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Crossing probability for directed polymers in random media. II. Exact tail of the distribution
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We study the probability p ≡ pη(t) that two directed polymers in a given random potential η and with fixed
and nearby endpoints do not cross until time t . This probability is itself a random variable (over samples η),
which, as we show, acquires a very broad probability distribution at large time. In particular, the moments of
p are found to be dominated by atypical samples where p is of order unity. Building on a formula established
by us in a previous work using nested Bethe ansatz and Macdonald process methods, we obtain analytically
the leading large time behavior of all moments pm � γm/t . From this, we extract the exact tail ∼ρ(p)/t of the
probability distribution of the noncrossing probability at large time. The exact formula is compared to numerical
simulations, with excellent agreement.
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I. INTRODUCTION

A. Overview

The problem of directed paths, also called directed poly-
mers, in a random potential arises in a variety of fields [1–8].
In its continuum version, it is connected to the Kardar-Parisi-
Zhang (KPZ) growth equation [9] by an exact mapping, the
Cole-Hopf transformation. Recent progress in integrability of
the KPZ equation in one dimension [10–19] have thus been
accompanied by new exact results for the directed polymer
(DP) in 1 + 1 dimension. Methods from physics, such as
replica and the Bethe ansatz [10,16–20], or from mathematics,
such as the Macdonald processes [11], led to many exact
results both for the KPZ and the DP problem. Examples in the
latter case are distributions of the free energy, of the endpoint
position [21], as well as some multipoint correlations [22].

Despite this progress, many interesting DP observables
still evade exact calculations. This is the case for instance
of quantities testing the spatial structure of the manifold of DP
ground states such as the statistics of coalescence times [23],
or of their low-lying excited states, such as the overlap and the
droplet probabilities, of great interest for many applications,
e.g., to quantum localization [24]. Similarly, very few results
are available for the problem of several interacting DP, which
are mutually competing within the same random potential,
most notably the case of several DP subjected to the constraint
of noncrossing [11,25–28]. More generally, not much is known
about crossing or noncrossing probabilities for paths in random
media. Since in a random potential directed polymers compete
for the same optimal configuration(s), one can expect that the
noncrossing probability may be small. It remains to quantify
how small they are and how rare the samples are such that they
are not small.

In a recent work we introduced a general framework
to calculate noncrossing probabilities for directed polymers,
equivalently free energies of a collection of directed paths
with a noncrossing constraint. Specifically, we studied the
probability pη(t) that two directed polymers in the same
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white noise random potential η ≡ √
2c̄η(x,t) and with all four

endpoints fixed nearby x = 0 (see below precise definition)
do not intersect up to time t . We used the replica method to
map the problem onto the Lieb-Liniger model with attractive
interaction c = −c̄ < 0 and generalized statistics between
particles. Employing both the nested Bethe ansatz and known
formulas from Macdonald processes, we obtained a general
formula for the integer moments pη(t)m (overbar denotes
averages with respect to η) which we could relate, at least
at a formal level, to a Fredholm determinant. While explicit
evaluation of this formula for any m,t appeared very difficult,
we were able to obtain explicit results for m = 1,2 for all time
t and for m = 3 in the large time limit. This led us to conjecture
that, at large time,

pη(t)m �t→∞ γm

c̄2(m−1)

t
, (1)

where c̄ is the strength of the disorder, with explicit values for
the first three coefficients

γ1 = 1
2 , γ2 = 1

12 , γ3 = 1
15 . (2)

The calculation of all the γm and the more general question
of the determination of the full probability distribution, Pt (p)
of p ≡ pη(t), remained open problems. An interesting finding
of Ref. [29] is that the first moment is exactly given by (1), i.e.,
pη(t) = 1/(2t) for all t , independent of the disorder strength,
and in fact identical to the result without disorder. As explained
there (and recalled below) this arises as a consequence of
an exact symmetry of the problem, called the statistical tilt
symmetry (STS).

B. Aim and main results

The aim of this paper is to report a first step in the deter-
mination of the sample-to-sample distribution of noncrossing
probability Pt (p). We will start from the general formula for
the moments derived in Ref. [29] in terms of multiple integrals
over so-called string rapidities, μj , of a quite complicated
symmetric polynomial of these rapidities (called �n,m(μ)
below). We will develop general algebraic methods to deal
with these types of polynomials and integrals, and apply them
here to study the replica limit n = 0 and the large time limit.
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FIG. 1. Comparison of our prediction for the continuum model
with numerical simulations of the DP on the square lattice, as
described in the text. We use at least 2 × 105 realizations of the
disorder (samples). The ln of the empirical distributions of p =
p̂/(16β4), with p̂ the probability on the lattice, is shown for different
values of β and several times t̂ = 28,29, . . . ,213. The opacity of each
line is scaled proportionally t̂ . The analytical prediction in Eq. (60)
for the tail of the distribution is confirmed at large times t̂ → ∞ and
β → 0. Note that the bulk of the distribution and ln ptyp(t) shifts very
rapidly to large negative values (which we find consistent with t1/3,
but do not analyze here).

We demonstrate that the conjecture (1) is indeed correct and
obtain all the coefficients γm. From the moments (1) we are
able reconstruct interesting and nontrivial information about
the probability distribution Pt (p), namely its tail, as we now
explain.

It is important to point out that the result (1) is valid only for
fixed integer m in the limit of large time. In fact, this knowledge
of the leading behavior of the integer moments at large time
is not sufficient to reconstruct the full distribution of p. As
we have argued in Ref. [30] on the basis of universality from
the results of Ref. [27], we expect that

ln ptyp(t) ≡ ln pη(t) ∼ −a(c̄2t)1/3, (3)

where, furthermore, a = χ2 − χ ′
2 ≈ 1.9043 is the average

gap between the first (χ2) and second (χ ′
2) Gaussian unitary

ensemble (GUE) largest (properly scaled) eigenvalues of a
random matrix belonging to the GUE. This means that in a
typical realization of the random potential η, p ≡ pη(t) is
subexponentially small at large time, i.e., ptyp(t) ∼ e−a(c̄2t)1/3

.
To account for the form (1) the integer moments should be
dominated by a small fraction ∼1/(c̄2t) of environments for
which typically pη(t) ∼ c̄2. Hence we are led to conclude that

Pt (p) �t→+∞ P0[p/ptyp(t)] + ρ(p/c̄2)

c̄4t
, (4)

where ρ(p/c̄) is a fixed function and P0 is the bulk of
the distribution centered around the typical value. Here our
goal is to calculate only the tail function ρ(p), leaving the
determination of the bulk function to future studies. We obtain,
from an exact calculation of the γm [given in formula (58)

below],

ρ(p) = 2

p

∫ +∞

0

du√
u(u + 4)

K0(2
√

p
√

u + 4), (5)

where K0 is the modified Bessel function. It is easy to see that
this result reproduces

∫
dppmρ(p) = γm in agreement with

the values in Eq. (2). The conjecture (4) with the analytical
form (5) is fully confirmed by our numerical study (see
Sec. IV C); in particular Fig. 1 shows comparison with the
model defined on the square lattice, which at high temperature
is a good approximation of the continuum one.

Strictly Eqs. (4) and (5) are valid only at fixed p for large t ,
and the total weight in the tail is naively ∼1/t . However, one
sees that the asymptotic behavior of the density function ρ(p)
at small p is

ρ(p) � 1

2p
(ln p)2; (6)

hence its total weight is not integrable at small p. Thus we can
surmise that the above form holds for p > pc(t), where pc(t)
is a small-p time-dependent cutoff, and we can try to match
the tail to the bulk around pc(t). Integration of (6) gives a total
weight ∼ 1

6 | ln pc(t)|3/t for the tail region of the probability
distribution. This suggests, assuming no other intermediate
scale, the following bound on pc(t): 1

6 | ln pc(t)|3/t 
 1,
i.e., ln pc(t) � −(6t)1/3 � −1.817t1/3. This is consistent with
ptyp(t) 
 pc(t) but on the same t1/3 scale. A more detailed
analysis of this matching is left for the future.

Finally, one may wonder how the samples with values of
p of order 1 differ in real space from the ones with typical
values of p. For this, we show in Fig. 2 density plots of
the configurational probabilities of two independent directed
polymers in the same environment constrained to start and end
at different but very close points (nearest neighbors on the
lattice). We show two samples: For the sample with higher p,
the small difference in starting points results in a very large
difference in most probable configurations. The details of the
numerics are discussed in Sec. IV C.

The paper is organized as follows: In Sec. II, we recall the
model, the observables, and the main results of [29], which
are the starting points for the present calculation; in Sec. III,
we study the building blocks for the formula of the moments
of pη(t); and finally in Sec. IV, we apply these formulas in
the limit n → 0 and of large times to derive the coefficients
γm and the distribution of pη(t), which is then compared to
numerics.

II. MODEL, OBSERVABLES, AND STARTING FORMULA

A. Model and observables

The model of a directed polymer in the continuum in
dimension 1 + 1 is defined by the partition sum of all paths
x(τ ) ∈ R starting from x at time τ = 0 and ending at y at time
τ = t . This can be seen as the canonical partition function of
a directed polymer of length t with fixed endpoints

Zη(x; y|t) ≡
∫ x(t)=y

x(0)=x

Dxe− ∫ t

0 dτ [ 1
4 ( dx

dτ
)2−√

2c̄η(x(τ ),τ )] (7)
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FIG. 2. Configuration of two polymers starting at (x̂ = ∓1/2,t̂ = 0) (respectively red and blue) for a typical value of p in panel (a) and
for a rare realization with large p = O(1) in panel (b). The opacity of each dot in (x̂,t̂) corresponds to Z(±1/2,x̂|t̂) × Z(x̂, ± 1/2|τ̂ − t̂) with
τ̂ = 300. See Sec. IV C for definitions of notations on the lattice. Here, β = 1.0 and the red points have been drawn on top of the blues, which
explains the apparent asymmetry in panel (a).

in a random potential with white-noise correlations
η(x,t)η(x ′,t ′) = δ(x − x ′)δ(t − t ′). It describes the thermal
fluctuations of a single polymer in a given realization η of
the random potential (a sample).

Thanks to the Karlin-McGregor formula for noncrossing
paths and its generalizations [31], the partition sum of two
polymers with ordered and fixed endpoints, (x1,y1) and
(x2,y2), is given by a determinant formed with the single-
polymer partition sums:

Z(2)
η (x1,x2; y1,y2|t) = Zη(x1; y1|t)Zη(x2; y2|t)

−Zη(x2; y1|t)Zη(x1; y2|t). (8)

Hence, one can express the probability (over thermal fluctua-
tions) that two polymers with fixed endpoints do not cross in
a given realization η as the ratio:

pη(x1,x2; y1,y2|t) ≡ 1 − Zη(x2; y1|t)Zη(x1; y2|t)
Zη(x1; y1|t)Zη(x2; y2|t) . (9)

Here for simplicity, we study only the random variable
defined by the limit of near-coinciding endpoints

pη(t) ≡ lim
ε→0

pη(−ε,ε; −ε,ε|t)
4ε2

. (10)

As noticed in Ref. [29], it can also be written as

pη(t) = ∂x∂y ln Zη(x; y|t)∣∣x = 0
y = 0

, (11)

which is useful in some cases, e.g., to show that the first
moment is independent of the disorder; see Ref. [29].

B. Replica trick and starting formula

The observables that we will study here are the integer
moments of this probability pη(t). Using the replica trick these
moments can be written as

pη(t)m = lim
n→0

�n,m(t), (12)

where we have introduced

�n,m(t) ≡ lim
ε→0

[
(2ε)−2Z

(2)
η (ε)

]m
[Zη(0; 0|t)]n−2m (13)

and we defined the partition sum of two noncrossing polymers
with endpoints near x = 0 as

Z(2)
η (ε) ≡ Zη(ε; ε|t)Zη(−ε; −ε|t) − Zη(−ε; ε|t)Zη(ε; −ε|t).

(14)

The idea is now to calculate �n,m(t) and then to take the
limit n = 0.

In Ref. [29], we have derived a formula for these quantities.
This result was obtained in the simplest case (m = 1) by use
of the nested Bethe ansatz and, for general m, using a contour
integral formula obtained from the theory of Macdonald
processes in Ref. [11], with perfect agreement between the
two methods.

The formula goes as follows. For each n,m, one first defines
a function of a set of n complex variables μα , α = 1,..n, the
so-called rapidities [also indicated collectively by a vector
μ = (μ1, . . . ,μn)] as

�n,m(μ) = 1

2m
symμ

[ ∏m
q=1 h(μ2q−1,2q )∏

1�α<β�n f (μβα)

]
, (15)

where μβα = μβ − μα and we have introduced the two
functions

h(u) = u(u − ic), f (u) = u/(u − ic), (16)

and the symmetrization operator over the variables μ:

symμ[F (μ1, . . . ,μn)] = 1

n!

∑
P∈Sn

F (μP1 , . . . ,μPn
). (17)

As discussed below, the rational function in Eq. (15) is actually
a symmetric polynomial in the μα .

The formula obtained in Ref. [29] then reads

�n,m(t) = 〈�n,m(μ)〉n, (18)

where we introduced the so-called string average for any
symmetric function F (μ) as

〈F (μ)〉n ≡
n∑

ns=1

n!c̄n

ns!(2πc̄)ns

∑
(m1,..mns )n

ns∏
j=1

×
∫ +∞

−∞

dkj

mj

�(k,m)F s(k,m)e−As
2(k,m)t . (19)
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In this equation, we introduce the notation

F s(k,m) ≡ F (μ)|μ=μs,

�(k,m) =
∏

1�j<j ′�ns

(kj − kj ′)2 + c̄2(mj − mj ′)2/4

(kj − kj ′)2 + c̄2(mj + mj ′)2/4
, (20)

μs
α ≡ μs

j,a = kj + ic̄

2
(mj + 1 − 2a),

aj = 1, . . . ,mj , j = 1, . . . ,ns, (21)

Ap(μ) ≡
n∑

α=1

μp
α, As

p(k,m) ≡ Ap(μ)|μ=μs, (22)

where A2 denotes the energy and Ap corresponds to the
conserved charges of the Lieb-Liniger model [32]. The factor
F s(k,m) is obtained from F (μ) replacing the values of the
n rapidities μα with their values μs

j,a for a string state and
so is As

p(k,m) obtained from Ap(μ). Such a string state
is characterized by (i) an integer ns , the number of strings
in the state, with 1 � ns � n; (ii) ns real variables kj ∈ R,
j = 1, . . . ,ns , the momenta of the string center of mass; and
(iii) ns integer variables 1 � mj , the particle content of each
string in the string state. In the above formula (19) a summation
over all string states is performed, meaning that these variables
are summed upon or integrated upon. Here, (m1, . . . ,mns

)n
indicates sum over all integers mj � 1 whose sum equals n,
i.e.,

∑ns

j=1 mj = n.
An important property of (18) and (19) is that considering

〈�n,0〉n ≡ 〈1〉n, one recovers the formula for Zn(t) ≡ Zn(x =
0; 0|t) = �n,0(t) for the nth moment of a single DP partition
sum with fixed endpoint, studied and calculated in Ref. [10].
The present calculation is thus a nontrivial generalization of
that calculation.

The formula (18) is thus our starting point. We now turn to
explicit calculations of the building blocks in Eq. (15).

III. CALCULATION OF THE BUILDING BLOCKS �n,m(μ)

In this section we provide an explicit formula for �n,m(μ)
as a symmetric polynomial. This approach is based on (i) the
invariance of (15) under the simultaneous translation of all the
rapidities μα → μα + u and (ii) the fact that �n,m vanishes on
any � string with � > n − m.

The best way to deal with this problem is to separate
these polynomials into homogeneous components, which are
discovered to coincide with the �n,m(μ) computed at c̄ = 0.
Hence, we start by studying this case.

A. c̄ = 0 case

We define �̃n,m(μ) as �n,m(μ) computed at c̄ = 0. In this
case f (u) = 1 in (16) and therefore Eq. (15) simplifies to

�̃n,m(μ) = 1

2m
symμ

⎡
⎣ m∏

q=1

(μ2q−1 − μ2q)2

⎤
⎦

= symμ

⎡
⎣ m∏

q=1

(
μ2

2q−1 − μ2q−1μ2q

)⎤
⎦, (23)

where the second equality is obtained by expanding the square
and replacing μ2q → μ2q−1 inside the symmetrization. We
want to re-express (23) in terms of the elementary symmetric
polynomials

ep(μ) =
∑

1�α1<...<αp�n

μα1 . . . μαp
, (24)

with e0(μ) = 1 and we will use below the convention that
μα = 0 for α > n, leading to ep(μ) = 0 for p > n. We will
also omit the explicit dependence on rapidities when these do
not take a specific value and simply denote ep ≡ ep(μ). It is
important to underline few properties that (23) has to satisfy.
Indeed, �̃n,m(μ) is a polynomial

(1) symmetric in the variables μ1, . . . ,μn;
(2) homogeneous of degree 2m;
(3) containing each rapidity μα with degree at most 2;
(4) invariant under a simultaneous translation of all vari-

ables: �̃n,m(μ + u) = �̃n,m(μ) for any complex number u and
μ + u = (μ1 + u, . . . ,μn + u).

Conditions 1, 2, and 3 impose that �̃n,m(μ) is a linear
combinations of terms epe2m−p with p = 0, . . . ,m. More-
over, in this expansion, all the coefficients are fixed up to
a normalization constant using condition 4. An important
consequence, which we will use below, is that, for any given
n,m, a polynomial satisfying conditions 1–4 has to be a
multiple of �̃n,m. Additionally, by focusing on the coefficient
of

∏
q μ2

2q−1 in (23), it can be seen that emem appears multiplied
by m!(n − m)!/n!. We refer to Appendix A for all the details
and we get

�̃n,m(μ) = m!

n!(n − m)!
(−1)m

×
2m∑
p=0

(−1)p(n − p)!(n − 2m + p)!epe2m−p,

(25)

which is the required expansion. Remarkably, this expression
is a convolution and can therefore be expressed compactly
using generating functions. We recall the standard generating
function for the elementary symmetric polynomials

E(x|μ) =
∏
i�1

(1 + μix) =
∑
r�0

erx
r . (26)

Again we will write simply E(x|μ) ≡ E(x), and similarly
for other generating functions, whenever the rapidities are
considered at generic values. Then, we can rewrite

�̃n,m(μ) = m!

n!(n − m)!
(−1)m[Hn(x)Hn(−x)]x2m, (27)

where we introduced

Hn(x) =
n∑

p=0

(n − p)!epxp =
∫ ∞

0
dte−t tnE(x/t), (28)

and everywhere here [F (x)]xp indicates the coefficient of xp

in the series F (x).
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B. General case c̄ �= 0

The study of the finite c̄ case requires a more detailed
analysis. First of all, one can check (see Appendix B 1) that
�n,m(μ) is still a symmetric polynomial in the rapidities.
Moreover, it is homogeneous of degree 2m in the combined
set of c̄,μ1, . . . ,μn. Thanks to the characterization of �̃n,m′ (μ)
in terms of properties 1–4 given in the previous section, it can
be seen (Appendix B 2) that �n,m(μ) admits the following
expansion:

�n,m(μ) =
m∑

a=0

c̄2a�a
n,m�̃n,m−a(μ), (29)

where the �a
n,m are constant coefficients, for the moment

unknown, except for �0
n,m = 1. Thanks to Eq. (27), it is

possible to rewrite Eq. (29) again in terms of generating
functions as

�n,m(μ) = m!(−1)m

(n − m)!n!
[ωn,m(ic̄x)Hn(x)Hn(−x)]x2m, (30)

where we introduced the generating function of the unknowns
�a

n,m

ωn,m(x) = (n − m)!

m!

m∑
a=0

�a
n,m

(m − a)!

(n − m + a)!
x2a (31)

with ωn,m(0) = 1. Since Eqs. (29) and (30) hold for an
arbitrary choice of μ, the values of the �a

n,m can be fixed by
choosing specific configuration of rapidities where �n,m(μ)
simplifies. Consider in particular the string configuration (21)
characterized by m1 = � and m2 = · · · = mn−�+1 = 1, all with
vanishing momenta kj = 0, i.e.,

μ�,0 =
(

ic̄

2
(� − 1),

ic̄

2
(� − 3), . . . , − ic̄

2
(� − 1),0, . . . ,0

)
;

(32)

then one obtains (see Appendix B 3) that

�n,m(μ�,0) = 0, for any � = n − m + 1,n − m + 2, . . . ,n.

(33)
These conditions have a direct physical interpretation: In the
Lieb-Liniger language, � strings can be considered as bound
states composed of � particles; in order to form a string with
� > n − m, necessarily, the rapidities of two particles which
are mutually avoiding each other would need to be included in
the string. As no bound state can be formed between avoiding
particles, this term gives a vanishing contribution in Eq. (18).
So, the condition expressed by (33) encodes the effective
repulsion between polymers. The value of the elementary
symmetric polynomials for this configuration μ = μ�,0 can
be found explicitly (see Appendix B 4) as

ep(μ�,0) =
(

�

p

)
(−ic̄)pB(�+1)

p

(
� + 1

2

)
. (34)

We will extensively use in this paper the generalized Bernoulli
polynomials [33] which have been introduced from the
generating function

Gα(x,y) ≡
(

x

ex − 1

)α

exy =
∞∑

n=0

B(α)
n (y)xn

n!
. (35)

By inserting Eq. (34) in Eq. (28) and denoting H (�)
n (x) =

Hn(x|μ�,0), we arrive at (see Appendix B 4)

H (n−k)
n (x)H (n−k)

n (−x) =
2k+1∑
p=1

bpG2n+2(ic̄x,n − k + p), (36)

where k = n − � and the coefficients bk satisfy the symmetry
b2k+2−p = bp as is seen from the property

Gα(x,y) = Gα(−x,α − y) (37)

and the fact that the left-hand side of (36) is an even function
of x. Using Eqs. (36) and (30), the conditions in Eq. (33) are
equivalent to

{ωn,m(icx)[G2n+2(ic̄x,n − k + 1)

+G2n+2(−ic̄x,n − k + 1)]}x2m = 0,

∀ k = 0, . . . ,m − 1. (38)

To see this, we start from k = 0, in which case there is only
one term in the sum (36). Then, for k = 1, the sum involves
three terms. However, using the condition for k = 0, we can
reduce to the first and last terms in the sum and obtain (38),
again by the symmetry in Eq. (37). Similarly, one can proceed
for all k up to k = m − 1 using each time, all the previous
conditions up to k − 1.

These conditions (38) are solved by

ωn,m(x) = 1
2 [G2m−2n−1(x,m − n) + G2m−2n−1(−x,m − n)]

+O(x2m+2), (39)

where the higher orders do not affect the x2m coefficients
needed in (30). To see that Eq. (39) satisfies (38), we use that

B
(2m+1)
2m (m − k + 1) = (−k − m + 1)2m = 0,

∀k = 0, . . . ,m − 1, (40)

where (x)p = x(x + 1) . . . (x + p) is the Pochhammer sym-
bol, as shown in detail in Appendix B 5. Finally, we get,
from Eqs. (39) and (35), our final explicit expression for the
coefficients �a

n,m as

�a
n,m = m!(n − m + a)!B(2m−2n−1)

2a (m − n)

(2a)!(m − a)!(n − m)!
(41)

in terms of generalized Bernoulli polynomials, which complete
the expansion of �n,m(μ) in Eq. (29). More compactly we can
write, combining (30) and (39),

�n,m(μ) = m!(−1)m

(n − m)!n!

⎡
⎣(

c̄x

2 sin c̄x
2

)2m−2n

× sin c̄x

c̄x
Hn(x)Hn(−x)

⎤
⎦

x2m

, (42)

which is the main result of this section.

IV. CALCULATION OF THE MOMENTS OF p

A. n → 0 limit

Thanks to the results of the previous section, we can
now express �n,m(μ) in terms of the elementary symmetric
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polynomials. Then, the dependence in terms of the conserved
charges Ap in Eq. (22) can be recovered using the Newton’s
identities [34]

ep = 1

p!
det

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 1 0 · · ·
A2 A1 2 0 · · ·
...

. . .
. . .

Ap−1 Ap−2 · · · A1 p − 1

Ap Ap−1 · · · A2 A1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (43)

Therefore, as explained in Ref. [29], after introducing the
generalized replica partition function

Zβ
n (t) = 〈e

∑
p�1 βpAp 〉n, (44)

the relation for �n,m in Eq. (18) can be rewritten as

�n,m(t) = �n,m

[{
∂βp

}][
Zβ

n (t)
]
. (45)

Here, we first define �n,m[Ap] as �n,m(μ) expanded as
a function of the Ap, for simplicity without using a new
symbol. Then, we formally replace in �n,m[Ap] the charges
Ap → ∂βp

, with the derivatives computed setting all βp’s to
zero afterwards. In the limit n → 0 prescribed by the replica
trick, we can write

�n,m(μ) = λm(μ)

n
+ O(n0). (46)

We see that in the limit n → 0, all the subleading orders in
the Taylor expansion in powers of n can be neglected as, in
the calculation of �n,m(t) by means of Eq. (45), they lead
to the differentiation of a constant, since limn→0 Zβ

n (t) = 1.
We can therefore focus on λm ≡ limn→0 n�n,m. Although
in principle n → 0 would imply a vanishing number of
variables, λm is well defined as a symmetric polynomial
and admits an explicit expansion in terms of the elementary
symmetric polynomials ep in the ring of symmetric functions.

In a similar way, we define λ̃m(μ) from the limit of
n �̃n,m(μ). The latter can be expressed by taking the limit
n → 0 of (25)

λ̃m =
2m∑
p=0

(−1)p−1m!(m − 1)!e2m−pep

(p − 1)!(2m − p − 1)!

= −m!(m − 1)![H0(x)H0(−x)]x2m,

H0(x) =
∞∑

p=0

epxp

(p − 1)!
, (47)

using that (n − p)! � (−1)p−1/[n(p − 1)!] for strictly pos-
itive integer p and small n and introducing the auxiliary
function H0(x). Note that in the expansion of λ̃m both the
terms p = 0 and p = 2m give a vanishing contribution.

We can now easily express the λm. Since

�a
m ≡ lim

n→0
�a

n,m = m!(m − 1)!(−1)aB(2m−1)
2a (m)

(m − a)!(m − a − 1)!(2a)!
(48)

is not singular, we can take the limit directly in (29), and arrive
at

λm(μ) =
m∑

a=0

c2a�a
mλ̃m−a(μ)

= −m!(m − 1)![ω0,m(icx)H0(x)H0(−x)]x2m, (49)

where

ω0,m(x) = lim
n→0

ωn,m(x)

= 1

m!(m − 1)!

m∑
a=0

( − 1)a�a
m(m − a)!(m − a − 1)!x2a

= 1

2
[G2m−1(x,m) + G2m−1(−x,m)] + O(x2m+2)

(50)

in agreement with (39), as expected. Again, as above in
Eq. (39), the orders higher than x2m are irrelevant for the
final result.

B. Large time limit

We now turn to the calculation of �n,m. First of all, we
need to replace, in the conserved charges, the values of the
rapidities with a so-called string state. Since the chargesAp(μ)
are additive we have As

p(k,m) = ∑ns

j=1 Ap(kj ,mj ), where
Ap(kj ,mj ) are the contributions relative to a single string.
As shown in Appendix C, they can be written as

Ap(k,m) =
p∑

q=0

(
p

q

)
(ic)p−q(2q−p+1 − 1)Bp−qA

(h)
q (k,m),

(51)
where Bp = B(1)

p (0) are the standard Bernoulli num-
bers and the homogeneous conserved charges, satisfying
A(h)

p (uk,um) = up+1A(h)
p (k,m), have been defined as

A(h)
p (k,m) =

(
k + icm

2

)p+1 − (
k − icm

2

)p+1

ic(p + 1)
. (52)

As argued in Ref. [29], the string average of products of
homogeneous charges has a simple scaling with t at large
times:

lim
n→0

〈
A(h)

p1
. . . A(h)

pr

〉
n

n
∝t→∞ t [1−(p1+1)−...−(pr+1)]/3. (53)

Since A1(k,m) = A
(h)
1 (k,m), the leading contribution O(t−1)

to each moment pm is then given by the terms involving
〈(A1)2〉n = n/(2t) as dictated by STS (for detailed version
of these arguments and this last identity, see Ref. [30]). Then,
when expanding ep as a function of theAp through (43), we do
not need the higher charges,Ap>1, as they will give subleading
contributions to the moments at large time. Combining (43)
and (51), we observe

es
p(k,m) = As

p(k,m)

p
+ “terms involving more than one A”

−→ (ic)p−1(22−p − 1)Bp−1As
1(k,m), (54)

where in order to derive the last replacement we used (51)
and A

(h)
1 (k,m) = A1(k,m). Once this replacement is applied in

Eq. (47), it leads to

H0(x|μs) −→ xG1
(
ic̄x, 1

2

)
As

1(k,m). (55)

This function is now odd: H0(−x|μs) = H0(x|μs), as expected
since A

(h)
1 only appears in the expansion Ap for odd p’s.
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Finally, using Eqs. (49) and (50), we obtain the moments at
large times

pm � lim
n→0

〈λm〉n
n

= lim
n→0

m!(m − 1)!
〈[ω0,m(ic̄x)H0(x)2]x2m〉n

n

−→ m!(m − 1)!

2t
[x2G2m+1(ic̄x,m + 1)]x2m (56)

= (−1)m−1c̄2m−2(m − 1)!m!B(2m+1)
2m−2 (m + 1)

2(2m − 2)!t

= (m − 1)!4c̄2m−2

2(2m − 1)!t
, (57)

where in the first line we have used the multiplication
formula for the Bernoulli generating functions (see end of
Appendix B 4) and in the second line we have used the
value (B19) of the Bernoulli polynomial at a special argument,
obtained in Appendix B 5.

Thus, we have shown, as announced in the introduction,
that for integer m � 1

pm =t→+∞
γmc̄2m−2

t
+ o(t−1), γm =

√
π4−m�(m)3

�
(
m + 1

2

) ,

(58)
where we have rearranged the � functions in the γm. It is easy
to check that the values for m = 1,2,3 given in Eq. (2) are
recovered.

C. Final result and comparison with numerics

We want now to recover the density ρ(p) associated to the
moments in Eq. (58). For simplicity, in this section we set
c̄ = 1. The full result can be recovered by rescaling as in (4).
We look for a function ρ(p) satisfying∫ ∞

0
dρ ρ(p)pm = γm (59)

for all integers m � 1. One can note that the densities ρ1(u) =
e−u/u and ρ2(u) = θ (0 < u < 1)(1 − u)−1/2/u have respec-
tively moments um = �(m) and um = √

π�(m)/�(m + 1/2).
We then obtain, by convolution, the density

ρ(p) = 2

p

∫ +∞

0

du√
u(u + 4)

K0(2
√

p
√

u + 4). (60)

An equivalent expression, suited for asymptotic expansion at
small p, is given by the contour integral

ρ(p) = 1

p

∫ ε+i∞

ε−i∞

ds

2iπ
p−s4−s

√
π�(s)3/�

(
1

2
+ s

)
(61)

for a small ε > 0. For p < 1, the contour can be closed on
the half plane �(s) < 0 and one gets the sum of residues as
an expansion in small p: The first term (residue in zero) gives
(ln p + 2γE)2/(2p), the second one gives p2 and p2(ln p)2,
and so on. As explained in the introduction, this suggests that
the validity of this tail for large p extends up to a cutoff value
pc bounded by pc � e−1.817t1/3

.
We now compare our analytical result for the continuum

model with the discrete directed polymer on a square lat-
tice [10], defined according to the recursion (with integer time

t̂ running along the diagonal)

Zx̂,t̂+1 = (
Zx̂− 1

2 ,t + Zx̂+ 1
2 ,t̂

)
e−βVx̂,t̂+1 (62)

with Vx̂,t̂ sampled from the standard normal distribution.
This discrete model reproduces the continuous DP in the
high-temperature limit β 
 1, under the rescalings: c̄ = 1
with x = 4x̂β2 and t = 2t̂β4 [10]. As done in Ref. [29], we
take two polymers with initial conditions Z±

x̂,t̂=1 = δx̂,±1/2 and
ending at time t̂ at x̂ = ±1/2. Then, for each realization, the
noncrossing probability p̂ on the lattice is computed by the
image method [31]. The relation between p̂ on the lattice and
the random variable p can be read from (10), which leads to
p̂ � 16pβ4, for β → 0. As shown in Fig. 1 the agreement
between the numerics, in the double limit t̂ → ∞ and β → 0,
and our prediction for ρ(p) is convincing.

V. CONCLUSION

We presented an exact method to compute the large-time
asymptotics of the moments of the noncrossing probability
for two polymers in a random medium. As an intermediate
outcome, an algebraic approach, based on generating func-
tions, is developed to express explicitly a class of symmetric
polynomials, related to arbitrary number of replicas of two
mutually avoiding polymers. In the large-time limit, the
calculation of the moments further simplifies and an analytic
expression is provided. In this way, an explicit formula,
compatible with these moments, for the tail of the full
distribution of the noncrossing probability is proposed. Its
validity is then benchmarked against numerical simulations on
a discretization of the continuous directed polymer problem.

This approach provides a rare analytical result in the
complicated interplay between disorder and interactions.
Moreover, several new perspectives and generalizations be-
come accessible. First of all, a larger number of mutually
avoiding polymers is treatable within the same framework.
Then, the next question, currently under investigation by the
authors, concerns the bulk of the distribution. The conjectured
connection with the statistics of the first few eigenvalues of
a random Gaussian matrix should be addressable within our
approach.
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APPENDIX A: EXPLICIT FORMULA FOR �̃n,m

We now show that, for given n,m, any polynomial �̃n,m(μ)
satisfying properties 1–4 presented in Sec. III A equals, up to a
multiple, the expression in Eq. (25). Clearly, being symmetric,
it admits a representation in terms of elementary symmetric
polynomials. Moreover, property 3 implies that it is a quadratic
function of the ep’s and from homogeneity we arrive at

�̃n,m(μ) =
2m∑
p=0

apepe2m−p (A1)
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with the coefficients ap satisfying ap = a2m−p. Using that

ep(μ + a) = ep(μ) + (n − p + 1) a ep−1(μ) + O(a2),

(A2)

property 4 leads to

d�̃n,m(μ + a)

da

∣∣∣∣
a=0

=
2m∑
p=1

[ap(n − p − 1)

+ ap−1(n − 2m + p)]ep−1e2m−p

= 0. (A3)

For this condition to be true for arbitrary values of μ, we arrive
at

ap = −ap−1 ×
(

n − 2m + p

n − p − 1

)

= (−1)p−m (n − p)!(n − 2m + p)!

[(n − m)!]2
am. (A4)

Then, simple inspection of Eq. (23) gives am = m!(n − m)!/n!
and Eq. (25) follows.

APPENDIX B: CHARACTERIZATION OF �n,m

1. Polynomial from symmetrization

In this subsection we show that �n,m(μ) defined in Eq. (15)
is actually a symmetric polynomial in the rapidities. More
generally, we show that for any polynomial q(μ), the rational
function φ(μ) defined by

�(μ) = symμ

[
q(μ)∏

α<β (μα − μβ)

]
(B1)

is itself a polynomial. Indeed, we can rewrite it as

�(μ) = 1

n!
∏

α<β(μα − μβ)

∑
P∈Sn

(−1)σP q(μP1 , . . . ,μPn
)

= asymμ[q(μ)]∏
α<β (μα − μβ)

, (B2)

where the antisymmetrization operator asym[. . .] has been
introduced. Since asym[q(μ)] is an alternating polynomial,
it will be a multiple of the denominator and therefore �(μ) is
itself a polynomial.

2. Expansions of �n,m in powers of c

We show here that �n,m(μ) admits the expansion (29).
First of all we notice that reversing the order of rapidities
μα → μn−α is equivalent to sending c → −c. Then, after
symmetrization, �n,m(μ) will be an even function of c and
we can expand it as

�n,m(μ) =
m∑

a=0

c̄2aPn,m,a(μ), (B3)

where Pn,m,a(μ) are homogeneous and symmetric polynomial
of degree 2m − 2a. As explained in Appendix A, in order to
prove that Pn,m,a(μ) ∝ �̃n,m−a(μ), we simply need to show

that Pn,m,a(μ) satisfies properties 1–4 of Sec. III A. The only
nontrivial property is 3. But we can write

Pn,m,a(μ) = 1

(2a)!

d2a�n,m(μ)

dc̄2a

∣∣∣∣
c=0

(B4)

and after applying all the derivatives, we obtain several terms
of the form

symμ

[(
μα1 − μβ1

)
. . .

(
μαp+2m−2a

− μβp+2m−2a

)
(
μγ1 − μδ1

)
. . .

(
μγp

− μδp

)
]

(B5)

with p = 0, . . . ,2a. As the numerator comes from 2a − p

differentiations, with respect to c, of
∏m

q=1 h(μ2q−1,2q ), each
variables cannot appear more than twice. After symmetrization
in Eq. (B5) we obtain a polynomial, as explained in Sec. B 1,
and therefore each term satisfies property 3.

3. Value on strings

We show in this subsection that �n,m(μ) vanishes whenever
the set of rapidities μ contains a � string with � > n − m. To
fix the notation we slightly extend Eq. (32) to

μ� =
(

μ1 = ic̄

2
(� − 1),μ2 = ic̄

2
(� − 3), . . . ,μ�

= − ic̄

2
(� − 1),μ�+1, . . . ,μn

)
. (B6)

which reduces to μ�,0 when μα = 0 for α > �. Note that
the momentum of the � string can be set to zero, without
losing generality, as �n,m(μ) only depends on the differences
between pairs of rapidities and the μα’s with α > � in Eq. (B6)
are arbitrary. Writing explicitly Eq. (15) and exchanging c → c̄

[it is an even function of c̄ as showed in (B3)], we have

�n,m(μ) =
∑
P∈Sn

⎡
⎣ m∏

q=1

(
μP2q−1 − μP2q

)(
μP2q−1 − μP2q

− ic̄
)⎤
⎦

×
⎡
⎣∏

α<β

μPβ
− μPα

− ic̄

μPβ
− μPα

⎤
⎦ (B7)

and it is clear that the numerator of the second product will
vanish unless the order of the first � rapidities is left unchanged
by the permutation P : P −1

α+1 > P −1
α for all α = 1, . . . ,� − 1.

Instead, the first product will vanish whenever P −1
α = 2q −

1,P −1
α+1 = 2q for some q = 1, . . . ,m and i = 1, . . . ,� − 1.

These two conditions are compatible only for � � n − m. In
particular, in the limiting case � = n − m, only two types of
permutations are possible:(

μP1 ,μP2 , . . . ,μPn

)
=

{
(μ1,x,μ2,x,μ3, . . . ,μm,μm+1, . . . ,μn−m)
(x,μ1,x,μ2,x, . . . ,x,μm,μm+1, . . . ,μn−m)

, (B8)

where the x’s stand for arbitrary permutations of the remaining
m rapidities. Then, it is clear that for � > n − m at least two
consecutive rapidities of the � string would be adjacent in the
first 2m places, and all the terms in the sum (B7) for arbitrary
P would vanish.
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4. Calculation of the coefficients �a
n,m

As shown in Eq. (30) of the text, �n,m(μ) can be written
employing generating functions and the function ωn,m(x)
contains all the unknowns. We use conditions in (33) to fix
the function ωn,m(x). First we note that

E(x|μ�,0) = (−ic̄x)��
(

1+�
2 + i

c̄x

)
�

(
1−�

2 + i
c̄x

) . (B9)

Then using the asymptotic expansion [35] for z → ∞
�(z + α)

�(z + β)
= zα−β

∞∑
n=0

(−1)n
(β − α)n

n!
B(α−β+1)

n (α)z−n (B10)

and z = i/(c̄x), we deduce (34). Then injecting in Eq. (28)

Hn(x|μ�,0) =
n∑

p=0

(n − p)!ep(μ�,0)xp

= �!
n∑

p=0

(n − p)!

(� − p)!

B(�+1)
p

(
�+1

2

)
(−ic̄x)p

p!
. (B11)

One easily sees from its definition that B(�+1)
p ( �+1

2 ) = 0 for p

odd, which implies that the function Hn(x|μ�,0) is even in x.
In this last sum, we can safely replace the upper bound for p to
+∞, since higher powers in x will not affect �n,m(μ) in (30).
Then, from the definition in Eq. (35), we obtain for � = n:

Hn(x|μn,0) = n!Gn+1

(
−ic̄x,

n + 1

2

)
+ O(xn+1) (B12)

together with the recursive relation in n

Hn+1(x|μ�,0) = −xn+2 d

dx
[x−n−1Hn(x|μ�)]. (B13)

Then, using the relation

xn+2 d

dx
[x−n−1Gn+1(x,y)]

= (y − n − 1)Gn+2(x,y + 1) − yGn+2(x,y) (B14)

it is easy to prove, by induction over n, starting from n = �,
that

Hn(x|μ�,0) =
n−�+1∑
p=1

apGn+1

(
−ic̄x,

�−1+2p

2

)
+ O(xn+1),

(B15)

for appropriate coefficients ap whose explicit values are not
needed below. Then, taking the square of this expression,
the multiplication formula Gα(x,y)Gβ (x,z) = Gα+β(x,y + z)
leads to Eq. (36).

5. Special values of generalized Bernoulli polynomials

Fixing an integer p, one has

B(p+1)
p (y) = p!

[(
x

ex − 1

)p+1

exy

]
xp

= p!
∫

C

dz

2iπz
z−p

(
z

ez − 1

)p+1

ezy, (B16)

where C is a small contour around the origin. This simplifies
into

B(p+1)
p (y) = p!

∫
C

dz

2iπ
(ez − 1)−p−1ezy

= p!
∫

C

dw

2iπ

(1 + w)y−1

wp+1
= (y − p)p, (B17)

where we have changed ez − 1 = w. More generally, for
integer q

B
(p+1)
p−q (y) = (p − q)!

[(
x

ex − 1

)p+1

exy

]
xp−q

= (p − q)!
∫

C

dz

2iπ
zq(ez − 1)−p−1ezy

= (p − q)!

p!

dq

dyq
(y − p)p. (B18)

It follows for p = 2m and q = 2

B
(2m+1)
2m−2 (m + 1) = 1

2m(2m − 1)

d2

dy2
(y − 2m)2m

∣∣∣∣
y=m+1

= (−1)m−1(m − 1)!2

m(2m − 1)
. (B19)

(B20)

APPENDIX C: CONSERVED CHARGES ON STRINGS

The value of the conserved charges on a single string is
defined as

Ap(k,m) =
m−1∑
a=0

(
k + ic̄(m − 1 − 2a)

2

)p

. (C1)

In order to compute this sum, we introduce the charge
exponential generating function

A(x) =
∞∑

p=0

Apxp

p!
= ekx

m−1∑
a=0

exp

(
ic̄x(m − 1 − 2a)

2

)

= 2ekx sin
(

mc̄x
2

)
c̄x

G1

(
ic̄x,

1

2

)
(C2)

using the definition (35) of G1. From this expression, it is
clear that the denominator present in G1 produces the so-called
inhomogeneity in the expansion of Ap(k,m). Therefore, if we
define the generating function of the homogeneous charges as

A(h)(x) ≡ 2ekx sin
(

mc̄x
2

)
c̄x

=
∞∑

p=0

A(h)
p (k,m)xp

p!
(C3)

we immediately deduce Eq. (52). Then Eq. (51) follows
combining Eqs. (C2) and (35) and using that G1(x, 1

2 ) =
2G1( x

2 ,0) − 1.
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