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Nonequilibrium fluctuation-induced Casimir pressures in liquid mixtures
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In this article we derive expressions for Casimir-like pressures induced by nonequilibrium concentration
fluctuations in liquid mixtures. The results are then applied to liquid mixtures in which the concentration gradient
results from a temperature gradient through the Soret effect. A comparison is made between the pressures
induced by nonequilibrium concentration fluctuations in liquid mixtures and those induced by nonequilibrium
temperature fluctuations in one-component fluids. Some suggestions for experimental verification procedures are

also presented.
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I. INTRODUCTION

Fluctuation-induced forces will appear in confined fluids
when long-range fluctuations are present [1]. These phenom-
ena are also frequently referred to as Casimir effects. A well-
known example is the Casimir effect in critical systems, where
the forces are induced by long-range critical fluctuations [2-5].
A more recent example is the nonequilibrium Casimir effect in
fluids. Thermal fluctuations in fluids in nonequilibrium steady
states are large and very long ranged [6,7]. These nonequilib-
rium fluctuations are particularly spectacular in fluids in the
presence of a temperature or concentration gradient. They arise
from a coupling between the heat-diffusion or mass-diffusion
mode and the viscous mode through the convective term in the
fluctuating hydrodynamics equations [8,9]. As a consequence,
they induce Casimir-like forces much larger than fluctuation-
induced forces in fluids at thermodynamic equilibrium.

In some previous work, fluctuation-induced forces in one-
component fluids in the presence of a temperature gradient
have been considered [10—13]. The purpose of the present
paper is to study fluctuation-induced forces in liquid mixtures
in the presence of a concentration gradient. Such a concen-
tration gradient either may be isothermal [14,15] or may be
the result of a temperature gradient through the Soret effect
[16-20]. A brief account of our principal results has been
presented in a recent letter [21]. In the present paper we study
this nonequilibrium (NE) Casimir effect in liquid mixtures in
more detail.

We proceed as follows. In Sec. II we derive the rela-
tionship between NE fluctuation-induced pressure and NE
concentration fluctuations. In dealing with the NE fluctuations
in liquid mixtures we use a frequently adopted large-Lewis-
number approximation, in which concentration fluctuations
and temperature fluctuations decouple. In Sec. III we consider
the intensity of the NE concentration fluctuations deduced
from NE fluctuating hydrodynamics. The resulting expressions
for the NE fluctuation-induced pressure are investigated in
Sec. IV. We conclude with a discussion of the results in Sec. V.
In the Appendix we relate the pressure expansion equation for
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the fluctuation-induced pressure derived in Sec. II to the usual
statistical mechanical definition of the pressure.

II. RELATION BETWEEN NE PRESSURE AND NE
CONCENTRATION FLUCTUATIONS

To derive the expression for a nonequilibrium fluctuation-
induced pressure, we consider the pressure p as a function of
the fluctuating conserved densities, which for a liquid mixture
are the fluctuating energy density e + §e, the fluctuating mass
density p; + 8p; of component 1 (solute), and the fluctuating
mass density p, + §p, of component 2 (solvent):

ple +de,p1 +38p1,02 + 8p2) = ple,p1,02) +8p.  (2.1)

We expand p(e + Se,p1 + p1,02 + 8p2) in a Taylor series in
terms of de, 5p1, and §p,. Dealing with the slow mass-diffusion
mode, we can neglect the fast-propagating sound modes and,
hence, the linear fluctuation contribution to the pressure:

9 9 9
(—p> Se + (—p) 81 + (—p> 8oy =0. (2.2)
36 P1,P2 8'01 e,p2 8'02 e,p

Retaining only terms quadratic in the fluctuations, we thus
obtain for the Taylor expansion of ép

(‘)32 )ﬂl ,02(8 )2 ( )e P2(8p1)2
+ (55),., (6027 + 2(dedp )8edpy
+ Z(Beap )565102 + 2(0/) 302)8p15p2

5 =5 (2.3)

In liquid mixtures there are two diffusion modes that are linear
combinations of heat diffusion and mass diffusion [17,22].
An important parameter for mixtures is the Lewis number
Le = Dy /D, which is the ratio of the thermal diffusivity Dy
and the mass-diffusion coefficient D. For liquid mixtures the
Lewis number is substantially larger than unity. Hence, in
dealing with fluctuations in liquid mixtures one often adopts
a large-Lewis-number approximation [8]. When Le > 1,
the two diffusion modes decouple into a pure temperature
fluctuation mode with a decay time proportional to Dy and a
concentration fluctuation mode with a decay time proportional
to D [23]. Hence, to get the slowest-mode contribution when
Le > 1, we may neglect not only linear pressure fluctuations
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in accordance with Eq. (2.2), but also temperature fluctuations:
8T =0. 2.4

For the concentration variable we adopt the mass fraction w =
p1/p of the solute, where p = p; + p, is the mass density
of the mixture. From Eqs. (2.2) and (2.4) it follows that the
fluctuations de, §p1, and 8p, can be related to the concentration
fluctuation Sw at constant pressure p and constant temperature

T:
3 3
3e=<—e> Sw, 8py = <ﬂ> Sw,  (2.5)
ow o T w T

a
8py = (ﬂ) Sw
ow /), r

Substituting Eq. (2.5) into Eq. (2.3) and taking an average, we
obtain for the fluctuation-induced pressure pgr = (8p)

w 1 2
PRe®) = 5 Au ([0 2.6)

with

3%p de \? 3%p o1 \>
A=), \aw) .t \57) Gow
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0p; ep ow T dedp) ow o T
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<(52),. ) (50, (52)
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(o) (55, (52)
001007 ow o T Jw T

The superscript w indicates that pyg is a pressure induced
by concentration fluctuations. Only the NE concentration
fluctuations ([8w(r)]*)xg cause a renormalized pressure, since
the equilibrium concentration fluctuations are already incor-
porated in the unrenormalized pressure. Just as for the case of a
one-component fluid [11], our approach for deriving Eq. (2.6)
from an expansion of the pressure fluctuations in terms of
the conserved quantities can be justified from an explicit
mode-coupling theory generalized to nonequilibrium steady
states, as shown in the Appendix. We comment that at this stage
the fluctuation-induced pressure at any location r is related to
the intensity of the NE concentration fluctuations at the same
location. We see later that mechanical equilibrium requires that
the actual fluctuation-induced pressure in a nonequilibrium
steady state will be spatially uniform.

By using Eq. (2.2) and noting that dp; = wdp + pdw and
dpy = (1 — w)dp — pdw, Eq. (2.7) can be simplified to

=), [, - (5) (&)

de ), | \ow? /), ¢ o/, \0w*) ¢
2 ( de ap
_5<@)p,p<@>p,r]'

To evaluate Eq. (2.8) we first note that (dp/oe), ., =
(y — D/aT, where y =c, /cy,w is the ratio of the spe-
cific isobaric and isochoric heat capacities, and where

@.7)

(2.8)
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a=—p'(3p/d T),, is the thermal expansion coefficient of
the mixture at constant composition [24]. The remainder of
Eq. (2.8) can be expressed in terms of the thermodynamic
variables w, p,T by using thermodynamic relations collected
for mixtures by Wood [22]. Realizing that the thermodynamic
field conjugate to the mass fraction w is the difference u
between the chemical potential of the solute and that of the
solvent, we then obtain

—1 9y !
o P =D (o
aT aT pow

_ PCpuw (aX_l>
o 3[) T,w ’

where x = (dw/du), r is an osmotic susceptibility. We note
that at thermodynamic equilibrium (((Sw)z)E =kgT(pV) 'y,

where kg is Boltzmann’s constant and V the volume of the

system [25-27]. The inverse osmotic susceptibility x ! can

be related to the excess molar Gibbs energy GF [28],

. <3M>
X =\
Jw o T

RT M 9>GE/RT
=————— 1 —x1%| — s
w(l — w)M1M2 8)(?18)62 p.T

(2.10)

(2.9)

where R is the molar gas constant, x; and x, are the mole
fractions, and M; and M, are the molar weights of the solute
and solvent, respectively, while M = M x| + Mx; is the
molar weight of the mixture. Substitution of Eq. (2.10) into
Eq. (2.9) yields, finally,

_ply=1H M
ol  MIM3

0>HE PCpw d2VE
X 5 — 5 , (211
0xj oT o ox; o7

to be substituted into Eq. (2.6), where HF is the excess molar
enthalpy and VE the excess molar volume. It is interesting to
compare this result with the expression for the NE pressure
pig induced by temperature fluctuations in a one-component
fluid [13],

A, =

Pae(®) = SA7 (ST (X)) )xE, 2.12)

with

_ 2 2
A= _P¥=D (M) _&<2) a1
oaT aT? » a \9T? »

where £ is the specific enthalpy and v the specific volume.

III. NE CONCENTRATION FLUCTUATIONS

We consider a liquid mixture between two horizontal plates
separated by a distance L. We take a coordinate system with
the z axis in the vertical direction. The plates are located at
z=—L/2 and at z = 4L /2. The liquid mixture is subjected
to a stationary concentration gradient Vwg, where wg(z) is
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the local average concentration, which is assumed to be a
linear function of z. We also assume that the liquid mixture
is in a quiet mechanically stable state far away from any
convective instability [29,30]. Under these conditions, the
NE concentration fluctuation §w = Sw(r,t), which depends
on the location r and the time ¢, satisfies a simple linearized
fluctuating mass-diffusion equation,
adw 2

p|:a— + év - Vwo} = pDV<Sw —V 4], 3.1
where 8] is a fluctuating mass-diffusion flux [9,16,31]. This
fluctuating mass-diffusion equation differs from the one at
equilibrium by the presence of the term §v- Vwgy, which
causes a coupling of the concentration fluctuations dw with
the velocity fluctuations §v. The velocity fluctuations are to be
determined from a fluctuating Stokes equation,

adv

where 7 is the shear v1scosny and §T1 a fluctuating stress tensor.
In fluctuating hydrodynamics 8J and §IT are assumed to satisfy
a local fluctuation-dissipation theorem such that [8,27,31-33]

(80,08 J;(¢' 1)) = 2ks Tpx D8;j x 8(r — r)8(t — 1)
(3.3)

(3.2)

and
(813 (r,1)8 5 (x',1"))
=2kgT n(éik&ﬂ + 31'15]‘1() X §(r — I'/)(S(t — t,). (3.4)

Not only the Lewis number, but also the Schmidt number
Sc=v/D, where v =1n/p is the kinematic viscosity, is
commonly much larger than unity. It means that the viscous
fluctuations decay much more rapidly than the concentration
fluctuations. Hence, for Sc > 1, we may neglect the time
derivative in Eq. (3.2) [34]. In principle, the thermophysical
properties in Egs. (3.1)—(3.4) may depend on the concentration
(and on the temperature, if a temperature gradient is present).
In practice we identify them with their values at the center
of the fluid layer; this has been shown to be a very good
approximation [28].

These fluctuating hydrodynamics equations need to be
solved subject to appropriate boundary conditions for the con-
centration and for the velocity fluctuations at the surfaces of the
plates. Solutions have been presented in some previous publi-
cations, originally for artificial but mathematically convenient
boundary conditions [35] and, subsequently, for more realistic
boundary conditions [34,36]. Realistic boundary conditions
are no-slip for the velocity fluctuations and impervious walls
for the mass flow. If we neglect the effect of sound modes
(divergence-free §v), they are [34,37]

Sv. — ddv, _0 adw _0 at —:i:L 3.5)
v, = 5z )= )= at z = > .

where dv, is the fluctuation of the z component of the velocity
v. For Le > 1 we have been able to obtain an explicit
solution [34] without a need for any Galerkin approximation
that is usually considered for velocity fluctuations with rigid
boundary conditions [8]. From Ref. [34] we find

kgT
([Bw(@)*INe = —— F(2)L(Vwp)?, (3.6)
pvD
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with

1 *
F(z) = 2—/ qS(q,z)dq, (3.7)
7 Jo

where ¢ is the magnitude of a dimensionless wave vector q; L
associated with the concentration fluctuations in the x-y plane
parallel to the plates. In Eq. (3.7) S(q z) is a dimensionless
generalized structure factor that contains two contributions:

S(q.2) = So(q) + Si(q.2).

The first term in Eq. (3.8) is a contribution independent of z and
represents the structure factor that is experimentally accessible
in NE light-scattering or shadowgraph experiments:
4(1 — coshgq)

q°(q +sinhq)’

(3.8)

So(q) = (3.9)

The second term is an additional z-dependent contribution,

S1(¢,2)

_5 i ZNM cos(2QNmZ)cos QMmZ)

g% +2N%7? + 2M?n? (3-10)

N=0
M=1

o]

Py Z By sin [N + DrZ]sin[2M + 1)rZ]
g* + 2N + 12+ M + DA%

in terms of a dimensionless variable, 7 = z/L. The matrix
elements in this double trigonometric series are given by

Z ( )_ q28NM
WD = T ANy
84°(1 — cosh q) cos(Nm) cos(Mm)
(g + sinhg)(g? + 4N272)2(g2 + 4M272)?’
(3.11)
~ 7428 87845
Byu(q) =— 9 oNu = 'qh
[& +(@N+1)?]° ¢ —sinhg

y (1 4 coshg)cos(Nm)cos(Mm)
[Z +CN+ 1[4 + M+ 1T
(3.12)

where 8y, is the Kronecker delta. The integral obtained upon
substituting Eq. (3.8) into Eq. (3.7) can be readily evaluated
and we obtain

1 ® L
F(z) = Fy + 2—/ qSi1(q.2)dq, (3.13)
T Jo

with
1 [* ~
Fy = —/ gSo(q)dg ~3.11 x 1073, (3.14)
2 0
The contribution from the second term in Eq. (3.13) is

illustrated graphically in Fig. 1, where we show ([w(2)]*)ng
as a function of z/L (red curve) calculated numerically from
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FIG. 1. {[8w(z)]*)xg as a function of z obtained from Eq. (3.6)
with Eq. (3.13) (red curve). For comparison we also show
([8T (z)1*)ng for a one-component fluid in the presence of a tem-
perature gradient obtained for rigid boundary conditions [11] and
infinite Prandtl number (blue curve). Both curves are normalized
independently, so that the average value in the fluid layer for both
types of fluctuations is unity. The horizontal line indicates the value
of the z-independent approximation obtained by retaining only the
constant Fy in Eq. (3.13) for F(z), with the same normalization as
the concentration fluctuation (red) curve [21].

Eq. (3.6) and relative to the height-averaged value

1 [FL2
(Bw@)P)ne = Z/ ([dw(@)]*)nedz

L/2
kT —
= 2L F L(Vw), (3.15)
pvD
with
. +1/2
F = / F(Z)dz ~5.724 x 1073. (3.16)
—1/2

There are interesting differences between the profile for the
intensity of the NE concentration fluctuations in a mixture
and the profile for the intensity of the NE temperature
fluctuations in a one-component fluid. For rigid boundaries
the NE temperature fluctuations depend on the Prandtl number
Pr [38]. The blue curve in Fig. 1 shows the intensity of
the NE temperature fluctuations in a one-component fluid,
relative to the corresponding height average [11], in the limit
of infinite Prandtl number, consistent with the infinitely large
Lewis and Schmidt numbers approximations adopted in the
present paper. An important difference shown in Fig. 1 is
that in a fluid between two impervious thermally conducting
walls the temperature fluctuations vanish at the walls, but the
concentration fluctuations do not. Another difference is that
the intensity of the NE temperature fluctuations approaches
the walls with a vanishing slope, while the intensity of the NE
concentration approaches the walls with a finite slope.

PHYSICAL REVIEW E 93, 032117 (2016)

IV. NE PRESSURES INDUCED BY CONCENTRATION
FLUCTUATIONS

In principle the NE pressure induced by the concentration
fluctuations is obtained by substituting Eq. (3.6) into Eq. (2.6),
so that

kgT
¥e(2) = =——= A F(2)L(Vwo)®. 4.1
PNe(2) 2pvD (z2)L(Vwog) 4.1
Equation (4.1) represents a fluctuation-induced pressure pro-
file depending on the location z in the liquid layer. We want
to calculate the resulting effective nonequilibrium pressure
PNE.ff On the plates. We write the total pressure as

D = Peq + p]l\l]}E,eff, “4.2)

where peq is the uniform equilibrium pressure. Mechanical
equilibrium requires that dp/dz = 0. The mechanism to
compensate the z dependence of the pressure pyp(z) is a
fluctuation-induced NE contribution png(z) to the density
profile such that the total pressure derivative is indeed 0. This
gives [11]

ap w w
PoNE(2Z) = _<3_> [PNE(Z) - pNE,eff]' (4.3)
T,w
Conservation of mass requires that
1 [+L2
- / pne(z) dz = 0. (4.4)
LJ 1p

From Egs. (4.3) and (4.4) it thus follows that the effective
fluctuation-induced pressure acting on the walls is simply the
spatial average of png(z):

+L/2
PXE.eif = Z/ PNe(2) dz = Drg- 4.5)

L2

Thus the uniform NE fluctuation-induced pressure is obtained
by replacing F(z) in Eq. (4.1) with F from Eq. (3.16):

kT
—w
PNE = 2

AwF L(Vw)*. (4.6)

pvD
We note that for a fixed value of the concentration gradient
the NE fluctuation-induced pressure increases linearly with
the distance L. This large NE Casimir effect is a direct conse-
quence of the fact that in the absence of boundary conditions
the intensity of the NE fluctuations varies with the wave num-
ber as ¢ ~*, as can be seen from the leading term in Eq. (3.9).
A convenient experimental procedure for establishing a
concentration gradient is by subjecting the liquid mixture to
a stationary temperature gradient V7. Then a concentration
gradient will be established in the mixture through the Soret
effect,

Vw() = —STwo(l — wo)VTo, (47)
where S7 is the Soret coefficient [16—20]. Then
—w keTo , —_ _
PRe = 3o AuF Dol =T STLOVT, (48)

where we have approximated the local temperature and
concentration by their average values, T and Wy, in the center
of the liquid layer. Experimentally, it may be more practical
to study the NE fluctuation-induced pressure as a function of
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TABLE 1. Estimated NE fluctuation-induced pressures (T = 298 K, AT = 25 K).

L=10"°%m =107 m L=10"*m L=10"m
e
Water + methanol? +2x 107! Pa +2x 1072 Pa +2x 1073 Pa +2x 107* Pa
Tetralin 4+ n-dodecane? +3 x 107! Pa +3 x 1072 Pa +3 x 1073 Pa +3 x 107* Pa
Toluene + n-hexane?® +4 x 107! Pa +4 x 1072 Pa +4 x 1073 Pa +4 x 10~* Pa
Aniline + methanol? —6x 107! Pa —6x 1072 Pa —6 x 1073 Pa —6 x 107* Pa
1-Methylnaphthalene
+ n-heptane® +17 Pa +2 Pa +2 x 107! Pa +2 x 1072 Pa
Pre
Water [11] +5x 107! Pa +5x 1072 Pa +5x 1073 Pa +5x 107* Pa
n-Heptane [11] +2 x 107! Pa +2 x 1072 Pa +2 x 1073 Pa +2 x 107* Pa

*Equimolar mixture.

the distance L at a fixed temperature difference AT = LVTj.
Substituting Eq. (2.11) for the amplitude A,, into Eq. (4.8), we
obtain as our final expression for the NE pressure induced by
the concentration fluctuations:

—2
ksTo(y — 1) M3
2avD M12M22

3’ HE pCpw ((0*VE
X J—
ax? T o ax? T

_ 1 /AT\?
Fwi(1 —wy)*S2— =) .
x F wg( ) T 7

—w

PNg = —

4.9)

In Table I we list some estimated NE fluctuation-induced
pressures in a liquid layer at an average temperature of
298 K subjected to a temperature difference of 25 K. In
addition, we compare the NE pressures pyy given by Eq. (4.9)
from NE concentration fluctuations for two liquid mixtures,
with NE pressures pr from NE temperature fluctuations
previously found for water and n-heptane [11]. Generally, the
NE fluctuation-induced pressures in simple liquid mixtures
are comparable to those in one-component liquids, as can
be seen by comparing the NE pressure values for toluene +
n-hexane with those for n-heptane. The approximation of large
Lewis and Schmidt numbers uncouples NE concentration and
temperature fluctuations. However, temperature fluctuations
are still coupled to the fluctuating Stokes equation, (3.2),
maintaining a structure similar to the one-component fluid case
[8,36]. As a consequence, in addition to pressures induced by
NE concentration fluctuations, there will be pressures induced
by NE temperature fluctuations, which in the large-Lewis-
number approximation are given by the same expressions
as for one-component fluids [10,11], but with the properties
referred to those of the mixture. The corresponding order of
magnitude is the same as the pry for the examples listed
in Table I. In the parallel-plate configuration considered
here, typical experimental separations are of the order of
micrometers [39-41]. The NE Casimir effect may make it
possible to measure Casimir forces at longer length scales
[13].

The data in Table I show, as discussed in some previous
papers [10,11,13], that NE fluctuation-induced pressures
are significantly larger than Casimir pressures induced in

equilibrium fluids by critical fluctuations. The physical reason
is that the intensity of both the NE concentration and NE
temperature fluctuations varies in the absence of boundaries
with the wave number as ¢ —*, while critical fluctuations only
vary as g2 [42]. Since in liquid mixtures the NE Casmir
effect is proportional to the square of the Soret coefficient, the
effect can be further enhanced by selecting a liquid mixture
with a large Soret coefficient [43]. This is the reason why pyg
is much larger in 1-methylnaphthalene + n-heptane than in
toluene + n-heptane. We also see from Eq. (4.9) that Py, is
strongly related to the concentration dependence of the excess
molar enthalpy and excess molar volume. Hence, as reported
in Table I, Py can be either positive or negative.

For the system tetralin + n-dodecane, all required thermo-
physical properties are available as a function of the concentra-
tion: excess enthalpy [44] and volume [45], diffusion and Soret
coefficients [46], etc. Therefore, for this particular system it
is possible to study the dependence of pyp on the average
concentration of the mixture. In Fig. 2 we represent as the red
curve the pressure induced by NE concentration fluctuations,
calculated from Eq. (4.9), as a function of the average tetralin
mole fraction in the mixture, x. The temperature difference is
AT =25 K and L = 1 mm, corresponding to the rightmost
column in Table I. We also plot in Fig. 2 the pressure induced
by NE temperature fluctuations [10,11] calculated for the
mixture properties, so that it slightly depends on the average
concentration. The total pressure induced by NE fluctuations
will be the sum of the two curves in Fig. 2.

We note that, due to their spatial long-range nature, the
NE concentration fluctuations depend on gravity [18,36,47].
Essentially, gravity (buoyancy) suppresses the intensity of
NE concentration fluctuations when it is parallel to the
correspondingly induced stationary density gradient, while
it further enhances NE fluctuations when it is antiparallel
to this density gradient. The effects of buoyancy are more
prominent the larger the spatial size of the fluctuation. Hence,
gravity affects mostly fluctuations of small ¢ and competes
with boundary effects in this wave-number range. As a
consequence, the NE pressures discussed in this paper also
depend on gravity. The effect of gravity on ﬁgE has been
elucidated in a previous publication [11]. It turns out that the
effect of gravity is modest when the liquid is far away from any
hydrodynamic instability. Therefore, we expect that the effect
will also be modest in liquid mixtures far away from any
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FIG. 2. NE fluctuation-induced (Casimir) pressures as a function
of the (average) molar fraction x of tetralin in a binary mixture with
n-dodecane at atmospheric pressure, for AT = 25K and L = 1 mm.
The red curve represents the pressure induced by NE concentration
fluctuations, Eq. (4.9). The blue curve represents the pressure induced
by NE temperature fluctuations.

hydrodynamic instability. However, NE pressures will diverge
at the onset of any convective instability [11].

Our result for the NE Casmir effect in liquid mixtures is fun-
damentally different from the Casimir-Soret effect discussed
by Najafi and Golestanian [48]. Najafi and Golestanian have
used a Langevin equation for a Goldstone mode to obtain an
estimate for a Soret-like effect in a model system. They do not
consider any mode coupling in the fluctuating mass-diffusion
equation, (3.1), but do account for the variation of the tempera-
ture in expression (3.3) for the fluctuation-dissipation theorem
when the mixture is subjected to a temperature gradient.
They conclude that the inhomogeneity of the noise causes a
thermophoretic force that is linear in the temperature gradient
VTy. Fluctuations caused by the inhomogeneity of the noise
terms in the fluctuating-hydrodynamics equations are of much
shorter range than fluctuations induced by mode coupling
[13,49]. As a consequence, Najafi and Golestanian find a
force that is very strongly dependent on a molecular cutoff. In
general one should expect several types of fluctuation-induced
forces near walls, both of a molecular origin and from
long-range fluctuations. As pointed out in the literature [3,5],
one normally identifies Casimir effects with those resulting
from truly long-range fluctuations that induce forces that are
independent of any molecular cutoff.

V. DISCUSSION

We have shown that in liquid mixtures NE concentration
fluctuations induce NE pressures that are proportional to
the square of the concentration gradient Vw, and increase
with the distance L. Like NE pressures induced by NE tem-
perature fluctuations [10,11,13], they are significantly larger
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FIG. 3. Schematic of an NE Casimir pressure pyz > 0on a plate
at temperature 7, located in a liquid between two walls at temperature
T\. For pyg < 0, the plate would be pulled to the closest wall.

than Casimir-like pressures induced in equilibrium fluids by
critical concentration fluctuations. In liquid mixtures these
NE fluctuation-induced pressures can be further enhanced by
selecting a mixture with a large Soret coefficient, as reported
in Table I.

As a possible implication we may imagine a configuration
where a thin plate at temperature 7, is located in a liquid
between two walls, both at a temperature 77, as schematically
shown in Fig. 3. When pyg > 0, the NE pressure will exert
forces on the two sides of the inner plate proportional to
(AT)?/L; and (AT)?*/L,. This will be the case either for
a one-component liquid or for a liquid mixture (ﬁIﬂE or PRg)-
When pyg > 0 and L; # L,, the plate will experience a net
force causing it to move away from the walls. Hence, the
force needed to move this plate off-center would be a measure
of the NE Casimir force. In practice it may be difficult to
maintain plates at a close distance parallel to each other
[39,50,51]. Hence, in studying Casimir forces, one commonly
measures the force on a particle close to a surface [52].
While a geometrical analysis of such a configuration becomes
more complicated [3,53,54], the physical principle remains the
same.

NE Casimir forces are to be distinguished from ther-
mophoretic forces Ey, on a particle in a liquid subjected to
a temperature gradient [55],

Eth = —671’RDthVTo, (51)

where Dy, is its thermophoretic mobility in the liquid and
R the radius of the particle. This thermophoretic force has
been investigated experimentally by Regazzetti et al. for silica
particles with a radius R =3 um in a number of liquids,
including water and n-heptane [56]. The experiments were
conducted in a liquid layer with L = 0.1 mm subjected to a
temperature difference AT = 25 K. This is the reason why
Table I lists estimates for the NE pressures with AT = 25 K.
From the experimental results of Regazzetti et al., we have
earlier concluded that for silica particles in water Ey, = 280 fN
and fo in n-heptane Ey, = 30 fN [11]. Most recently, Helden
et al., by adopting a sophisticated optical technique that takes
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advantage of evanescent light after a total reflection, have
directly measured the thermophoretic force experienced by
polystyrene particles of 2.5 um radius in water. They report
somewhat smaller forces, of the order of Ey = 50 fN for
a temperature gradient of 0.14 K- um~' (corresponding to
L ~2x10*mfor AT = 25K).

Electrophoresis is qualitatively different from our predicted
NE Casimir effect. From Eq. (5.1) we see that thermophoresis
causes a particle to move either to the cold wall or to the hot
wall, depending on the sign of the thermophoretic mobility
Dy, On the other hand, we see in Fig. 3 that the NE Casimir
effect (for pyg > 0) would drive the particle to the center.
Accounting for the difference in the forces on the two sides
of the particle, we may get an order-of-magnitude estimate for
the net force needed to move such a particle from the center as
7 R*Pyg - R/ L, which amounts to several fN for micrometer-
sized particles in water at AT = 25 K. Depending on the size
of the particles, the magnitude of the temperature gradient, and
the choice of liquid or liquid solution, NE fluctuation-induced
forces may be comparable to thermophoretic forces.

However, the major difference is that thermophoretic forces
are linear functions of the temperature gradient, while the NE
Casimir forces are proportional to the square of the temperature
gradient. This suggests two possibilities for detecting NE
Casimir forces experimentally. One procedure would be to
study the force on a particle as a function of the temperature
difference AT to see whether the force has a component that
depends on the square of the temperature gradient AT [57].
An even more direct indication of the presence of NE Casmir
forces would be to change the direction of the temperature
gradient in the experiments. While a thermophoretic force
would change sign upon changing the direction of V Ty, the NE
force should reveal itself as a component that is independent
of the direction of the temperature gradient VTj.
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APPENDIX: STATISTICAL-MECHANICAL DERIVATION

In statistical mechanics the pressure is given by the diagonal
element of the microscopic stress tensor averaged over the
N-particle distribution function, py. Here we consider a two-
component fluid in a nonequilibrium steady state (NESS) that
is close to local equilibrium. We can then decompose py into a
local equilibrium part, p g, and a part linear in the macroscopic
gradients, py. The explicit expression for the local equilibrium
part is

explyxal

= — (A1)
Tr exp[y*a]

PLE

with  {a} = {n,np,8,e} the set of microscopic
conserved quantities and {y} = {B(u1 — miu?/2), (i —
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mou®/2),fu,—pB} the macroscopic conjugate variables,
while yxa = f dry(r)a(r) denotes an integration over space.
In these expressions, n; is the number density of species
i = (1,2), g is the momentum density, e is the energy density,
B =1/kgT 1is the inverse temperature, u; is the chemical
potential of species i, m; is the mass of species i, and u is the
fluid velocity with magnitude u.

In a nonequilibrium steady state of a two-component fluid
with a chemical potential gradient of species 1, but no velocity
gradients or temperature gradients, Liouville’s equation gives,
for the gradient part of the N-particle distribution function, a
time-dependent integral of the form [58]

[ele] - 8 yl
Py = —/ dt exp (—Et),OLEJ]*—. (A2)
0 0x

Here L is Liouville’s operator, Jiisthe part of the mass current
of species 1 that is orthogonal to the conserved quantities
[22], and y; = Bu;. The pressure is defined as 1/d (d being
the spatial dimension) times the average of the trace of the
microscopic stress tensor. For our purpose we can relate it to
one of the diagonal elements, which we denote J; [59]. The
nonequilibrium or gradient part of the pressure can then be
written as

PNe(r) = (Ji(D)NE

0 ~ dy, (A3

= —/ di(Ji(x,0)J1(0))Lex——

0 0x
Here ()yg denotes a nonequilibrium ensemble average and
()Lg denotes a local-equilibrium ensemble average. Generally,
PNe(r) is a local NE pressure depending on the position
r ={x,y,z}. Equation (A3) has the structure of a Green-Kubo
expression for a transport coefficient, namely, an unequal time
current-current correlation function, integrated over all times
t [60]. Note, however, that the currents in the integrand of this
equation are different, unlike the current-current correlation
functions for the usual Navier-Stokes transport coefficients [6].
Hence, the NE pressure originates from a cross Onsager-like
effect, i.e., a normal stress or pressure is caused by a chemical

potential gradient.

Techniques to evaluate the long-wavelength, or
hydrodynamic-mode, contributions to local-equilibrium
correlation functions like Eq. (A3) have been developed by
Kirkpatrick et al. [61-63], who extended the methods of
Ernst et al. [24,59,64] to nonequilibrium steady states. In the
large-Lewis-number limit, the leading contribution is

o=3(5t7) (50),
r=—-(— —
D= et ) \ow ),

Here u = ;1 — o and the subscript 0 of the phase variables
in the statistical-mechanical average in Eq. (A4) indicate that
they are at zero wave number. Finally, Eq. (109) in Ref. [22]
shows that

p [\
A = - ~ J )
w (kBT> <8w>p’T< 1,0WoWo)

isidentical to A,, given by Eq. (2.8). We conclude that Eq. (A4)
for png is identical to the one given in Sec. II.

(Jr.owowo) {([Bw(X)]*) NE-

(A4)

(A5)
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