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In this work, we investigate the phase transitions and critical behaviors of the frustrated J1-J2-J3 Ising
model on the square lattice using Monte Carlo simulations, and particular attention goes to the effect of the
second-next-nearest-neighbor interaction J3 on the phase transition from a disordered state to the single stripe
antiferromagnetic state. A continuous Ashkin-Teller–like transition behavior in a certain range of J3 is identified,
while the four-state Potts-critical end point [J3/J1]C is estimated based on the analytic method reported in earlier
work [Jin, Sen, and Sandvik, Phys. Rev. Lett. 108, 045702 (2012)]. It is suggested that the interaction J3 can
tune the transition temperature and in turn modulate the critical behaviors of the frustrated model. Furthermore,
it is revealed that an antiferromagnetic J3 can stabilize the staggered dimer state via a phase transition of strong
first-order character.
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I. INTRODUCTION

Symmetry breaking at a thermal phase transition decides
orders. For example, the spontaneous breaking of Z2 symmetry
in the well-known frustrated two-dimensional (2D) antiferro-
magnetic (AFM) J1-J2 model on the square lattice leads to the
Néel state [Ising AFM state, Fig. 1(a)] for J2/J1 < 1/2 [1–4].
The phase transition between the Ising AFM state and a
disordered state belongs to the 2D Ising universality class.
Furthermore, for J2/J1 > 1/2, a Z4 symmetry can be broken
below the critical temperature (T � TC), resulting in the
single stripe AFM state [Fig. 1(b)] [5]. More interestingly,
the nature of this phase transition cannot be directly obtained
from the symmetry of the order parameter, and different
phase-transition scenarios apply depending on the value of
J2/J1, as will be introduced below [6].

In the 1980s, it was generally believed that the transition
to the single stripe order is continuous but with varying
critical exponents for different J2/J1 [7–10]. However, this
point of view was suspected by the mean-field calculation
in 1993 which found a first-order transition for a certain
region of J2/J1 [11]. Subsequently, the existence of the
first-order transition was further confirmed by Monte Carlo
(MC) simulations [12–14]. In particular, the transition for
1/2 < J2/J1 � 1 was suggested to be of weak first-order based
on a double-peak structure in energy histograms. Furthermore,
it was suggested that the transition for large J2/J1 > 1 is
continuous with the Ashkin-Teller (AT) criticality [14,15].

More recently, the nature of the stripe phase transition
in the J1-J2 model was clearly elucidated by employing a
combination of MC simulations and analytical methods, and
the transition point between the two scenarios (first-order
and AT-like transitions) was estimated to be at a value of
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J2/|J1| ≈ 0.67 [6,16]. The phase transition at this critical
point is in the four-state Potts universality class, and those
for 1/2 < J2/J1 < 0.67 are of weak first order [17]. More
interestingly, a pseudo-first-order behavior was uncovered for
0.67 � J2/|J1| � 1, similar to that of the AT model in a certain
parameter region. It was demonstrated that some signatures
were not sufficient as proofs of first-order transition, leading to
the former overestimation of the region of first-order character
in the J1-J2 model. This behavior was also verified by the
large-scale MC simulations which show that the first-order
signals in the energy histograms vanish at large system sizes
L ∼ 2000 at J2/J1 = 0.8 [18].

While the phase transitions and critical behaviors of the
frustrated J1-J2 model are being progressively uncovered
[as summarized in Fig. 1(c)], studies proceed in the models
with further-neighboring interactions. The study of the role
of further-neighboring interactions on the critical behaviors
becomes important from the following two viewpoints. On
one hand, the single stripe order and various transition
behaviors have been experimentally reported in most of the
iron-based superconductors. The exchange interaction paths in
relevant materials are very complicated. Further-neighboring
interactions may be available and play an important role
in determining the magnetic properties due to the spin
frustration [19]. For example, a nonzero coupling J3 between
the third-nearest neighbors is suggested to be important
for the magnetic properties in iron chalcogenides such as
FeTe [20]. On the other hand, this study can also contribute
to the development of statistical mechanics and solid-state
physics. For example, more interesting AFM orders such as
staggered dimer and double stripe states [shown in Figs. 2(a)
and 2(b), respectively] can be stabilized by an AFM J3, and the
transition behaviors are also very attractive. Furthermore, the
interesting scenarios for the single stripe phase transition in
the J1-J2 model discussed above promote the development of
phase-transition theory. However, there are still open questions
such as whether these scenarios hold true for the model
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(a) (b)

(c)

FIG. 1. Spin configurations in the (a) Néel state, and (b) single
stripe state. Solid and empty circles represent the up-spins and the
down-spins, respectively. (c) The critical behaviors of the frustrated
J1-J2 model on the square lattice. The Potts values (black triangles)
and the Ising values (black stars) are also given, and these critical
exponents for J2/J1 > 0.67 are reproduced from Ref. [18].

with further-neighboring interactions, and how the critical
behaviors are determined. To some extent, these questions are
related to the universality of the phase transition, and definitely
deserve to be checked in detail.

In this work, we study the frustrated J1-J2-J3 Ising model
on the 2D square lattice to unveil the role of J3 in modulating
the critical behaviors. The MC simulated results show that
the critical exponents of the single stripe AFM transition
vary with the increasing magnitude of ferromagnetic (FM) J3

(at J2/J1 = 0.8, for example). Similarly, a pseudo-first-order
behavior is observed for small AFM J3, and the four-state
Potts-critical end point is also reasonably estimated. Further-
more, the transition from a disorder state to the staggered
dimer state is investigated, which exhibits a strong first-order
behavior.

(a) (b)

FIG. 2. Spin configurations in the (a) staggered dimer state, and
(b) double stripe state. Solid and empty circles represent the up-spins
and the down-spins, respectively.

The rest of this paper is organized as follows. In Sec. II
the model and the simulation method will be presented and
described. Section III is dedicated to the simulation results
and discussion. The Conclusion is presented in Sec. IV.

II. MODEL AND METHOD

The model Hamiltonian can be written as

H = J1

∑
〈ij〉1

SiSj + J2

∑
〈ij〉2

SiSj + J3

∑
〈ij 〉3

SiSj , (1)

where J1 = 1 is the unit of energy, Si = ±1 is the Ising spin
with unit length on site i, and 〈ij 〉n denotes the summations
over all the nth-nearest neighbors with coupling Jn.

For a description of the single stripe order, the order
parameter ms can be defined as

m2
s = m2

x + m2
y, (2)

with

mx,y = 1

N

∑
i

(−1)ix,y Si, (3)

where (ix,iy) are the coordinates of site i on a N = L ×
L(24 � L � 256) periodic lattice. In order to understand the
nature of the phase transition, we calculate the Binder cumulant
Us :

Us = 2

(
1 − 1

2

〈
m4

s

〉
〈
m2

s

〉2
)

, (4)

and susceptibility χs :

χs = N
(〈
m2

s

〉 − 〈ms〉2
)
/T , (5)

where 〈 . . . 〉 is the ensemble average.
The staggered dimer state is eightfold degenerate, and the

order parameter md can be similarly defined as

m2
d =

4∑
k=1

m2
k, (6)

with

mk =
∑

i

Ak(ix, iy)Si, (7)

where the value of Ak(ix,iy) depends on the coordinates
of site i and the spin configurations of the ground states.
Take the configuration shown in Fig. 2(a) as an example,
A(ix,iy) = 1 for up-spins, and Ak(ix,iy) = −1 for down-spins.
Furthermore, the Binder cumulant Ud is also calculated.

Our simulation is performed using the standard Metropolis
algorithm and the parallel tempering algorithm [21,22]. We
take an exchange sampling after every ten standard MC steps.
The initial 5 × 105 MC steps are discarded for equilibrium
consideration and another 5 × 105 MC steps are retained for
statistic averaging of the simulation. Generally, we choose
J2 = 0.8 and change J3 in computation in studying the single
stripe phase transition. It is noted that J3 has no effect on
the competition between the stripe state and the Ising AFM
state [23], and the former state occupies the whole studied J3

region (J3 < 0.15). Furthermore, it will be checked later that
the choice of J2 never affects our conclusion. On the other
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(a) (b)

FIG. 3. Binder cumulant Us as a function of T for different L at
J2 = 0.8 at (a) J3 = −0.2 and (b) J3 = −0.5.

hand, J2 = 0.5 is selected to study the phase transition to the
staggered dimer state.

III. SIMULATION RESULTS AND DISCUSSION

A. Varying critical exponents with ferromagnetic J3

First, we study the effect of FM J3 on the phase transition
and its critical behaviors. Figures 3(a) and 3(b) show the
simulated Us as a function of T at J3 = –0.2 and −0.5
for different L. For continuous phase transitions, the Binder
cumulant for different L usually crosses at the critical point.
From the common well-defined crossing points, we estimate
TC = 2.218(5) at J3 = –0.2 and TC = 3.131(5) at J3 = –0.5.
In fact, it is rather clear that the single stripe order can be further
favored by a FM J3, and the transition point shifts toward high
T when the magnitude of J3 is increased, as shown in our
simulations.

In the AT model, the critical exponents ν and γ vary
with the magnitude of the frustration, while the ratio of
γ /ν = 7/4 keeps constant [24]. This critical behavior is also
observed in our simulations of the J1-J2-J3 Ising model,
as shown in Fig. 4. The critical exponents are estimated
based on the standard finite-size scaling fact that the slope
of U vs T at TC, dU/dT (TC), is proportional to L1/ν , and
χmax is proportional to Lγ/ν . It is clearly shown that ν

increases with the increasing magnitude of J3 and/or TC .
For example, ν = 0.83(3) at J3 = –0.2 and ν = 0.88(5) at
J3 = –0.5 are estimated, as shown in Fig. 4(a). Furthermore,
the roughly constant γ /ν = 7/4 is obtained for every FM
J3 [Fig. 4(b)], within the limits of acceptable error (at most,
∼1.8%), demonstrating an AT-like behavior. In Fig. 5, we plot

(a) (b)

FIG. 4. Log-log plot of (a) dU/dT (TC), and (b) χmax for various
L at J3 = −0.2 and J3 = −0.5 for J2 = 0.8.

(a) (b)

(c) (d)

FIG. 5. A scaling plot of Us (a) and (c) and χs (b) and (d) at
J3 = −0.2 (a) and (b) and J3 = −0.5 (c) and (d) at J2 = 0.8.

the simulated Us and χs in the scaling form: Us = f (tL1/ν),
and χs = Lγ/νg(tL1/ν), with t = (T –TC)/TC , at J3 = –0.2
and −0.5. It is confirmed that the single stripe phase transition
at TC = 2.218(5) for J3 = –0.2 is with the critical exponents
ν = 0.83(3) and γ = 1.45(8), and that at TC = 3.131(5) for
J3 = –0.5 is with ν = 0.88(5) and γ = 1.54(9).

B. Location of the Potts-critical end point

If the continuous single stripe phase transition in the
J1-J2-J3 model can be mapped to the critical line of the AT
model, a four-state Potts-critical end point is expected at an
AFM J3 which destabilizes this order and diminishes TC [25].
In fact, pseudo-first-order or weak-first-order behavior is also
observed at small AFM J3 for intermediate L. Figure 6 gives
the Us as a function of T for various L at J3 = 0.05 and 0.15.
A negative peak is developed for L = 128 at J3 = 0.05 and
grows as L further increases, indicating a pseudo- or weak-first-
order transition behavior, as clearly shown in Fig. 6(a) [26].
Furthermore, the system size needed to stabilize a negative
peak is decreased when J3 is increased [for example, L = 24 at
J3 = 0.15, as shown in Fig. 6(b)], demonstrating an enhancing
discontinuity of ms .

It is noted that the negative cumulant peak is not a sufficient
proof for the first-order transition because such a peak can

(a) (b)

FIG. 6. Binder cumulant Us as a function of T for different L at
J2 = 0.8 at (a) J3 = 0.05 and (b) J3 = 0.15.
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(a) (b)

FIG. 7. (a) Binder cumulant crossing points Us for (L, 2L) system
pairs and the extrapolation to L = ∞, and (b) U ∗

s of the J1-J2-J3

model for various J3 at J2 = 0.8 compared with that of the four-state
Potts model.

appear also for continuous transitions in spin models such as
the four-state Potts and AT models [6]. However, the Binder
crossing value U ∗ is normally universal and may characterize
the universality class of the phase transition. Thus, following
earlier works, the four-state Potts-critical end point of the AT
line in the J1-J2-J3 model can be reasonably estimated based
on the analysis of the universality of the Binder cumulants
(U ∗ ≈ 0.79 for the four-state Potts model). Figure 7(a) shows
the Binder cumulant crossing points for pairs (L, 2L) and L =
∞ extrapolated U ∗

s for various J3. It is clearly shown that
U ∗

s decreases with increasing J3. Finally, critical [J3/J1]C =
0.11 ± 0.01 for J2/J1 = 0.8 is obtained by comparing U ∗

s (J3)
with U ∗ for the four-state Potts model, as shown in Fig. 7(b).

C. Single stripe phase-transition behaviors and discussion

The simulated results of the single stripe phase transition for
J2 = 0.8 are summarized in Fig. 8(a). The critical temperature
for J3 � 0.05 is estimated from the position of the peak of the
χ (T) curve for the largest L [27]. The phase diagram exhibits
two regions with different transition behaviors, similar to that
of the J1-J2 model. In detail, an AT-like behavior is observed
for J3 � 0.11, in which ν and γ increase continuously from
those of the four-state Potts model to those of the 2D Ising
model, respectively. More interestingly, our simulations also
show a close dependence of the values of ν and γ on

(a) (b)

FIG. 8. (a) Phase diagram in the (J3,T ) parameter plane at J2 =
0.8. The critical exponents ν and γ of the J1-J2-J3 model, four-
state Potts model (black triangles), and Ising model (black stars) are
also given. (b) The estimated Potts-critical end points [J3/J1]C for
various J2.

the transition point TC for a fixed J1, indicating that this
phenomenon may be universal in the single stripe phase
transitions in different models. In fact, similar behavior has
been observed for other values of J2. Specifically, Fig. 8(b)
gives the estimated Potts-critical end points [J3/J1]C for
different J2. [J3/J1]C shifts toward the high J3 side as J2

increases, while the transition point TC at [J3/J1]C is less
affected. Furthermore, it is worth noting that the model has
a symmetry (J1,J2,J3) → (−J1,J2,J3), and a FM J1 would
never affect our conclusion.

On one hand, the present work shows that the single
stripe phase-transition behavior is also dependent on the
exchange couplings between distant-neighboring spins. The
phase-transition scenarios uncovered in the J1-J2 Ising model
still hold true when the J3 interaction is taken into account,
further supporting the universality of these scenarios. In
addition, it is suggested that the critical behavior may be likely
dependent on the transition point which can be modulated
through various methods. Of cause, additional proofs should
be needed to double-check the universality of the transition
pictures in some other frustrated spin models. On the other
hand, the single stripe order as the ground state of most of
the iron-based superconductors has drawn extensive attention
in the past few years [28,29]. For example, the AFM phase
transition in La-O-Fe-As is of first order, while that in
BaFe2As2 is continuous [30]. To some extent, the transition
scenarios uncovered in the frustrated Ising model on the
square lattice may provide useful information in understanding
the phase transitions in these materials, although some other
degrees of freedom should be taken into account.

D. Other orders in the phase diagram of the J1- J2- J3 model

One may note that some other orders can be stabilized
by AFM J3 interaction [31,32]. In detail, Fig. 9 gives the
ground-state phase diagram of the J1-J2-J3 model which can
be easily obtained by the mean-field method. It is clearly
shown that the staggered dimer state is stabilized for AFM
J3 < 0.5 (yellow region), and the double stripe state or
plaquette state occupies the J3 > 0.5 region. Different from the
fourfold degenerated single stripe state, the staggered dimer

FIG. 9. Ground-state phase diagram in the (J2,J3) parameter
plane. The spin configurations of these states are depicted. Solid
and empty circles represent the up-spins and the down-spins,
respectively.
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(a) (b)

FIG. 10. Binder cumulant Ud as a function of T for different L at
J2 = 0.5 at (a) J3 = 0.1 and (b) J3 = 0.3.

state is eightfold degenerate. Thus, the phase transition to the
staggered dimer state is expected to be of first order, similar
to the transition in the eight-state Potts model. This viewpoint
has been confirmed in our simulations. Figure 10(a) shows
the calculated Ud as a function of T for various L at J3 = 0.1
and J2 = 0.5. Even for small L = 24, a clear negative peak
can be developed, indicating a strong first-order transition
behavior. Furthermore, for a fixed L, the peak of Ud grows
with increasing J3, as clearly shown in Fig. 10(b).

On the other hand, for the case of J3 > 0.5, the double stripe
state and the plaquette state are degenerated in the J1-J2-J3

model on the square lattice. To study the transition behaviors
of the double stripe state or the plaquette state, the degeneracy
of these two states should be broken. To some extent, some
other frustrated spin models such as the well-known Shastry-
Sutherland model may be studied to investigate the phase

transitions [33]. However, this topic is beyond the scope of
this work, and will be left for our future work.

IV. CONCLUSION

In conclusion, the role of the third-nearest-neighbor inter-
action on the phase transitions and critical behaviors of the
frustrated J1-J2-J3 model on the square lattice is investigated
using Monte Carlo simulations. In a certain range of J3, the
critical exponents of the continuous transition vary with the
increase of the transition temperature, exhibiting an Ashkin-
Teller–like behavior. In addition, the transition points at the
Potts-critical end point estimated based on the analytic method
are very similar for every J2. Thus, this work suggests that the
critical behaviors may be closely dependent on the transition
point for a fixed J1. Furthermore, a strong first-order behavior
is confirmed for the transition to the staggered dimer state
which is stabilized by an antiferromagnetic J3.
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