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Solution of a generalized Boltzmann’s equation for nonequilibrium charged-particle transport
via localized and delocalized states
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We present a general phase-space kinetic model for charged-particle transport through combined localized
and delocalized states, capable of describing scattering collisions, trapping, detrapping, and losses. The model
is described by a generalized Boltzmann equation, for which an analytical solution is found in Fourier-Laplace
space. The velocity of the center of mass and the diffusivity about it are determined analytically, together with the
flux transport coefficients. Transient negative values of the free particle center-of-mass transport coefficients can
be observed due to the trapping to, and detrapping from, localized states. A Chapman-Enskog-type perturbative
solution technique is applied, confirming the analytical results and highlighting the emergence of a density
gradient representation in the weak-gradient hydrodynamic regime. A generalized diffusion equation with a
unique global time operator is shown to arise, reducing to the standard diffusion equation and a Caputo fractional
diffusion equation in the normal and dispersive limits. A subordination transformation is used to solve the
generalized diffusion equation by mapping from the solution of a corresponding standard diffusion equation.
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I. INTRODUCTION

Normal transport, as described by the diffusion equation,
has a mean squared displacement that scales linearly with time,
t . Dispersive transport, however, is often defined by a mean
squared displacement that scales sublinearly, proportional to
tα where 0 < α < 1 [1]. Physically, this arises due to the
presence of traps causing particles to become immobilized
(localized states) for extended periods of time and resulting
in fundamentally slower transport [2]. A number of physical
systems have the potential to exhibit dispersive transport.
For example, in organic semiconductors and other disordered
media, trapped states arise due to local imperfections or
variation in the energetic landscape [2,3]. Electron transport
in certain liquids can be influenced by electrons becoming
trapped in (localized) bubble states (see, e.g., [4] and [5]),
giving rise to dispersive electronic transport in liquid neon [6].
Similar trapping processes occur for positronium in bubbles
(see, e.g., [7–9]) and positrons annihilation on induced clusters
(see, e.g., [10]).

A consequence of dispersive systems, especially those
with long-lived traps, is their dependence on their history.
The diffusion equation, which uses a local time operator, is
fundamentally incapable of describing such memory effects.
Mathematically, an adequate model for dispersive transport
requires a global time operator that acts on the entire history
of the system. One successful approach to modeling dispersive
transport is by replacing the local time derivative in the
diffusion equation with a global fractional time derivative of
order α [11,12]. This resulting fractional diffusion equation
describes memory effects while also satisfying the required
sublinear scaling of the mean squared displacement.

However, fractional diffusion equations still share the same
spatial operator as the standard diffusion equation, which
implies implicitly an assumption of small spatial gradients. At
the same time, the memory of the initial condition can cause
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large spatial gradients to persist for all time. This inconsistency
challenges the validity of fractional diffusion equations. This
has been addressed by using phase-space kinetic models
for dispersive transport that make no such assumptions on
the size of spatial gradients [13,14]. Specifically, these have
made use of a Boltzmann equation with a generalization of
the Bhatnagar-Gross-Krook (BGK) collision operator [15],
the standard collision operator in semiconductor physics. In
our previous work [14], trapping and detrapping are considered
equivalent to a BGK collision scattering event occurring after a
delay governed by a trapping time distribution. That study did
not consider scattering as a separate process from trapping,
thereby limiting the model to situations where trapping
dominates over scattering. However, scattering events are key
to transport in delocalized states, such as in the conduction
band of a semiconductor. The present study builds upon
previous work by incorporating a genuine scattering model
into a kinetic equation with memory of past trapping events.
The new, proposed model also incorporates loss mechanisms
such as charged carrier recombination.

In Sec. II, we present a generalized Boltzmann equation
with a BGK collision operator to describe transport via
delocalized states, a delayed BGK operator to model trapping
and detrapping associated with localized (trapped) states, and
loss terms corresponding to free and trapped particle recombi-
nation. In Sec. III, we determine an analytical Fourier-Laplace-
space solution of this model. This analytical solution is used,
among other things, to determine analytical expressions for
phase-space averaged moments of the generalized Boltzmann
equation. Spatial moments provide transport coefficients de-
scribing the motion of the center of mass, while velocity
moments are used in conjunction to describe the particle flux
using flux transport coefficients. In Sec. IV, the model is
explored in the weak-gradient hydrodynamic regime, where
it is shown to coincide with both a standard diffusion equation
and a generalized diffusion equation with history dependence.
In Sec. V, the model is also shown to coincide with a
Caputo fractional diffusion equation in the particular case
where transport is dispersive. In Sec. VI, the solution of the
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FIG. 1. Phase-space diagram illustrating the collision, trapping,
detrapping, and recombination processes considered in the model
defined by Eqs. (1)–(8).

generalized diffusion equation is expressed as a subordination
transformation of the solution of a corresponding standard
diffusion equation. Finally, in Sec. VII, we present conclusions
and possible avenues for future work.

II. GENERALIZED BOLTZMANN EQUATION

We consider a generalized phase-space kinetic model
describing the transport of free particles undergoing collisions,
trapping, detrapping, and recombination as illustrated in
Fig. 1. The free particles are described by the phase-space
distribution function f (t,r,v), which satisfies the Boltzmann
equation(

∂

∂t
+ v · ∂

∂r
+ a · ∂

∂v

)
f (t,r,v)

= −νcoll[f (t,r,v) − n(t,r)w(αcoll,v)]

− νtrap[f (t,r,v) − �(t) ∗ n(t,r)w(αdetrap,v)]

− ν
(free)
loss f (t,r,v), (1)

where collision, trapping, and free particle loss rates are,
respectively, denoted νcoll, νtrap, and ν

(free)
loss and the free particle

number density is defined as n(t,r) ≡ ∫
dvf (t,r,v). Collisions

are described above by the BGK collision operator [15].
Specifically, free particles are instantaneously scattered to a
Maxwellian distribution of velocities of temperature Tcoll. The
Maxwellian velocity distribution is defined as

w(α,v) ≡
(

α2

2π

) 3
2

exp

(
−α2v2

2

)
, (2)

α2 ≡ m

kBT
, (3)

where m is the free particle mass, kB is the Boltzmann constant,
and T is the temperature of the scattered particles. Similarly,
trapping and detrapping processes occur as described by the
delayed BGK model [14], according to an effective waiting
time distribution �(t), with trapped particles eventually de-
trapped with a Maxwellian velocity distribution of temperature
Tdetrap. To define this waiting time distribution, consider the
simple case of traps of fixed duration τ . Particles enter traps at
the rate νtrapn(t,r) and so leave traps at this same rate τ units
of time in the future. From the present perspective this rate of
detrapping is νtrapn(t − τ,r). More generally, for a distribution
of trapping times φ(t), the rate of detrapping is now written as
the convolution

νtrapφ(t) ∗ n(t,r) = νtrap

∫ t

0
dτφ(τ )n(t − τ,r). (4)

Here, the quantity dP ≡ φ(τ )dτ can be interpreted as an
infinitesimal probability that particles will remain trapped
for duration τ . Note that this expression does not take into
account the possibility that particles may undergo trap-based
losses instead of detrapping. As trapped particles are being lost
exponentially at the rate ν

(trap)
loss , the probability of detrapping

decays correspondingly, dP = e−ν
(trap)
loss τ φ(τ )dτ . That is, we

now have the effective waiting time distribution

�(t) ≡ e−ν
(trap)
loss tφ(t). (5)

As the trapped particles are localized in configuration space,
we describe them with the number density ntrap(t,r), which
satisfies the continuity equation

∂

∂t
ntrap(t,r) = νtrap(1 − �∗)n(t,r) − ν

(trap)
loss ntrap(t,r), (6)

where ν
(trap)
loss is the loss rate of trapped particles. Although

the loss processes of the free and trapped particles can
occur through various mechanisms (e.g., recombination, at-
tachment), for simplicity we refer to all losses as being due
to recombination processes. The numbers of free and trapped
particles that undergo recombination, N

(free)
loss (t) and N

(trap)
loss (t),

can be counted accordingly,

d

dt
N

(free)
loss (t) = ν

(free)
loss N (t), (7)

d

dt
N

(trap)
loss (t) = ν

(trap)
loss Ntrap(t), (8)

in terms of the number of free and trapped particles, defined
by N (t) ≡ ∫

drn(t,r) and Ntrap(t) ≡ ∫
drntrap(t,r).

The physical origin of the differences in the functional form
of the waiting time distribution is dependent on the mechanism
for trapping. For example, for amorphous/organic materials,
trapping is into existing trapped states, and the waiting time
distribution is calculated from the density of trapped states
(see, e.g., [14]). For dense gases/liquids, the trapped states
are formed by the electron itself, and hence the waiting time
distribution is dependent on the scattering, fluctuation profiles,
and subsequent fluid bubble evolution (see, e.g., [16]).
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III. ANALYTICAL SOLUTION OF THE GENERALIZED
BOLTZMANN EQUATION

A. Solution in Fourier-Laplace-transformed phase space

The Boltzmann equation with the BGK collision operator
has been solved analytically in Fourier-Laplace space [17].
This same solution technique can be applied to the generalized
Boltzmann equation, (1), with the additional processes of trap-
ping, detrapping, and recombination. Applying the Laplace
transform in time, t → p, and the Fourier transform in phase
space, (r,v) → (k,s), Eq. (1) transforms to(

p̃ + ν̃ + ı
∂

∂s
· ık + a · ıs

)
f (p,k,s)

= f (t = 0,k,s) + νcolln(p,k)w(αcoll,s)

+ νtrap�(p)n(p,k)w(αdetrap,s), (9)

where the Fourier-Laplace-transformed phase-space distribu-
tion function is

f (p,k,s) ≡
∫ ∞

0
dt

∫
dr

∫
dve−(pt+ık·r+ıs·v)f (t,r,v), (10)

the Fourier-transformed Maxwellian velocity distribution is

w(α,s) ≡ exp

(
− s2

2α2

)
, (11)

and the following frequencies have been defined:

p̃ ≡ p + νtrap[1 − �(p)] + ν
(free)
loss , (12)

ν̃ ≡ νcoll + νtrap�(p). (13)

By writing all vectors in terms of components parallel and
perpendicular to the unit vector k̂ ≡ k/k,

s‖ = (s · k̂)k̂, (14)

a‖ = (a · k̂)k̂, (15)

s⊥ = s − s‖, (16)

a⊥ = a − a‖, (17)

the Fourier-Laplace-transformed Boltzmann equation, (9), can
be restated as a single first-order differential equation in the
Fourier velocity-space variable s‖[

∂

∂s‖
− 1

k
(p̃ + ν̃ + a‖ıs‖ + a⊥ · ıs⊥)

]
f (p,k,s)

= −f (t = 0,k,s)

k
− νcoll

k
n(p,k)w(αcoll,s)

− νtrap�(p)

k
n(p,k)w(αdetrap,s). (18)

Finally, solving Eq. (18) provides the Fourier-Laplace-
transformed solution of the generalized Boltzmann
equation, (1),

f (p,k,s) = − 1

kμ(s‖)

∫ s‖

−∞
dσμ(σ ){f (t = 0,k,σ,s⊥)

+ n(p,k)[νcollw(αcoll,σ,s⊥)

+ νtrap�(p)w(αdetrap,σ,s⊥)]}, (19)

written in terms of the integrating factor

μ(s‖) ≡ exp

[
− s‖

k

(
p̃ + ν̃ + 1

2
a‖ıs‖ + a⊥ · ıs⊥

)]
. (20)

We use the analytical expression, (19), to evaluate relevant
spatial and velocity moments to obtain the macroscopic
transport properties.

B. Particle number and the existence of a steady state

Integration of the Boltzmann equation, (1), throughout all
phase space provides the equation for the free particle number,
N (t): [

d

dt
+ νtrap(1 − �∗) + ν

(free)
loss

]
N (t) = 0. (21)

Similarly, integration over configuration space for the trapped
continuity equation, (6), provides an equation for the trapped
particle number, Ntrap(t):[

d

dt
+ ν

(trap)
loss

]
Ntrap(t) = νtrap(1 − �(t)∗)N (t). (22)

In conjunction with Eqs. (7) and (8) for the respective number
of recombined free and trapped particles, each particle number
can be written explicitly in Laplace space,

N (p) = N (0)

p + νtrap[1 − �(p)] + ν
(free)
loss

, (23)

Ntrap(p) = νtrap[1 − �(p)]

p + ν
(trap)
loss

N (p), (24)

N
(free)
loss (p) = ν

(free)
loss

p
N (p), (25)

N
(trap)
loss (p) = ν

(trap)
loss

p
Ntrap(p), (26)

allowing for steady-state values to be determined using
the final value theorem, limt→∞ N (t) = limp→0 pN (p). Two
possible situations arise in the long-time limit. In the case of
no recombination, ν

(free)
loss = ν

(trap)
loss = 0, an equilibrium steady

state is reached between the free and the trapped particle
numbers,

lim
t→∞

N (t)

N (0)
= νdetrap

νdetrap + νtrap
, (27)

lim
t→∞

Ntrap(t)

N (0)
= νtrap

νdetrap + νtrap
, (28)

where the detrapping rate has been defined as

ν−1
detrap ≡

∫ ∞

0
dtφ(t)t. (29)

Figure 2 plots the number of free and trapped particles,
N (t) and Ntrap(t), and their respective steady-state values,
(27) and (28), for an exponential waiting time distribution
φ(t) = νdetrape−νdetrapt .
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FIG. 2. Free and trapped particle numbers for the exponential
waiting time distribution φ(t) = νdetrape

−νdetrapt . As no recombination
is present, ν

(free)
loss = ν

(trap)
loss = 0, an equilibrium steady state is reached

between the particles as described by Eqs. (27) and (28). Here, the
detrapping and trapping rates are set equal, νdetrap = νtrap, resulting in
the same number of free and trapped particles in the steady state.

In the case of any recombination, ν
(free)
loss > 0 or ν

(trap)
loss > 0,

no free particle steady state is reached, as all free and trapped
particles are eventually lost in the proportions

lim
t→∞

N
(free)
loss (t)

N (0)
= ν

(free)
loss

ν
(free)
loss + νtrapPloss

, (30)

lim
t→∞

N
(trap)
loss (t)

N (0)
= νtrapPloss

ν
(free)
loss + νtrapPloss

, (31)

where the probability that a trapped particle undergoes
recombination instead of detrapping is

Ploss ≡ 1 −
∫ ∞

0
dt�(t). (32)

Figure 3 plots the number of free, trapped, and re-
combined particles in this case, where recombination is
present for the same exponential waiting time distribu-
tion used in Fig. 2. It can be seen that, although there
is an initial increase in the number of trapped particles,
all free and trapped particles are eventually lost to re-
combination in the respective proportions (30) and (31).
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FIG. 3. Free, trapped, and recombined particle numbers for
the exponential waiting time distribution φ(t) = νdetrape

−νdetrapt . As
recombination is present, all free and trapped particles are eventually
lost in the proportions given by Eqs. (30) and (31). Transiently,
however, there is an initial increase in the number of trapped particles.
Here, we set equal the free particle recombination rate and the
product of the trapping rate with the trapped particle recombina-
tion probability, ν

(free)
loss = νtrapPloss. For this exponential distribution

of waiting times this probability is Ploss = ν
(trap)
loss /(νdetrap + ν

(trap)
loss ).

By making the aforementioned quantities equal, the numbers of
recombined free and trapped particles also become equal in the
long-time limit. In this case, the detrapping and trapping rates
are set to νdetrap = νtrap = ν

(free)
loss + νtrapPloss, which consequently

specifies the trapped particle recombination rate ν
(trap)
loss = ν

(free)
loss +

νtrapPloss.

C. Moments and transport coefficients

In this and later sections we are predominantly interested
in steady-state quantities, independent of the choice of
initial conditions. For simplicity, we assume that there are
initially N (0) free particles centered at the origin, with a
Maxwellian distribution of velocities of temperature T0 ≡
m/kBα2

0,

f (t = 0,r,v) ≡ N (0)δ(r)w(α0,v). (33)

Velocity integration of the generalized Boltzmann equation,
(1), provides the continuity equation for the free particle
number density:

[
∂

∂t
+ νtrap(1 − �(t)∗) + ν

(free)
loss

]
n(t,r) + ∂

∂r
· [n(t,r)〈v〉(t,r)] = 0. (34)

This can be solved analytically using the generalized Boltzmann equation solution, (19), yielding

n(p,k) = N (0)ζ0(k)Z[−(p̃ + ν̃)ζ0(k)]

1 − νcollζcoll(k)Z[−(p̃ + ν̃)ζcoll(k)] − νtrap�(p)ζdetrap(k)Z[−(p̃ + ν̃)ζdetrap(k)]
, (35)

where the plasma dispersion function, Z(ξ ), is defined as [18]

Z(ξ ) ≡ 1√
π

∫ ∞

−∞
dx

e−x2

x − ξ
, (36)
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and each Maxwellian yields a term of the form

ζ (k) ≡
[

2ık ·
(

ık
α2

− a
)]− 1

2

. (37)

From this analytical solution, phase-space averaged moments
of the generalized Boltzmann equation can be found exactly
for all times. For example, we have the spatial moments

L
{

N (t)

N (0)
〈r〉(t)

}
= a

p̃2(p̃ + ν̃)
,

L
{

N (t)

N (0)
〈rr〉(t)

}
= 2I

p̃2(p̃ + ν̃)2

[
p̃

α2
0

+ νcoll

α2
coll

+ νtrap�(p)

α2
detrap

]

+ 2aa

p̃2(p̃ + ν̃)2

(
1

p̃
+ 2

p̃ + ν̃

)
, (38)

where the Laplace transform operator is explicitly denoted L.
From these moments, the motion of the center of mass (CM)
can be described. The CM velocity is defined as the time rate
of change of its position,

WCM(t) ≡ d

dt
〈r〉(t), (39)

while the CM diffusivity is defined as being proportional to
the rate of change of the particle dispersion about it:

DCM(t) ≡ 1

2

d

dt
[〈rr〉(t) − 〈r〉(t)〈r〉(t)]. (40)

CM transport coefficients can be defined for the free, trapped,
and total particles. Although trapped particles are localized
in space their CM still moves due to repeated detrapping and
trapping.

The movement of the free particles can also be described
by looking directly at the velocity moments of the generalized
Boltzmann equation, (1),

L
{

N (t)

N (0)
〈v〉(t)

}
= a

p̃(p̃ + ν̃)
, (41)

L
{

N (t)

N (0)
〈rv〉(t)

}
= I

p̃(p̃ + ν̃)2

[
p̃

α2
0

+ νcoll

α2
coll

+ νtrap�(p)

α2
detrap

]

+ aa

p̃(p̃ + ν̃)2

(
1

p̃
+ 2

p̃ + ν̃

)
, (42)

from which we define the average velocity

W(t) ≡ 〈v〉(t) (43)

and average diffusivity

D(t) ≡ 〈rv〉(t) − 〈r〉(t)〈v〉(t). (44)

Figure 4 plots the CM velocity WCM(t) for the free, trapped,
and total particles alongside the average velocity W(t) for
the free particles. We can see that all measures of velocity
begin at 0 due to the Maxwellian initial condition, (33),
being spherically symmetric in velocity space. All velocities
then increase due to the applied field, with the free particle
CM velocity W(free)

CM (t) and average velocity W(t) coinciding
linearly at early times:

W(t) ≈ W(free)
CM (t) ≈ at. (45)

Time, νdetrapt
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V
el

oc
it
y,

W
(t

)
W

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

FIG. 4. Plot of the center-of-mass (CM) velocities for free,
trapped, and total particles—W(free)

CM (t), W(trap)
CM (t), and W(total)

CM (t)—as
well as the actual average velocity for the free particles, W(t), for the
exponential waiting time distribution φ(t) = νdetrape

−νdetrapt . The free
particle CM velocity W(free)

CM (t) and average velocity W(t) coincide
linearly at early times according to Eq. (45). The free particle CM
velocity WCM(t) is seen to transiently become negative due to particles
trapped early near the origin leaving their traps. In this case, there is no
recombination present, ν

(free)
loss = ν

(trap)
loss = 0, the collision frequency is

set to νcoll/νdetrap = 1, and the trapping rate is made sufficiently high
so that the transient negative velocity manifests, νtrap/νdetrap = 10.
An additional consequence of this relatively high trapping rate is
that almost all free particles become trapped early on, allowing the
velocities to almost reach their steady-state values after only a single
trapping time νdetrapt = 1.

A similar short-time expansion can be written for the free
particle diffusivities:

D(t) ≈ D(free)
CM (t) ≈ I

α2
0

t + aa
12

[
νcoll + 6

(
ν

(free)
loss + νtrap

)]
t4.

(46)

This coincidence between the free particle CM and the average
velocities only lasts temporarily before the CM velocity
decreases, becoming negative prior to reaching its positive
steady-state value. This movement of the free particle CM
against the field is due to the processes of trapping and
detrapping. Specifically, as all particles are initially untrapped,
an unusually large “pulse” of particles is trapped near the
origin, which is later released, causing a bias of the distribution
and shifting the CM towards the origin. Similarly, as the
diffusivity of particles trapped early is initially small, the free
particle CM diffusivity D(free)

CM (t) can also become transiently
negative, as the distribution appears to “bunch up” near the
origin as the initial pulse is released. Finally, we can see that
all CM velocities approach the same steady-state value, while
the free particle average velocity approaches a separate steady
state. Specifically, the CM transport coefficients, WCM(t) and
DCM(t), approach the values given by Eqs. (83) and (84), while
the average transport coefficients, W(t) and D(t), approach
Eqs. (60) and (76).
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IV. HYDRODYNAMIC REGIME AND THE GENERALIZED
DIFFUSION EQUATION

A. Chapman-Enskog perturbative solution

The Chapman-Enskog perturbative solution technique [19]
assumes that certain terms in the Boltzmann equation are
small relative to others, allowing the solution to be written
in the form of a Maclaurin series expansion. Traditionally,
the Chapman-Enskog expansion assumes that both the explicit
and the implicit time derivatives in the Boltzmann equation are
small. An implication of this is that the perturbative solution
is valid only when the applied field is small. We relax this
condition and instead use a generalization of the Chapman-
Enskog expansion that only considers small explicit time and
space derivatives, known as the hydrodynamic expansion.
We expect the resulting solution to be most accurate in the
long-distance steady state. Note, however, that in Sec. III B we
determined that a steady state is not always attainable for our
generalized Boltzmann equation, (1). Specifically, if there is
any recombination present, all free and trapped particles are
eventually lost. To enforce that a steady state is always reached,
we introduce the scaled phase-space distribution function of
constant particle number N (0):

F (t,r,v) ≡ N (0)

N (t)
f (t,r,v). (47)

Substitution into the generalized Boltzmann equation, (1),
provides a corresponding generalized Boltzmann equation for
this scaled distribution,(

∂

∂t
+ v · ∂

∂r
+ a · ∂

∂v

)
F (t,r,v)

= −νcoll[F (t,r,v) − nF (t,r)w(αcoll,v)]

− νtrap[R(t)F (t,r,v) − R(t,r)nF (t,r)w(αdetrap,v)], (48)

where nF (t,r) ≡ ∫
dvF (t,r,v) and we have introduced the

ratio of detrapping and trapping rates,

R(t,r) ≡ �(t) ∗ n(t,r)

n(t,r)
, (49)

and its spatially homogeneous form,

R(t) ≡ �(t) ∗ N (t)

N (t)
. (50)

For the terms we wish to denote as small, we temporarily
introduce a multiplicative parameter, δ,

δ

(
∂

∂t
+ v · ∂

∂r

)
Fδ(t,r,v) + a · ∂

∂v
Fδ(t,r,v)

= −νcoll[Fδ(t,r,v) − nF (t,r)w(αcoll,v)]

− νtrap[R(t)Fδ(t,r,v) − R(t,r)nF (t,r)w(αdetrap,v)], (51)

through which we can expand the solution in a power series:

Fδ(t,r,v) =
∑
n�0

F (n)(t,r,v)δn. (52)

This allows the actual solution to be recovered by setting δ = 1
in the above series expansion:

F (t,r,v) =
∑
n�0

F (n)(t,r,v). (53)

The terms in this series solution can be found recursively by
substituting the δ expansion, (52), for Fδ(t,r,v) into the gen-
eralized Boltzmann equation, (51), and equating powers of δ:[

νcoll + νtrapR(t) + a · ∂

∂v

]
F (n)(t,r,v)

= −
(

∂

∂t
+ v · ∂

∂r

)
F (n−1)(t,r,v). (54)

This recurrence relationship is valid for n � 1, with the initial
term given separately as[

1 + 〈v〉(0)(t) · ∂

∂v

]
F (0)(t,r,v)

= νcollw(αcoll,v) + νtrapR(t,r)w(αdetrap,v)

νcoll + νtrapR(t,r)
nF (t,r), (55)

in terms of its average velocity

〈v〉(0)(t) ≡ a
νcoll + νtrapR(t)

. (56)

Note that here we have enforced the normalization condition∫
dvF (0)(t,r,v) ≡ nF (t,r). (57)

In Fourier-transformed velocity space we can write this initial
term explicitly,

F (0)(t,r,s) = w̃(t,r,s)nF (t,r), (58)

where

w̃(t,r,s) ≡ 1

1 + 〈v〉(0)(t) · ıs

× νcollw(αcoll,s) + νtrapR(t,r)w(αdetrap,s)

νcoll + νtrapR(t,r)
. (59)

We can confirm that this approximate hydrodynamic solution
is most accurate in the steady state by noting that its average
velocity coincides with the actual average velocity, (43), at
late times, limt→∞ 〈v〉(0)(t) = limt→∞ 〈v〉(t). We denote this
shared steady-state velocity as

W ≡ a
νeff

, (60)

where the separate collision and trapping processes contribute
to the effective frequency

νeff ≡ νcoll + Rνtrap, (61)

defined in terms of the spatially averaged limiting ratio of
detrapping and trapping rates,

R ≡ lim
t→∞ R(t). (62)

This limit can be evaluated implicitly as satisfying

R ≡
∫ ∞

0
dt�(t)e[ν(free)

loss +νtrap(1−R)]t . (63)

Specific expressions for R for various choices of the waiting
time distribution φ(t) are listed in Table I (Appendix A). In
terms of this velocity, W, we can write the steady-state limit
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of Eq. (59) as

w̃(r,s) = 1

1 + W · ıs
νcollw(αcoll,s) + νtrapR(r)w(αdetrap,s)

νcoll + νtrapR(r)
,

(64)

where the limiting ratio of detrapping and trapping rates is

R(r) ≡ lim
t→∞ R(t,r). (65)

In direct analogy with the implicit definition, (63), of R we
have the following implicit definition of R(r):

R(r) ≡
∫ ∞

0
dt�(t) exp

{[
ν

(free)
loss + νtrap(1 − R(r))

+ 1

n

∂

∂r
· n〈v〉

]
t

}
. (66)

Finally, we can explore the spatial dependence of w̃(r,s) by
considering a perturbation from its spatially averaged state:

w̃(s) = νcollw(αcoll,s) + νtrapRw(αdetrap,s)

νcoll + νtrapR + a · ıs
. (67)

To spatially perturb w̃(s), we must first spatially perturb R

using the definition, (66), of R(r). Introducing the first-order
spatial perturbation δR and using the asymptotic velocity in
the hydrodynamic regime, 〈v〉 ∼ W, provides the expression

R + δR = R

〈
exp

[(
1

n

∂n

∂r
· W − νtrapδR

)
t

]〉
, (68)

in terms of the time average defined by

〈η(t)〉 ≡ 1

R

∫ ∞

0
dt�(t)e[ν(free)

loss +νtrap(1−R)]t η(t). (69)

Performing a power-series expansion and truncating beyond
first order gives the solution R(r) = R + δR as a density
gradient expansion up to first order,

R(r) = R + R(1) · 1

n

∂n

∂r
, (70)

in terms of the vector coefficient

R(1) ≡ R〈t〉
1 + νtrapR〈t〉W. (71)

Now the spatially averaged steady-state velocity distribution
w̃(s) can be spatially perturbed using the density gradient
expansion, (70), resulting in, to first spatial order,

F (0)(t,r,s) = w̃(s)nF (t,r)

+ w(αdetrap,s) − w̃(s)

νcoll + νtrapR + a · ıs
νtrapR(1) · ∂

∂r
nF (t,r).

(72)

Using the recurrence relationship, (54), and the continuity
equation, (34), to evaluate the explicit time derivative provides
the next term, also to first spatial order:

F (1)(t,r,s) = Ww̃(s) − ı ∂
∂s w̃(s)

νcoll + νtrapR + a · ıs
· ∂

∂r
nF (t,r). (73)

Similarly, F (2)(t,r,v) can be found and shown to be of
minimum second order in spatial gradients. In general,
F (n)(t,r,v) is described by a full density gradient expan-
sion of minimum spatial order n. Including all zeroth- and
first-order contributions, the generalized Boltzmann equation
solution is

f (t,r,s) = w̃(s)n(t,r) +
[
W − νtrapR(1) − ı ∂

∂s

]
w̃(s) + νtrapR(1)w(αdetrap,s)

νcoll + νtrapR + a · ıs
· ∂

∂r
n(t,r). (74)

Velocity integration provides Fick’s law for the free particle
flux,

n〈v〉 = Wn − D · ∂n

∂r
, (75)

which implies that W is the flux drift velocity and defines the
flux diffusion coefficient as

D ≡ 1

νeff

[
I

α2
eff

+ (W + νtrapR(1))W
]
, (76)

written in terms of the effective frequency, (61), and the
effective temperature,

Teff ≡ νcoll

νcoll + Rνtrap
Tcoll + Rνtrap

νcoll + Rνtrap
Tdetrap. (77)

Similarly to the flux drift velocity W, the flux diffusion
coefficient D could also have been derived as the long-time
limit of the average diffusivity, (44):

D ≡ lim
t→∞ [〈rv〉(t) − 〈r〉(t)〈v〉(t)]. (78)

The flux diffusion coefficient derived here differs slightly
from what was derived in [14] for a similar phase-space

kinetic model utilizing the same operator for trapping and
detrapping. It is likely that they did not consider the spatial
dependence in Eq. (49) for the ratio of detrapping and
trapping rates R(t,r), as their diffusion coefficient lacked the
additional anisotropic component νtrap

νeff
R(1)W. Subsequently,

their diffusion coefficient is only valid in the isotropic case
without an applied field, where W = 0, or in the limit of
instantaneous detrapping, where R(1) = 0.

B. Analytical correspondence of transport coefficients

1. Diffusion equations in the hydrodynamic regime

In the previous subsection we have considered a pertur-
bative solution of the generalized Boltzmann equation, (1),
written in the hydrodynamic regime as the density gradient
expansion, (74). This solution directly provides the flux
transport coefficients of velocity, (60), and diffusion, (76). In
this subsection, we look to reconcile these results analytically
using Eq. (35) for the number density. We can describe the
asymptotics of the number density by looking at its poles in
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Laplace space, given by solving the dispersion relation [17]:

1 − νcollζcoll(k)Z[−(p̃ + ν̃)ζcoll(k)]

− νtrap�(p)ζdetrap(k)Z[−(p̃ + ν̃)ζdetrap(k)] = 0. (79)

Using the asymptotic-series representation of the plasma
dispersion function [18],

Z(ξ ) = −1

ξ

∑
n�0

(2n − 1)!!

2n
ξ−2n

= −1

ξ

(
1 + 1

2
ξ−2 + 3

4
ξ−4 + . . .

)
, (80)

we perform a small-k expansion and find the root of the
dispersion relation to second spatial order,

p = −νtrap(1 − R) − ν
(free)
loss − WCM · ık + DCM : ıkık,

(81)

which corresponds to the diffusion equation[
∂

∂t
+ νtrap(1 − R) + ν

(free)
loss

+WCM · ∂

∂r
− DCM :

∂2

∂r∂r

]
n(t,r) = 0. (82)

Here the steady-state CM transport coefficients are defined,

WCM ≡ R(1)

R〈t〉 , (83)

DCM ≡ 〈t2〉
2〈t〉WCMWCM − R(2)

R〈t〉 , (84)

using the density gradient expansion of R(r),

R(r) = R + R(1) · 1

n

∂n

∂r
+ R(2) :

1

n

∂2n

∂r∂r
, (85)

now written to second order using the flux diffusion coefficient
D,

R(2) ≡ R〈t2〉
2(1 + νtrapR〈t〉)3

WW − R〈t〉
1 + νtrapR〈t〉D, (86)

where time averages are defined by Eq. (69). Substitution of
the root of the dispersion relation into the time operator of the
continuity equation yields, to second spatial order,

p + νtrap[1 − �(p)] + ν
(free)
loss = −W · ık + D : ıkık, (87)

which corresponds to the generalized diffusion equation[
∂

∂t
+ νtrap(1 − �(t)∗) + ν

(free)
loss

+W · ∂

∂r
− D :

∂2

∂r∂r

]
n(t,r) = 0, (88)

in terms of the flux transport coefficients W and D. This could,
alternatively, have been derived by approximating the flux
in the continuity equation directly using its density gradient
expansion (Fick’s law) given by Eq. (75).

2. Approaching the steady state

So far we have considered the continuity equation in both
the steady state and the nearly spatially homogeneous state.
Using the analytical solution, it is possible to relax this steady-
state assumption. We can write the flux exactly by rearranging
the continuity equation, (34), in Fourier-Laplace space:

ık · L{n(t,k)〈v〉(t)} =
[

N (0)

n(p,k)
− p̃

]
n(p,k). (89)

Performing a small-k expansion of the above coefficient of
n(p,k) gives an approximate continuity equation valid for large
distances or nearly spatially homogeneous states,[

p + νtrap(1 − �(p)) + ν
(free)
loss

+W(p) · ık − D(p) : ıkık
]
n(p,k) = N(0), (90)

where the p-dependent velocity and diffusivity are defined in
Laplace space,

W(p) ≡ a
p̃ + ν̃

, (91)

D(p) ≡ I

(p̃ + ν̃)2

[
p̃

α2
0

+ νcoll

α2
coll

+ νtrap�(p)

α2
detrap

]
+ 2aa

(p̃ + ν̃)3 ,

(92)

although in the time domain W(t) and D(t) have units of length
and area, respectively. Performing the inverse Fourier-Laplace
transform yields[

∂

∂t
+ νtrap(1 − �(t)∗) + ν

(free)
loss + W(t) ∗ · ∂

∂r

−D(t)∗ :
∂2

∂r∂r

]
n(t,r) = 0, (93)

which is of a form similar to that of the generalized diffusion
equation, but now the “transport coefficients” are time con-
volved with the number density. It should be noted that, as
the flux has been written to second spatial order, the first- and
second-order spatial moments of this approximate continuity
equation are exact for all times.

V. CONNECTION WITH FRACTIONAL TRANSPORT

Dispersive transport is physically characterized by long-
lived traps [2]. For the right choice of parameters, the
generalized Boltzmann equation, (1), is capable of modeling
such trapped states. A necessary condition for dispersive
transport is a waiting time distribution with a divergent mean.
One choice is a waiting time distribution with a heavy tail of
the power-law form,

φ(t) ∼ t−(1+α), (94)

where 0 < α < 1. This takes the small-p form in Laplace
space:

φ(p) ≈ 1 − rαpα. (95)

Additionally, we must enforce that no trap-based recombina-
tion occurs, ν

(trap)
loss = 0, as this has the effect of prematurely

shortening the trapping time so that the mean trapping time
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no longer diverges. In this case, the effective waiting time
distribution, (5), is no longer weighted by an exponential decay
term, �(t) → φ(t), and the continuity equation, (34), becomes[

∂

∂t
+ νtrap(1 − φ(t)∗) + ν

(free)
loss

]
n(t,r)

+ ∂

∂r
· [n(t,r)〈v〉(t,r)] = 0. (96)

We can separate the power-law tail from the waiting time
distribution,

φ(t) ∗ n(t,r) = ψ(t) ∗ n(t,r)

− rα

[
C
0Dα

t n(t,r) + t−α

�(1 − α)
n(0,r)

]
, (97)

where the moments of ψ(t) are well defined and the operator
of Caputo fractional differentiation of order α is defined as

C
0Dα

t n(t,r) ≡ 1

�(1 − α)

∫ t

0
dτ (t − τ )−α ∂

∂τ
n(τ,r). (98)

The continuity equation can now be written exactly as[
∂

∂t
+ rανtrap

C
0Dα

t + νtrap(1 − ψ(t)∗) + ν
(free)
loss

]
n(t,r)

+ ∂

∂r
· [n(t,r)〈v〉(t,r)] = − rανtrap

tα�(1 − α)
n(0,r). (99)

Truncating the small-p expansion in Laplace space yields a
form of the continuity equation valid for long times,(

C
0Dα

t + ν
(free)
loss

rανtrap

)
n(t,r) + ∂

∂r
·
[
n(t,r)

〈v〉(t,r)

rανtrap

]

=
[
δ(rανtrapt) − t−α

�(1 − α)

]
n(0,r), (100)

now written solely in terms of the time operator of fractional
differentiation. Finally, performing a small-k approximation in
Fourier space provides the Captuo time-fractional advection-
diffusion equation,(

C
0Dα

t + ν
(free)
loss

rανtrap
+ Wα · ∂

∂r
− Dα · ∂2

∂r∂r

)
n(t,r)

=
[
δ(rανtrapt) − t−α

�(1 − α)

]
n(0,r), (101)

with the fractional transport coefficients defined as

Wα ≡ W
νtraprα

, (102)

Dα ≡ D
νtraprα

, (103)

in terms of the flux drift velocity, (60), and diffusion co-
efficient, (76), respectively. Note that, as the waiting time
distribution φ(t) has a divergent mean, the flux diffusion
coefficient takes the particular form

D ≡ 1

νeff

(
I

α2
eff

+ 2WW
)

. (104)

There exist generalizations of the time-fractional diffusion
equations, like Eq. (101), where spatial derivatives are also
taken to be of noninteger order [20]. Physically, these fractional
space derivatives arise when particles undergo long jumps
in space [21]. This is analogous to the above situation
where a time-fractional diffusion equation arose from particles
experiencing traps of a long duration. As our model currently
allows only for variation in the trapping time, we conclude that
to similarly derive a space-fractional diffusion equation would
require adjustments to the kinetic theory.

Importantly, we should also note that a similar asymptotic
approximation of the generalized Boltzmann equation, (1),
does not result in a fractional time operator that acts on the
phase-space distribution function. That is, it does not seem
possible to derive a similar “fractional Boltzmann equation”
from our model. This conclusion differs from that in [13],
where a similar kinetic model was used to successfully derive
a fractional Boltzmann equation. However, their model was
inconsistent, as it simultaneously modeled trapping while also
maintaining a constant number of free particles.

VI. SUBORDINATION TRANSFORMATION

As shown in the previous section, the generalized diffusion
equation is capable of describing dispersive transport in the
same way that the Caputo fractional diffusion equation does.
A general feature shared by both of these diffusion equations
is the history dependence of their solutions. This is physically
due to the existence of trapped states and delayed detrapping.
Mathematically, this manifests as a global time operator, be it a
fractional derivative or, in the case of the generalized diffusion
equation, (88), a convolution with the effective waiting time
distribution �(t).

Due to their nature, global operators introduce additional
complexity when it comes to solving problems numerically.
For example, in finite-difference schemes the computation
time generally scales linearly with the number of time steps
chosen. The exception is when a global time operator is
present, causing the computation time to scale quadratically
with the number of time steps. Although this increased
computational complexity is inherent to these systems, a
number of techniques have been suggested to improve upon
it for fractional differential equations [22–25]. One approach
involves first solving a standard diffusion equation and then
performing a subordination integral transformation [11,25] to
find the desired solution of a fractional diffusion equation.
We generalize this approach to solve the generalized diffusion
equation for the free particle number density n(t,r).

Replacing the time operator in the generalized diffusion
equation with an explicit time derivative yields a standard
diffusion equation with the same linear spatial operator:

(
∂

∂τ
+ W · ∂

∂r
− D :

∂2

∂r∂r

)
u(τ,r) = 0. (105)

For the same initial conditions, u(0,r) ≡ n(0,r), we can relate
both solutions directly in Laplace space,

n(p,r) = u
(
p + ν

(free)
loss + νtrap[1 − �(p)],r

)
, (106)
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which, in the time domain, corresponds to the subordination
integral transform

n(t,r) ≡ Au(t,r)

≡
∫ t

0
dτA(τ,t − τ )u(τ,r), (107)

where the kernel is defined in terms of the inverse Laplace
transform L−1,

A(τ,t) ≡ e−(ν(free)
loss +νtrap)τ e−ν

(trap)
loss tL−1{eνtrapφ(p)τ }. (108)

Appendix B lists kernels corresponding to various choices of
the waiting time distribution φ(t) (Table II).

As a simple example, consider the case of a shifted Dirac
delta waiting time distribution,

φ(t) = δ
(
t − ν−1

detrap

)
, (109)

corresponding to traps of fixed duration ν−1
detrap. In this case,

the subordination transformation, (107), simply becomes the
summation

n(t,r) =
∑
k�0

n(k)(t − kν−1
detrap,r

)
, (110)

the terms of which can be physically interpreted as those free
particles which have been trapped k times in the past,

n(k)(τ,r) ≡ H (τ )

(
e
− ν

(trap)
loss

νdetrap νtrapτ
)k

k!
e−(ν(free)

loss +νtrap)τ u(τ,r), (111)

where H (τ ) is the Heaviside step function. Figure 5 plots
this solution on a one-dimensional unbounded domain z ∈
(−∞,∞) for the impulse initial condition n(0,z) ≡ N (0)δ(z)
and shows its construction in terms of the corresponding
Gaussian solution of the standard diffusion equation, (105):

u(t,z) = N (0)

2
√

πDt
exp

[
−

(
z − Wt

2
√

Dt

)2
]
. (112)

Note that as the subordination transformation acts on
time alone, the same mapping operator A can be used to
map between spatial moments of the normal and generalized
diffusion equations,

〈r〉(GDE)(t) = A〈r〉(SDE)(t), (113)

〈rr〉(GDE)(t) = A〈rr〉(SDE)(t), (114)

where the superscript “(GDE)” denotes the generalized dif-
fusion equation, (88), and “(SDE)” denotes the standard
diffusion equation, (105). Additionally, the commutation
relationship,[

A,
d

dt

]
≡ [

ν
(free)
loss + νtrap(1 − �(t)∗)

]
A, (115)

also allows the CM transport coefficients for each diffusion
equation to be related through the subordination transforma-
tion A,

W(GDE)
CM (t) = AW(SDE)

CM (t) − [
ν

(free)
loss + νtrap(1 − �(t)∗)

]
×A〈r〉(SDE)(t), (116)
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FIG. 5. The solution n(t,z) of the generalized diffusion equation,
(88), is written by sampling from the Gaussian solution u(t,z)
of the standard diffusion equation, (105), at multiple points in
time. This is done using the subordination transformation, (107).
Here, traps are of a fixed duration, νdetrapt = 1, as described by the
waiting time distribution φ(t)/νdetrap = δ(νdetrapt − 1). In this case, the
subordination transformation becomes the summation, (110), whose
individual terms n(k)(t,z) correspond to those free particles which
have been trapped k times in the past. Here, there is no recombination,
ν

(free)
loss = ν

(trap)
loss = 0, the trapping rate is set to νtrap/νdetrap = 1, and the

diffusion coefficient is made small so as to emphasize each individual
Gaussian’s contribution to the solution, Dνdetrap/W 2 = 1/15.

D(GDE)
CM (t) = AD(SDE)

CM (t) − 1
2

[
ν

(free)
loss + νtrap(1 − �(t)∗)

]
×A[〈rr〉(SDE)(t) − 〈r〉(SDE)(t)〈r〉(SDE)(t)],

(117)

where the CM transport coefficients are defined in terms of
spatial moments according to Eqs. (39) and (40).

VII. CONCLUSION

We have considered a general phase-space kinetic equation,
(1), which considers transport of charged particles via both
delocalized and localized states, including collisional trapping,
detrapping, and recombination processes. The solution of this
model was found analytically in Fourier-Laplace space, which
in turn provided analytical expressions for phase-space aver-
aged spatial and velocity moments. These moments provided
determination of both CM and flux transport coefficients. As
a consequence of the processes of trapping and detrapping,
the free particle CM transport coefficients were found to
be transiently negative for high trapping rates. We have
also shown that, in the hydrodynamic regime, a number
of diffusion equations accurately describe the generalized
Boltzmann equation, (1). These include the standard diffusion
equation, (82), the generalized diffusion equation, (88), and,
when transport is dispersive, the Caputo fractional diffusion
equation, (101). Finally, we have written the solution of
the generalized diffusion equation, (88), as a subordination
transformation, (107), from the corresponding solution of a
standard diffusion equation, (105).
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The model of focus in this work, Eqs. (1)–(8), was
considered only for constant process rates, independent of the
particle energy. Extension to higher order balance equations
(e.g., momentum and energy) including energy-dependent
rates represents the next step in development of this model.
This will facilitate the generalization of well-known empirical
relationships (e.g., generalized Einstein relations, Wannier
energy relation, mobility expressions) to include combined
localized/delocalized transport systems. Additionally, for our
model to be applied to transport in dense fluids, it is necessary
to have reasonable inputs νtrap and φ(t). Although there
are many investigations of trapping, for example, light-
particle solvation, in the literature [26–28], including free

energy changes and solvation time scales, none of these
directly produces an energy-dependent trapping frequency or
waiting time distribution. The ab initio calculation of such
capture collision frequencies and waiting time distributions
in liquids and dense gases remains the focus of our current
attention.
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APPENDIX A: LIST OF LIMITING RATIOS OF DETRAPPING AND TRAPPING RATES R

TABLE I. Specific cases of the dimensionless quantity R that is defined in Eq. (62) as the limiting ratio of particle detrapping and trapping
rates. From its alternate definition, (63), it can be seen that R is a function of the difference in recombination loss rates �νloss ≡ ν

(free)
loss − ν

(trap)
loss .

Trap type Waiting time distribution φ(t) Limiting ratio of detrapping and trapping rates R

Instantaneous δ(t) 1
Fixed delay δ(t − ν−1

detrap)
νdetrap

νtrap
WLambert[

νtrap

νdetrap
exp ( �νloss+νtrap

νdetrap
)] a

Poisson process νdetrape
−νdetrapt �νloss+νtrap−νdetrap+

√
(�νloss+νtrap+νdetrap)2−4νdetrap�νloss

2νtrap

Multiple trapping model αν0(ν0t)
−α−1γ (α + 1,ν0t) —b

aThe Lambert W function is defined as satisfying
WLambert(z)eWLambert(z) ≡ z. (A1)

bR is the positive solution of the transcendental equation,

R = − απ

sin απ

(
−�νloss + νtrap(1 − R)

ν0

)α

− α�Lerch

(
�νloss + νtrap(1 − R)

ν0
,1, − α

)
, (A2)

where the Lerch transcendent is defined as

�Lerch(z,s,a) ≡
∑
n�0

zn

(n + a)s
. (A3)

APPENDIX B: LIST OF SUBORDINATION TRANSFORMATION KERNELS A(τ,t)

TABLE II. Specific cases of the integral kernel, (108), A(τ,t), used in the subordination transformation, (107), that maps from the solution
of the standard diffusion equation, (105), to that of the generalized diffusion equation, (88).

Trap type Waiting time distribution φ(t) Scaled subordination kernel e(ν(free)
loss +νtrap)τA(τ,t)

Instantaneous δ(t) eνtrapτ e−ν
(trap)
loss t δ(t)

Fixed delay δ(t − ν−1
detrap) e−ν

(trap)
loss t (νtrapτ )νdetrap t

�(1+νdetrap t) IIIν−1
detrap

(t)a

Poisson process νdetrape
−νdetrapt δ(t) + 1

t
e−νdetrap t√νtrapτνdetraptI1(2

√
νtrapτνdetrapt) b

Multiple trapping model αν0(ν0t)
−α−1γ (α + 1,ν0t) e−ν

(trap)
loss t [ 1

tα
lα( t

tα
) ∗ g(t)]c

aThe Dirac comb of period T is defined as
IIIT (t) ≡

∑
n∈Z

δ(t − nT ). (B1)

bThe modified Bessel function of the first kind of order ν is defined as

Iν(z) ≡
∑
n�0

( z

2 )2n+ν

n!�(1 + n + ν)
. (B2)
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cThe characteristic time tα is defined as

ν0tα ≡ α

√
απ

sin απ
νtrapτ ; (B3)

we define in Laplace space the one-sided Lévy density,

lα(p) ≡ e−pα

, (B4)

and in Laplace space

g(p) ≡ exp

[
− α�Lerch

(
− p

ν0
,1, − α

)]
, (B5)

where the Lerch transcendent �Lerch(z,s,a) is given by Eq. (A3).
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