β2) [see
Eq. (25)] for the SK model and also from the TAPP equations,
which implies that f (x) → 1/(2x) as β = 1/(1 + t). Again,
the data shown in Fig. 5 seem to be approaching this limit, but

−4 −2 0 2 410−1

100

101

N1/3(T/Tc − 1)

χ
S
G

/N
1
/
3

N = 512
N = 1024
N = 2048
N = 4096
f(x)
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FIG. 5. Reduced spin-glass susceptibility χSG/N 1/3 vs x =
N 1/3(T/Tc − 1), i.e., the finite-size scaling function f (x) in zero
field for the SK model (σ = 0). The data are taken from Ref. [34].
For this model Tc = 1 [6]. The data for x > 1 are strongly affected
by finite-size effects. The solid curve shows our approximation based
on Eq. (29) for the scaling function f (x) based on solving the TAPP
equations. It gives, at large positive x, f (x) → 1/(2x), while at large
negative x, f (x) → x2. The blue dashed curve is the asymptotic limit
f (x) → x2 for negative x values.

the finite-size effects are large for positive x. This is not due to
any inaccuracies in the TAPP equations, but just points to the
fact that in order to use the simplification χSG = 1/(2t) [which
leads to f (x) → 1/(2x)] one needs to work with rather small
values of t . However, at fixed large x, this requires working
with very large values of N , which are currently not accessible
numerically.

IV. CALCULATION OF THE SCALING FUNCTION f (x)

In this section we outline how one can calculate the finite-
size scaling function f (x). One approach would be to simply
do the integrals in Eq. (15). Unfortunately, that is very difficult
because of the replica labels and the need to continue n → 0.
However, an approach equivalent to this was used by three
of us in Ref. [45] and it results in studying the finite-size
scaling function for the spherical SK spin-glass model, which
according to the arguments in the aforementioned reference
should have an identical scaling function f (x). However, this
approach is hard to extend to the behavior in a field, so instead
we present an approach which does permit, in principle, an
extension to finite fields.

Assuming that the scaling function f (x) applies for all
σ < 2/3, if we can calculate it for the SK model with σ = 0
and that agrees with data for (say) σ = 0.55—as is the case
in Fig. 4—then the assumption would seem to be correct. To
calculate f (x) for the SK model we use the TAP equations [43]
as modified by Plefka [44] and refer to them as the TAPP
equations. Plefka argued that in the presence of an external
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field hi at each site i, the magnetization mi is given by

mi = tanh β

⎡
⎣hi +

∑
j

Jijmj − miχ

⎤
⎦, (17)

where the local susceptibility is given by

χ = N−1
∑

i

χii = N−1
∑

i

∂mi/∂hi. (18)

Plefka assumed that ∂χ/∂mi is of order O(N−1) and thus
negligible when the inverse susceptibility matrix is calculated
from Eq. (17)

χ−1
ij = δij

[
β−1(1 − m2

i

)−1 + χ

] − Jij . (19)

Equations (17) and (19), with
∑

j χijχ
−1
jk = δik form a closed

set of equations for the mi and χ. They are not exact, unfor-
tunately, as the terms of O(N−1) can, for certain quantities,
combine to make O(1) contributions [46]. We believe that such
possibilities are unimportant in our calculation of f (x). Our
argument for this is that the use of these equations gives in
our finite-size scaling limit the same results as can be obtained
by the spherical model SK spin glass mapping [45], which
we think is exact in zero field. For zero fields, in our scaling
regime, mi → 0, and Eq. (19) simplifies to

χ−1
ij = δij [β−1 + χ] − Jij . (20)

The self-consistency equation for χ is then conveniently
written in terms of z = β−1 + χ as

z − β−1 = N−1
∑

i

1

z − λi

, (21)

where λi are the eigenvalues of the matrix Jij . The physical
solution is the solution which has the largest real value of z.

In the large-N limit, the N real eigenvalues λi are described
by the semicircle distribution with support between −2 and 2.
Then Eq. (21) reduces to

z − β−1 = 1 + (z − 2) − √
(z − 2)(z + 2)

2
, (22)

which gives z = β + β−1. We want to calculate

χSG ≡ 1

β2
N−1

∑
i,j

χ2
ij

= 1

β2
N−1

∑
i

1

(z − λi)2
. (23)

In the large-N limit, the sum can be done and gives

1

2β2

z√
z2 − 4 − 1

, (24)

which reduces to

χSG → 1

1 − β2
, (25)

on substituting z = β + β−1. It is this result which we use to
determine the limit of f (x) as x → ∞ (see Fig. 6).

In principle, for finite N values, one could solve for z

numerically using Eq. (21). However, this is difficult for large

10−1

100

101

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

χ
S
G
/N

1
/
3

N1/3(T/Tc − 1)

N = 64
N = 128
N = 256
N = 512

FIG. 6. Reduced spin-glass susceptibility χSG/N 1/3 vs x =
N 1/3[T/Tc(H ) − 1], that is the finite-size scaling function fH (x) in
a random field of standard deviation 0.10 when σ = 0.55. For this
model Tc(H = 0.1) ≈ 0.815.

N . Instead, we give an approximate solution which seems
in practice to be quite accurate. As x → −∞,z → λmax and
throughout the scaling region differs from λmax by terms
of O(1/N2/3). The largest eigenvalue itself has the form
λmax = 2 + O(1/N2/3). Let us introduce the variable u =
(z − λmax)N2/3 > 0 and the notation � = (λmax − λ1)N2/3,
where λ1 is the next largest eigenvalue. Then we separate off
the first two terms in the sum in Eq. (21) and approximate the
rest by Eq. (22) after replacing (z − 2) by (z − λmax) [45]. The
left-hand side of Eq. (21) becomes

z − β−1 → 1 − x/N1/3 + O(1/N2/3). (26)

The right-hand side becomes

1

N1/3u
+ 1

N1/3(u + �)
+ 1 −

√
u/N2/3 + O(1/N2/3).

(27)
Thus, correct to O(1/N2/3), we have as our basic approxima-
tion for u,

−x = 1

u
+ 1

u + �
− √

u. (28)

Within the same approximation, the sample with gap � gives
for f (x)

f (x) = 1

u2
+ 1

(u + �)2
+ 1

2
√

u
. (29)

To calculate the bond-averaged value of f (x) we must average
over the spacing � which we do with the Wigner surmise
distribution for it [47].

Before comparing with the numerical data we need to
introduce the pseudocritical temperature Tc(N ) [48,49]. If one
studies the function −f ′(x)/f (x), it has a peak at Tc. However,
in a system of finite size N , this peak is shifted to Tc(N ), where
in the mean-field regime,

Tc(N ) = Tc − a

N1/3
. (30)
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For the SK model Tc = 1 and typical values for a are ∼ 0.2,
but this depends on the function being studied [48]. When
trying to construct the universal scaling function f (x) for
different models it is natural to shift the horizontal axis so
that the peaks for the different models coincide at x = 0,
which can by done by redefining x so that x = [T/Tc(N ) −
1]N1/3. This definition of x differs from the old definition by
a + O(1/N1/3). Thus, when comparing to our numerical data,
one can shift the curves by an amount a to improve the fit,
and this is what we did in Fig. 5. With this shift, the overall
agreement is quite satisfactory, considering the simplicity of
the approximation. We suspect that it might be possible to
calculate f (x) exactly, but that remains a challenge for the
future.

V. FINITE-SIZE SCALING AT THE
ALMEIDA-THOULESS TRANSITION

In this section we shall discuss finite-size scaling at the AT
transition [21]. The upper critical dimension of the AT line is
expected to be the same as in zero field, that is, du = 6 [50].
For the long-range model, that translates to σ = 2/3. Note that
in a field 〈Si〉 is nonzero, and we have to study the cumulant
second moment, i.e.,

χSG = 1

N

∑
i,j

[〈SiSj 〉 − 〈Si〉〈Sj 〉
]2

av. (31)

In a field we only have numerical data for the one-dimensional
long-range model with σ = 0.55. In Fig. 6 we show the
mean-field scaling form χSG/N1/3 = fH (x) against x =
N1/3[T/Tc(H ) − 1]. The finite-size effects are strongly visible
on the low-temperature side of the transition.

We now turn to understanding the form of the finite-size
scaling function fH (x) near the AT transition. At the formal
level, the analog of Eq. (16) for the AT transition involves
just the fields in the replicon sector Q̃αβ , which are such that∑

β Q̃αβ = 0 [50]. The replicated partition function is

Zn =
∫

dQ̃αβ exp[−F [{Q̃αβ}]/kT ], (32)

where the effective functional is

F [{Q̃αβ}]/kT =
∫

ddx

[
1

4
r̃
∑

Q̃2
αβ + w1

6

∑
Q̃αβQ̃βγ Q̃γα

+ w2

6

∑
Q̃3

αβ

]
. (33)

Here the convention has been adopted that the sums over
replica indices are unrestricted. Note that Q̃αα = 0. At the
AT line, r̃ = 0 in the mean-field approximation and the two
couplings w1 and w2 both depend on the field H . We would
expect as a consequence the finite-size scaling function fH (x)
to depend on both x and the strength of the field H . It is because
the effective field theory is a cubic field theory that the upper
critical dimension du = 6 for the AT line [50]. Unfortunately,
the integrals in Eq. (33) needed to calculate fH (x) are even
more difficult to do than those of the zero-field case and other
methods have to be used to understand the finite-size scaling
function fH (x).

We have tried solving the TAPP equations for the SK limit
in the presence of a field numerically. We obtained the solution
for a given bond and field realization at high temperatures, and
followed the solution down to lower temperatures, for N values
up to 400. At temperatures well above Tc(H ), we obtained
values for χSG consistent with those in Fig. 6. At large positive
values of x one is effectively in the regime where one can
use the locator expansion [51] on the TAPP equations. The
result [44] is that Eq. (25) is generalized to

χSG → χ0
SG

1 − β2χ0
SG

, (34)

where [52]

χ0
SG = 1

N

∑
i

(
1 − m2

i

)2
. (35)

We stress that this result holds just for the large-N limit and
T > Tc(H ). For the SK model in a random field H,χ0

SG can
be determined explicitly. At the AT transition Tc(H ), χ0

SG =
Tc(H )2, and so for T close to Tc(H ),

χSG → Tc(H )2

[1 − βTc(H )][1 + βTc(H )]
→ 1

2t
Tc(H )2, (36)

where t = [T/Tc(H ) − 1]. For H = 0.1, Tc(0.1) = 0.819428
for the SK model, so χSG → 0.33573/t . Unfortunately, the
data in Fig. 6 have not been obtained at large enough values of
N (here the largest N value is 512) or small enough values of
t , to see this behavior clearly. However, the calculated values
of χSG are consistent with the result presented in Eq. (34).

As the temperature is reduced to well below Tc(H ), the
solution of the TAPP equations in the large-N limit is expected
to reduce to χSG → 1/|t | [44]. For the N values for which
we could obtain solutions, i.e., N < 400, this behavior was
not visible. In fact, most samples showed a peak in χSG well
above Tc(H ), followed by a fall at lower temperatures. We
suspect that the fall at low temperatures visible in Fig. 6 might
by connected with the fall seen in the TAPP equations. The
decrease in χSG/N1/3 at large negative x values seen in Fig. 6
is clearly a finite-size effect.

We suspect that in the absence of finite-size effects fH (x)
would actually continue to grow ∝ x2 at large negative x, due
to replica symmetry breaking effects [53], and not follow the
expectations based on the solution of the TAPP equations,
which would be that f (x) → 1/|x|. In Ref. [53] it was shown
that for the SK model, where the Parisi RSB broken order
parameter is q(x),

χSG = N

3

{ ∫ 1

0
q2(x)dx −

[ ∫ 1

0
q(x)dx

]2}
. (37)

At large negative x one would therefore expect that because
of these replica symmetry breaking effects that fH (x) →
Bx2 so that χSG is proportional to N . Using the results in
Refs. [53,54] for q(x) in a field, one can calculate the
coefficient B and it is of order qEA on the AT line, which
is small (≈0.2) when H = 0.1. However, the data in Fig. 6 at
negative x values are not extensive enough to provide a clear
verification of these predictions.
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VI. NUMERICAL SEARCHES FOR THE ALMEIDA-
THOULESS LINE WHEN d � 6 (σ � 2/3)

In Sec. I we stated that there is likely no AT line when
d � 6. As a consequence, we were surprised when Castellana
and Parisi [24] recently claimed that in the Dyson hierarchical
model numerical evidence suggested the existence of an AT
line at σ = 0.68 > 2/3 which corresponds to an effective
space dimension d < 6. At the transition they reported values
for the critical exponents which were not close to their
mean-field values, which lead them to suggest that the behavior
was being controlled by a nonperturbative fixed point.

In this section we discuss a problem which arises when
trying to determine the existence of the AT line in dimensions
where there might be no AT line. It is again a finite-size
problem. If there is no AT line and the droplet picture applies,
then the correlation length ξD in the system is the Imry-Ma
length [55], determined by equating the free energy cost of
flipping a region of size ξD,kTc(ξD/ξ )θ to the energy which
might be gained from the random applied field, which is√

qHξ
d/2
D (see, for example, Ref. [56]). Here ξ denotes the

zero-field correlation length ∼ 1/|t |ν . In our one-dimensional
model, θ = 1 − σ [57]. Then

ξD

ξ
∼

[
HAT

H

]2/(2σ−1)

, (38)

where

HAT ≡ kTc|t |(γ+β)/2, (39)

which is the scaling expectation for the form of the AT line [56],
should it exist. At the borderline value of σ = 2/3, ξD grows
rapidly for small fields ∝ 1/H 6. In order to see droplet
behavior one requires system sizes L > ξD . Otherwise, one
might be tempted to think there is an AT line. For σ = 0.75 we
plot ξL/L as a function of the field H in Fig. 7. Here, ξD grows
at small H ∝ 1/H 4. Figure 7 shows that the droplet model
prediction that ξL ∼ ξD fails when ξL > L, as then finite-size
effects are clearly making ξL deviate away from ξD . The

10−4

10−3

10−2

10−1

100

101

102

10−1 100 101
10−4

10−3

10−2

10−1

100

101

102

10−1 100 101

ξ/
L

H

ξ/
L

H

FIG. 7. Correlation length ξL/L over a large range of field values
for L = 1024, T = 0.48, and σ = 0.75. The horizontal dashed line
is a guide to the eye marking the point where ξL = L. A change in
behavior for ξ < L is apparent. The solid (blue) line marks the regime
where the Imry-Ma argument [55] is valid.

basic message is that to see droplet model behavior one needs
to study system sizes L > ξD . When studying fields where
ξD > L, one can be misled into thinking there is evidence
for an AT line, as discussed at great length in Ref. [33]. We
suspect this is why the authors of Ref. [24] thought there was
an AT line at σ = 0.68. In fact, the growth of ξD as 1/H 6 when
σ → 2/3+ will always make it very difficult to obtain data for
the regime where L > ξD .

VII. CONCLUSIONS

We have studied finite-size effects on critical scaling in
Ising spin glasses both in zero field and finite field in the
regime where mean-field scaling is expected. We believe that
the conventional wisdom that both types of transition have 6 as
the upper critical dimension is supported by the numerical data
gathered from previous studies, even though strong finite-size
effects are present. For the zero-field case, we have found a
simple approximation for the crossover function for the spin-
glass susceptibility. The finite-field case is far more difficult,
but we have been able to determine the asymptotic form of
the crossover function by allowing for the non-self-averaging
features of the Parisi order parameter q(x) which occur below
the AT transition.

We should point out that there is a lack of self-averaging
generally throughout the critical scaling regime. Thus, in zero
field, we have studied in the SK limit the distribution function
of χSG at T = Tc which arises from different realizations
of the bonds Jij that has a well-defined distribution. The
zero-field problem seems sufficiently simple such that one day
the scaling function f (x) might be determined analytically;
as a by-product one might then obtain the corresponding
distribution functions.

We have argued previously that evidence for an AT line
when d < 6 might be just a consequence of not allowing for
the effects of finite-size effects. In order to see the droplet
picture emerging clearly, one needs the linear system size
L to be larger than the Imry-Ma length ξD . However, this
length scale can be very long at the fields commonly used in
most numerical studies. This means that when L � ξD one
can easily be mislead into believing that there is a transition
in a field. For example, from the data presented in Fig. 7 for
the one-dimensional model with σ = 0.75, one needs system
sizes L larger than 1024 sites, as well as fields stronger than
HR ≈ 0.7 to see the droplet behavior. Our hope is that future
studies first verify the needed system sizes L > ξD before
claiming the existence of a spin-glass state in a field.
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[5] M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, and M. Virasoro,
Nature of the Spin-glass Phase, Phys. Rev. Lett. 52, 1156 (1984).

[6] D. Sherrington and S. Kirkpatrick, Solvable Model of a Spin
Glass, Phys. Rev. Lett. 35, 1792 (1975).

[7] D. S. Fisher and D. A. Huse, Ordered Phase of Short-range Ising
Spin-glasses, Phys. Rev. Lett. 56, 1601 (1986).

[8] D. S. Fisher and D. A. Huse, Equilibrium behavior of the spin-
glass ordered phase, Phys. Rev. B 38, 386 (1988).

[9] D. S. Fisher and D. A. Huse, Nonequilibrium dynamics of spin
glasses, Phys. Rev. B 38, 373 (1988).

[10] A. J. Bray and M. A. Moore, Scaling theory of the ordered phase
of spin glasses, in Heidelberg Colloquium on Glassy Dynamics
and Optimization, edited by L. Van Hemmen and I. Morgenstern
(Springer, New York, 1986), p. 121.

[11] W. L. McMillan, Domain-wall renormalization-group study of
the two-dimensional random Ising model, Phys. Rev. B 29, 4026
(1984).

[12] C. M. Newman and D. L. Stein, Multiple states and thermody-
namic limits in short-ranged Ising spin-glass models, Phys. Rev.
B 46, 973 (1992).

[13] C. M. Newman and D. L. Stein, Non-mean-field Behavior of
Realistic Spin Glasses, Phys. Rev. Lett. 76, 515 (1996).

[14] C. M. Newman and D. L. Stein, Simplicity of state and overlap
structure in finite-volume realistic spin glasses, Phys. Rev. E 57,
1356 (1998).

[15] C. M. Newman and D. L. Stein, TOPICAL REVIEW: Ordering
and broken symmetry in short-ranged spin glasses, J. Phys.:
Condens. Matter 15, 1319 (2003).

[16] C. M. Newman and D. L. Stein, Short-range Spin Glasses:
Results and Speculations, in Lecture Notes in Mathematics Vol.
1900 (Springer-Verlag, Berlin, 2007), p. 159.

[17] D. L. Stein and C. M. Newman, Spin Glasses and Complexity,
Primers in Complex Systems (Princeton University Press,
Princeton, NJ, 2013).

[18] M. A. Moore and A. J. Bray, Disappearance of the de Almeida–
Thouless line in six dimensions, Phys. Rev. B 83, 224408
(2011).

[19] Criticisms of this argument [59] were further discussed in a
very recent paper by two of us [56].

[20] T. S. Jackson and N. Read, Theory of minimum spanning trees.
I. Mean-field theory and strongly disordered spin-glass model,
Phys. Rev. E 81, 021130 (2010).

[21] J. R. L. de Almeida and D. J. Thouless, Stability of the
Sherrington-Kirkpatrick solution of a spin glass model, J. Phys.
A 11, 983 (1978).

[22] M. Castellana and C. Barbieri, Hierarchical spin glasses in a
magnetic field: A renormalization-group study, Phys. Rev. B
91, 024202 (2015).

[23] M. C. Angelini and G. Biroli, Spin Glass in a Field: A New
Zero-Temperature Fixed Point in Finite Dimensions, Phys. Rev.
Lett. 114, 095701 (2015).

[24] M. Castellana and G. Parisi, Non-perturbative effects in spin
glasses, Sci. Rep. 5, 8697 (2015).

[25] G. Kotliar, P. W. Anderson, and D. L. Stein, One-dimensional
spin-glass model with long-range random interactions, Phys.
Rev. B 27, 602 (1983).

[26] H. G. Katzgraber and A. P. Young, Monte Carlo studies of the
one-dimensional Ising spin glass with power-law interactions,
Phys. Rev. B 67, 134410 (2003).

[27] H. G. Katzgraber, D. Larson, and A. P. Young, Study of the
de Almeida–Thouless Line Using Power-law Diluted One-
dimensional Ising Spin Glasses, Phys. Rev. Lett. 102, 177205
(2009).

[28] H. G. Katzgraber and A. P. Young, Geometry of large-scale
low-energy excitations in the one-dimensional Ising spin glass
with power-law interactions, Phys. Rev. B 68, 224408 (2003).

[29] H. G. Katzgraber and A. P. Young, Probing the Almeida-
Thouless line away from the mean-field model, Phys. Rev. B
72, 184416 (2005).

[30] H. G. Katzgraber, Spin glasses and algorithm benchmarks:
A one-dimensional view, J. Phys.: Conf. Ser. 95, 012004
(2008).

[31] L. Leuzzi, G. Parisi, F. Ricci-Tersenghi, and J. J. Ruiz-Lorenzo,
Diluted One-dimensional Spin Glasses with Power Law Decay-
ing Interactions, Phys. Rev. Lett. 101, 107203 (2008).

[32] L. Leuzzi, G. Parisi, F. Ricci-Tersenghi, and J. J. Ruiz-Lorenzo,
Bond diluted Levy spin-glass model and a new finite size scaling
method to determine a phase transition, Philos. Mag. 91, 1917
(2011).

[33] D. Larson, H. G. Katzgraber, M. A. Moore, and A. P. Young,
Spin glasses in a field: Three and four dimensions as seen from
one space dimension, Phys. Rev. B 87, 024414 (2013).

[34] M. Wittmann and A. P. Young, Spin glasses in the nonextensive
regime, Phys. Rev. E 85, 041104 (2012).

[35] L. Leuzzi, G. Parisi, F. Ricci-Tersenghi, and J. J. Ruiz-Lorenzo,
Ising Spin-Glass Transition in a Magnetic Field Outside the

032123-9

http://dx.doi.org/10.1103/PhysRevLett.43.1754
http://dx.doi.org/10.1103/PhysRevLett.43.1754
http://dx.doi.org/10.1103/PhysRevLett.43.1754
http://dx.doi.org/10.1103/PhysRevLett.43.1754
http://dx.doi.org/10.1088/0305-4470/13/3/042
http://dx.doi.org/10.1088/0305-4470/13/3/042
http://dx.doi.org/10.1088/0305-4470/13/3/042
http://dx.doi.org/10.1088/0305-4470/13/3/042
http://dx.doi.org/10.1088/0305-4470/13/4/009
http://dx.doi.org/10.1088/0305-4470/13/4/009
http://dx.doi.org/10.1088/0305-4470/13/4/009
http://dx.doi.org/10.1088/0305-4470/13/4/009
http://dx.doi.org/10.1103/PhysRevLett.50.1946
http://dx.doi.org/10.1103/PhysRevLett.50.1946
http://dx.doi.org/10.1103/PhysRevLett.50.1946
http://dx.doi.org/10.1103/PhysRevLett.50.1946
http://dx.doi.org/10.1103/PhysRevLett.52.1156
http://dx.doi.org/10.1103/PhysRevLett.52.1156
http://dx.doi.org/10.1103/PhysRevLett.52.1156
http://dx.doi.org/10.1103/PhysRevLett.52.1156
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1103/PhysRevLett.56.1601
http://dx.doi.org/10.1103/PhysRevLett.56.1601
http://dx.doi.org/10.1103/PhysRevLett.56.1601
http://dx.doi.org/10.1103/PhysRevLett.56.1601
http://dx.doi.org/10.1103/PhysRevB.38.386
http://dx.doi.org/10.1103/PhysRevB.38.386
http://dx.doi.org/10.1103/PhysRevB.38.386
http://dx.doi.org/10.1103/PhysRevB.38.386
http://dx.doi.org/10.1103/PhysRevB.38.373
http://dx.doi.org/10.1103/PhysRevB.38.373
http://dx.doi.org/10.1103/PhysRevB.38.373
http://dx.doi.org/10.1103/PhysRevB.38.373
http://dx.doi.org/10.1103/PhysRevB.29.4026
http://dx.doi.org/10.1103/PhysRevB.29.4026
http://dx.doi.org/10.1103/PhysRevB.29.4026
http://dx.doi.org/10.1103/PhysRevB.29.4026
http://dx.doi.org/10.1103/PhysRevB.46.973
http://dx.doi.org/10.1103/PhysRevB.46.973
http://dx.doi.org/10.1103/PhysRevB.46.973
http://dx.doi.org/10.1103/PhysRevB.46.973
http://dx.doi.org/10.1103/PhysRevLett.76.515
http://dx.doi.org/10.1103/PhysRevLett.76.515
http://dx.doi.org/10.1103/PhysRevLett.76.515
http://dx.doi.org/10.1103/PhysRevLett.76.515
http://dx.doi.org/10.1103/PhysRevE.57.1356
http://dx.doi.org/10.1103/PhysRevE.57.1356
http://dx.doi.org/10.1103/PhysRevE.57.1356
http://dx.doi.org/10.1103/PhysRevE.57.1356
http://dx.doi.org/10.1088/0953-8984/15/32/202
http://dx.doi.org/10.1088/0953-8984/15/32/202
http://dx.doi.org/10.1088/0953-8984/15/32/202
http://dx.doi.org/10.1088/0953-8984/15/32/202
http://dx.doi.org/10.1103/PhysRevB.83.224408
http://dx.doi.org/10.1103/PhysRevB.83.224408
http://dx.doi.org/10.1103/PhysRevB.83.224408
http://dx.doi.org/10.1103/PhysRevB.83.224408
http://dx.doi.org/10.1103/PhysRevE.81.021130
http://dx.doi.org/10.1103/PhysRevE.81.021130
http://dx.doi.org/10.1103/PhysRevE.81.021130
http://dx.doi.org/10.1103/PhysRevE.81.021130
http://dx.doi.org/10.1088/0305-4470/11/5/028
http://dx.doi.org/10.1088/0305-4470/11/5/028
http://dx.doi.org/10.1088/0305-4470/11/5/028
http://dx.doi.org/10.1088/0305-4470/11/5/028
http://dx.doi.org/10.1103/PhysRevB.91.024202
http://dx.doi.org/10.1103/PhysRevB.91.024202
http://dx.doi.org/10.1103/PhysRevB.91.024202
http://dx.doi.org/10.1103/PhysRevB.91.024202
http://dx.doi.org/10.1103/PhysRevLett.114.095701
http://dx.doi.org/10.1103/PhysRevLett.114.095701
http://dx.doi.org/10.1103/PhysRevLett.114.095701
http://dx.doi.org/10.1103/PhysRevLett.114.095701
http://dx.doi.org/10.1038/srep08697
http://dx.doi.org/10.1038/srep08697
http://dx.doi.org/10.1038/srep08697
http://dx.doi.org/10.1038/srep08697
http://dx.doi.org/10.1103/PhysRevB.27.602
http://dx.doi.org/10.1103/PhysRevB.27.602
http://dx.doi.org/10.1103/PhysRevB.27.602
http://dx.doi.org/10.1103/PhysRevB.27.602
http://dx.doi.org/10.1103/PhysRevB.67.134410
http://dx.doi.org/10.1103/PhysRevB.67.134410
http://dx.doi.org/10.1103/PhysRevB.67.134410
http://dx.doi.org/10.1103/PhysRevB.67.134410
http://dx.doi.org/10.1103/PhysRevLett.102.177205
http://dx.doi.org/10.1103/PhysRevLett.102.177205
http://dx.doi.org/10.1103/PhysRevLett.102.177205
http://dx.doi.org/10.1103/PhysRevLett.102.177205
http://dx.doi.org/10.1103/PhysRevB.68.224408
http://dx.doi.org/10.1103/PhysRevB.68.224408
http://dx.doi.org/10.1103/PhysRevB.68.224408
http://dx.doi.org/10.1103/PhysRevB.68.224408
http://dx.doi.org/10.1103/PhysRevB.72.184416
http://dx.doi.org/10.1103/PhysRevB.72.184416
http://dx.doi.org/10.1103/PhysRevB.72.184416
http://dx.doi.org/10.1103/PhysRevB.72.184416
http://dx.doi.org/10.1088/1742-6596/95/1/012004
http://dx.doi.org/10.1088/1742-6596/95/1/012004
http://dx.doi.org/10.1088/1742-6596/95/1/012004
http://dx.doi.org/10.1088/1742-6596/95/1/012004
http://dx.doi.org/10.1103/PhysRevLett.101.107203
http://dx.doi.org/10.1103/PhysRevLett.101.107203
http://dx.doi.org/10.1103/PhysRevLett.101.107203
http://dx.doi.org/10.1103/PhysRevLett.101.107203
http://dx.doi.org/10.1080/14786435.2010.534741
http://dx.doi.org/10.1080/14786435.2010.534741
http://dx.doi.org/10.1080/14786435.2010.534741
http://dx.doi.org/10.1080/14786435.2010.534741
http://dx.doi.org/10.1103/PhysRevB.87.024414
http://dx.doi.org/10.1103/PhysRevB.87.024414
http://dx.doi.org/10.1103/PhysRevB.87.024414
http://dx.doi.org/10.1103/PhysRevB.87.024414
http://dx.doi.org/10.1103/PhysRevE.85.041104
http://dx.doi.org/10.1103/PhysRevE.85.041104
http://dx.doi.org/10.1103/PhysRevE.85.041104
http://dx.doi.org/10.1103/PhysRevE.85.041104


T. ASPELMEIER et al. PHYSICAL REVIEW E 93, 032123 (2016)

Limit of Validity of Mean-Field Theory, Phys. Rev. Lett. 103,
267201 (2009).

[36] R. A. Baños, L. A. Fernandez, V. Martin-Mayor, and A. P.
Young, Correspondence between long-range and short-range
spin glasses, Phys. Rev. B 86, 134416 (2012).

[37] H. G. Ballesteros, A. Cruz, L. A. Fernandez, V. Martin-Mayor,
J. Pech, J. J. Ruiz-Lorenzo, A. Tarancon, P. Tellez, C. L. Ullod,
and C. Ungil, Critical behavior of the three-dimensional Ising
spin glass, Phys. Rev. B 62, 14237 (2000).

[38] H. G. Katzgraber, M. Körner, and A. P. Young, Universality
in three-dimensional Ising spin glasses: A Monte Carlo study,
Phys. Rev. B 73, 224432 (2006).

[39] J. L. Jones and A. P. Young, Finite size scaling of the correlation
length above the upper critical dimension, Phys. Rev. B 71,
174438 (2005).

[40] M. Wittmann and A. P. Young, Finite-size scaling above
the upper critical dimension, Phys. Rev. E 90, 062137
(2014).

[41] A. B. Harris, T. C. Lubensky, and J.-H. Chen, Critical Properties
of Spin-glasses, Phys. Rev. Lett. 36, 415 (1976).
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