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Vortex with fourfold defect lines in a simple model of self-propelled particles
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We study the formation of a vortex with fourfold symmetry in a minimal model of self-propelled particles,
confined inside a squared box, using computer simulations and also theoretical analysis. In addition to the vortex
pattern, we observe five other regimes in the system: a homogeneous gaseous phase, band structures, moving
clumps, moving clusters, and vibrating rings. All six regimes emerge from controlling the strength of noise and
from the contribution of repulsion and alignment interactions. We study the shape of the vortex and its symmetry
in detail. The pattern shows exponential defect lines where incoming and outgoing flows of particles collide.
We show that alignment and repulsion interactions between particles are necessary to form such patterns. We
derive hydrodynamical equations with an introduction of the “small deviation” technique to describe the vortex
phase. The method is applicable to other systems as well. Finally, we compare the theory with the results of both
computer simulations and an experiment using Quincke rotors. A good agreement between the three is observed.
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I. INTRODUCTION

It is likely that most people have observed the fascinating
movement patterns of flocks of birds [1–3] or schools of
fish [4,5]. Similar structures are widely seen in many places,
ranging from the size of the human body [6] down to nanometer
scales [7,8], and such structures can include either living
individuals [9,10] or nonliving ones [11,12]. The common
feature among all of these diverse systems is activity among
the individuals, thus these systems are referred to as “active
matter.” Active matter, because of the consumption and
injection of energy, is always out of equilibrium, and in recent
years it has attracted a great deal of attention [13,14]. In
one of the first studies on active matter, collective patterns
from basic local interactions were produced [15]. After that,
phenomenological theories as well as microscopic descriptions
were established to identify the characteristics and features of
active matter [16–19]. In addition, more complex collective
patterns were observed with the introduction of new models
[20–22], and they helped to improve knowledge of the phase
transitions and behavior of active matter [23–27].

Vortices are one of the most interesting patterns observed in
active matter. Some biological examples of vortex formation
include swirling daphnia around a light shaft [28], bacteria
rotating in droplets of bacillus subtilis morphotype, which
grow on an agar substrate [9], and vortices formed by the
movement of actin filaments on a surface coated with heavy
meromyosin [8]. . There are also nonbiological examples of
vortex formation, e.g., vertically vibrating granular rods [29],
anisotropic rods in a container [30], and micrometer-sized
insulator spheres that are more commonly known as Quincke
rotors [31]. In addition to stable vortex patterns, the dissipation
of vortices (e.g., in a turbulent phase) is observed in colonies
of bacteria [32,33]. Many studies have been performed in an
effort to understand the nature and characteristics of vortex
formation. For example, a model of self-propelled particles
that repel each other at close distances and attract when far
apart creates a giant vortex [34]. Another example is the case
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of particles with intrinsic curvature in their motion, such as
microtubules moving on a surface coated with myosines [35].
More sophisticated models take into account chemotaxis and
the proliferation of bacteria to explain their swirling motion
[9]. It is also possible to have a vortex array in a system
[36,37] acquiring self-propelled particles with alignment and
antialignment interactions with respect to distance [36] or
time-correlated noise [37].

In an experimental study of Quincke rotors [31], the parti-
cles and their interactions produced a complex vortex inside a
square box, and the vortex exhibited fourfold symmetry. This
fourfold shape occurs in conjunction with an effect that we call
hereafter “suppressed spreading.” In suppressed spreading,
particles that are bounced back from a corner tend to spread
over all available directions, but because of the flow of the other
particles and the collisions, the spreading of the outgoing flow
is suppressed and is limited to a smaller angle. Suppressed
spreading is visible as a curved boundary where the direction
and density of the particles change spontaneously, and we call
this boundary the “defect line.”

In this study, we were inspired by experimental vortex
formations [7,31] to explore a vortex pattern of self-propelled
particles confined in a geometry. Similar studies were per-
formed by simulating active granular particles with inelastic
interactions confined in a square box [38,39]. However, those
studies were limited in size, and because of their inelastic
interaction they could not describe the complex structures
and density jump lines of the Quincke rotors observed in the
experiments [31].

We introduce a minimal model and find the key elements
required to have a vortex with the symmetry of confining
geometry (Sec. II). The model is a simple generalization of
the continuous Vicsek model [9] with alignment and repulsion
interactions. Both interactions have a physical interpretation,
and they were derived theoretically in Ref. [31]. The important
role of repulsion in vortex formation was revealed recently
[40]. Next, we derive continuum hydrodynamic equations in
the limits of high and low noise in order to compare the
solutions with the particle model and the experimental results
(Sec. III). Finally, we present the results of our simulations,
and we discuss the patterns and their characteristics (Sec. IV).
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II. MODEL

We consider two-dimensional self-propelled particles with
the same constant speed v0. The angle of velocity with the
x axis is θ , and the direction of motion for each particle is
toward v̂θ . The direction of each particle is changed by torque.
This torque originates from particle-particle and wall-particle
interactions. For the dynamics of the particles, we consider

�̇ri = v0v̂θi
, (1)

ζ θ̇i = τ
p

i + τw
i + εηi(t), (2)

where �ri is the position of the ith particle, and v̂θi
is a

unit vector along the swimming direction of the particle
with angle θi [v̂θ = cos(θi)êx + sin(θi)êy]. Equation (2) is
an overdamped Langevin equation over θi . ζ is the friction
coefficient, τ

p

i and τw
i are the torques acting on the particle i

from the other particles and the walls, respectively. We added
a noise term εηi(t) that represents the stochastic behavior of
self-propelled particles and their environment, where ηi(t)
is Gaussian uncorrelated white noise with 〈ηi(t)〉 = 0 and
〈ηi(t)ηi(t ′)〉 = δ(t − t ′), and ε is the noise amplitude. Without
loss of generality, the value of ζ is set to 1 in this paper because
one can divide both sides of Eq. (2) by the friction coefficient
and redefine the noise and interaction strength.

The particle-particle interaction is a combination of align-
ment and repulsion. Alignment means particles rotate to make
their moving directions parallel to each other, and repulsion
means that particles rotate to move away from each other
(Fig. 1). The alignment and repulsion interactions that are
close to Quincke rotors interactions [31] give

τji = gp

π
A(rji)

[
(1 − α) sin(θj − θi) + α

(
r̂j i ∧ v̂θi

) · êz

]
. (3)

FIG. 1. Repulsive torque between two particles in Eq. (3) (a)–(c)
and between a particle and a wall in Eq. (5) (d). Each particle is
represented by a green (light gray) disk. The straight red (light gray)
arrow shows the direction of the particle. The arced orange (dark
gray) arrow shows the direction of rotation, the end of this arrow
is the particle’s final direction, and its length has no relation to the
magnitude of the torque. The thick vertical line is a wall. The dashed
lines in (a)–(c) represent the interdistance line between two colliding
particles, and in (d) the dashed line is perpendicular to the wall. In
(a) the particles are escaping and the torque intensifies this escape. In
(b) the particles are moving together and the torque causes them to
move away. In (c) the particles are moving toward one another and
the torque prevents them from reaching each other. In (d) the particle
is moving toward the wall.

The first term on the right-hand side (RHS) is aligning and the
second term is repulsive torque. �rji is the distance vector from
particle j to i, gp is the strength of particle-particle interaction,
and A(rji) is a function of interparticle distance. 0 � α � 1
controls the relative contribution of repulsion and alignment
terms, i.e., α = 0 corresponds to the original continuous
Vicsek model, and α = 1 corresponds to a fully repulsive
particle system. It is also interesting to see the result of negative
α that is a combination of alignment and attraction. The ∧
sign between vectors indicates a vector product. The model is
two-dimensional, but for a compact presentation we use a dot
product of a unit vector along the z axis, êz, with the outer
product of two-dimensional (2D) vectors as a scalar value.

Figure 1 shows a schematic presentation of interaction
terms. As one can see, repulsion reverses the particles from
their interdistance direction.

For simplicity, we restrict ourselves here to the case of
constant α, and we consider a Heaviside step function for A,

A(rji) = 
(R − rji), (4)

where R indicates the range of interaction between the
particles. We set our length unit such that R = 1.

Very similar to the repulsive interaction between particles,
if we label a wall by w, the applied torque by the wall w on a
particle i is given by

τwi = gw

πrwi

A(rwi)
[(

n̂w ∧ v̂θi

) · êz

]
, (5)

where n̂w is the unit normal vector of the wall, rwi is the
distance of the particle from the wall, and gw is the strength of
the particle-wall interaction. The factor 1/rwi guarantees that
the particles never pass the wall.

One should note that in contrast to the alignment torque,
the repulsion torque will not conserve the total angular
momentum. In models with spontaneous vortex formation,
a generating source of angular momentum is necessary.

In the next section, we will use this microscopic model to
obtain the hydrodynamic equations of the system.

III. HYDRODYNAMIC EQUATIONS

Let f (θ,�r) be the density of particles at point �r with angle
θ , and let P (θ,�r) be the orientational probability distribution
of particles at point �r . We can simply write the density of
particles in terms of f (θ,�r), that is,

ρ(�r) =
∫ 2π

0
f (θ,�r)dθ, (6)

and we write a relation between f , P , and ρ,

f (θ,�r) = ρ(�r)P (θ,�r). (7)

In our system, important quantities are the polarization
vector,

�P(�r) = 〈v̂θ 〉 =
∫ 2π

0
v̂θP (θ,�r)dθ, (8)

and the momentum flux,

�W (�r) = ρ〈v̂θ 〉 =
∫ 2π

0
v̂θf (θ,�r)dθ. (9)
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We are going to derive a hydrodynamic equation for contin-
uous quantities ρ, �W , and �P . The starting point is to use
the Boltzmann approximation to derive the Fokker-Planck
equation, which has the form

∂f (θ,�r)

∂t
= − ∂

∂θ
(f Vdrift) + Dr

∂2f

∂θ2
− v0v̂θ · �∇f. (10)

Here Vdrift represents the Fokker-Planck drift velocity, and
Dr = ε2/2 is the rotational diffusion of particles. The drift
velocity originates from alignment and repulsion interactions,
and it is given in Appendix A [Eq. (A1)]. The second term on
the RHS of Eq. (10) denotes rotational diffusion, and the third
term denotes advection of the particles. The Fokker-Planck
equation depends on f (θ,�r), a field with two variables, and it
is complicated to work with. We need a simpler equation over
ρ, �P , and �W . One of the equations is the continuity equation,
and it can be obtained by integrating both sides of Eq. (10)
over θ from 0 to 2π and using the definition of Eq. (9):

∂ρ

∂t
+ v0 �∇ · �W = 0. (11)

The other equation is more subtle and needs some approxi-
mation. There are two different approximations. One is done
in high noise with condition Dr � Dlb, where Dlb = 0.16,
for parameters v0 = 1, gp = 2, and α = 0.5. The high noise
approximation is commonly used in active matter problems
[20,41]. We present the details of this method and its validity
condition in Appendix A. The other approximation, however,
is rather new and is valid in low noise with condition Dr 	
Dub, where Dub = (1 − α)gpρ. We call the new method in low
noise the “small deviation” method, and it is presented with
details in Appendix B.

A. High-noise limit

We can summarize the high-noise hydrodynamic equations
(see Appendix A) in the following form:

�̇W = �Wf + �W∇, (12)

where �Wf is

�Wf =
[

(1 − α)ρgp

2
− Dr − (1 − α)2g2

pW 2

8Dr

]
�W, (13)

which causes spontaneous polarization, and it usually appears
in active matter hydrodynamic equations [16,41–43]. �W∇
contains the terms that have spatial derivatives. The exact form
of �W∇ is given in Appendix A [Eq. (A3)].

In the homogeneous solution of Eq. (12), all spatial deriva-
tives are zero, i.e., �W∇ = 0. Therefore, �Wf is the remaining
term that drives the momentum flux. In a system with initial
density ρ0, the factor behind �W on the RHS of Eq. (13) changes
sign at rotational diffusion Dc = ε2

c /2 corresponding to noise
strength εc = √

(1 − α)gpρ0. This change of sign is at the point
of the nonpolar ( �W = �0) to polar transition. The nonpolar to
polar transition is important for confined particles because as
simulations show, once the system goes to a polar state near
the transition noise, particles start to rotate.

To find the inhomogeneous solution of Eq. (12), we can
numerically integrate Eqs. (12) and (11). We set the parameters
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FIG. 2. Results of the continuum model [Eq. (12)] before the
occurrence of divergence with initial density ρ0 = 1, alignment
interaction gp = 2, repulsion factor α = 0.5, and noise Dr = 0.59
(ε = 1.08) in a box of size L = 120R. (a) Density profile. (b) Velocity
field; the lengths of the arrows are proportional to the magnitude. Both
images correspond to the same moment, and their grid size is 32 by
32.

gp = 2, α = 0.5, ρ0 = 1, and the box size L = 120R. These
parameters give us Dc = 0.5. The answer with Dr � 0.6 is
nonpolar and homogeneous. Lowering the rotational diffusion
creates instability in the system, and we cannot observe vortex
formation. But interestingly, we can observe some stripes
forming and propagating in the box at the initial stage of
computation before divergence occurs (Fig. 2). The instability
is a consequence of our criteria for the validity of high-noise
hydrodynamic equations (Dc � Dlb). The inability to capture
the behavior of the system in the vortex regime motivated us
to introduce the small deviation method in the low-noise limit.

B. Low-noise limit

The small deviation method, described in Appendix B, leads

us to an equation for �̇P . Like high-noise equations, we split
the evolution of �P into derivative �P∇ and nonderivative �Pf

terms,

�̇P = �Pf + �P∇, (14)

with

�Pf = �P[2(1 − α)ρgp(1 − P) − Dr ], (15)

and �P∇ is described in Appendix B [Eq. (B4)].
By examining the homogeneous case of Eq. (14), we

see that the transition point of the nonpolar to polar state
is ε′

c = 2
√

(1 − α)gpρ0 = 2εc. Therefore, we see that the
small deviation approximation is not successful in determining
the phase transition. However, since this method uses the
assumption of low noise, it must predict well the behavior
of the system deep in the ordered state where we have the
vortex phase.

It is clear that solving Eq. (14) together with the continuity
equation [Eq. (11)] in squared geometry is complicated,
therefore we restrict our calculation to a circular box where
the scalar variables depend only on the radial component
r . We also neglect second-order derivatives that are related
to shorter changes of the fields. Even with these assump-
tions, the presence of a nonhomogeneous steady state is
not obvious, and we need to write everything up to the
first order of Dr/Dub. With all these simplifications, one
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finds that the continuity equation implies that polarization is
toward the polar coordinate unit vector φ̂, and the density
satisfies the following relation:

ρ(r) + Dr

(1 − α)gp

ln(ρ) = cρ ln

(
r

r0

)
, (16)

where cρ = 3v0/αgp is a factor, and r0 is a length scale related
to the initial density of particles. We can see that at distances
shorter than r0, the density acquires very small values. Similar
results with a logarithmic dependence of density are obtained
using the Quincke rotors [40]. If the system has no noise
(Dr = 0), the RHS of Eq. (16) is negative for r < r0, which
corresponds to zero density in the center. In fact, no particle
reaches the center in a noiseless system, but when turning
on the noise, some particles could reach the center with a
small chance. Equation (16) describes very well the simulation
results (see Figs. 4 and 5 in Sec. IV).

Integrating both sides of Eq. (16) for Dr = 0 over the box,
one obtains the total number of particles on the left-hand
side (LHS) and an expression on the RHS. Replacing the
total number of particles with ρ0πR2

box, one obtains a relation
between ρ0 and r0,

ρ0 = 3v0

2αgp

[
r2

0

R2
box

− 1 − 2 ln

(
r0

Rbox

)]
, (17)

where Rbox is the radius of the circular box. Equation (17)
shows that r0 decreases either by increasing ρ0 or αgp, both
causing stronger steric repulsions. Although our dynamics
is not Newtonian, we see the dependence of r0/Rbox on v0.
Because this effect has a mixture of particles with different
velocities, it can separate fast and slow particles. We will
discuss this effect and the phase separation of slow and fast
particles in future work. It is worth mentioning that a mixture
of fast and slow particles could be prepared experimentally by
using different sizes of Quincke rotors.

C. Numerical method in the computation of the noiseless system

We integrate numerically the hydrodynamic equations of
the low-noise limit [Eqs. (14) and (11)] inside a square box
when Dr = 0 (P = 1). For numerical stability, we rewrite
the equations in terms of �W . The integration gives us the
value of the fields ρ and �W , but one should keep in mind
that in the hydrodynamic limit and its governing equations,
there is no guarantee of having positive values for the density
everywhere. Physically this is unacceptable but it may occur
mathematically, and in the result some points might have a
negative density that is unavoidable. Negative densities make
the enumeration unstable, and we need to add a K∇2ρ (K =
0.2) term to the continuity equation to avoid large negative
density values. This extra term does not drastically change the
underlying physics of the model, and this technique was used
in the literature before [20].

The integration is done using the pseudospectral method,
semi-implicit time stepping, and antialiasing (2/3 rule) tech-
niques [44,45]. Using these techniques alone is not enough to
achieve stability. We must set v0 = 0.005 at the initial stage
of integration and slowly increase the speed up to the highest
stable value, which is v0 = 0.3. We set α = 0.5 and gp = 2 to
compare our result with the particle model. A circular rotating
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c = 0.5
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FIG. 3. Angular momentum per particle in time for various noise
values. Since we have an isotropic initial condition, at the beginning
M = 0; after the system evolves, however, the value of M approaches
a steady value.

pattern with homogeneous density for the initial condition is
necessary to achieve stability. With use of the image method,
we apply the slip boundary condition. In other words, we
replicate our system on the sides by reflecting �W to justify the
slip boundary condition.

Now we have the right theoretical tools to compare our
simulation results. In the next section, we will provide the
method and the results of simulations based on the microscopic
model to compare with the theory.

IV. SIMULATION

To simulate our model, we used an integration technique
(the Ito method [46]) with time steps dt = 5 × 10−4. We set
gp = 2,gw = 40. The speed of the particles is set equal to
1 (v0 = 1) unless otherwise stated. The control parameters
in the simulations are the strength of noise ε, the repulsion
strength α, and the initial density ρ0. We always put N

particles inside a square box with four surrounding walls of
size L, except in Sec. IV A, where we use a circular box. The
simulation box must be large enough to capture all aspects
of a self-propelled system. This limit originates from band
structures [47–49] that have typical length scale of v0/ε

2
c . Then

for given parameters, one finds the condition L � v0/εc ∼ 4.
We initially position particles homogeneously in a triangular
lattice with a uniformly random direction of motion. To see
the equilibration process of the system, we define the angular
momentum per particle,

M = 1

N

∣∣∣∣∣
N∑
i

v0�ri ∧ v̂θi

∣∣∣∣∣, (18)

and we plot it versus time. Figure 3 shows the evolution of M .
We see that after some time, M approaches a steady value. We
can sample the system after this time.
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FIG. 4. Density of particles ρ(r) as a function of radial distance
r for a noiseless system in a circular box with radius Rbox = 60R and
initial density ρ0 = 8. Labels show different values of α. One can see
that the density increases logarithmically with r [Eq. (16)].

A. Circular box

First we use a circular boundary to compare with the
solutions of our theoretical Eqs. (16) and (17). Figure 4 shows
the particle density as a function of radial coordinate r for
the noiseless microscopic model in a circular box with radius
Rbox = 60R and initial density ρ0 = 8. The figure shows the
results for different values of α. The density is increasing
logarithmically with r , and by increasing α a reduction in the
slopes and the size of the empty region in the center is visible.
Equation (16) predicts exactly the same behavior. For a more
precise comparison, we also plot the values of cρ and r0 versus
α for given density values ρ0 = 1,2,4,8 in Fig. 5. The dashed
lines in Fig. 5 show Eqs. (16) and (17) for each given density.
We observe good agreement between theory and simulation,
especially for higher densities. This is because at high density,
the Boltzmann approximation to derive Eq. (10) and the small
deviation approximation are more accurate.

B. Different observed regimes

In simulations of the system with different ε and α values,
we observed six different regimes: homogeneous gaseous,
band structures, moving clumps, moving clusters, vibrating
rings, and vortex (see the movies in the Supplemental Material
[50]). At a given value of α = 0.5, and by decreasing the
noise, the homogeneous gaseous phase, the band structures,
and the vortex pattern are observed (see Fig. 6). Starting
from a very high noise, the system is in a gaseous phase
[Fig. 6(a)]. By decreasing the noise strength, the density
becomes inhomogeneous, and particles form traveling curved
stripes that are due to the reflections from the walls and the
corners [Fig. 6(b)]. By further reducing the noise, particles
start to rotate in the box, as shown in Fig. 6(c). The direction
of rotation is random and depends implicitly on the initial
positions and the string of random number samples. In rotation
[Fig. 6(c)], one can easily recognize suppressed spreading
and the presence of defect lines. The same pattern has been
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FIG. 5. Comparison of simulations (points with error bars) with
theoretical Eqs. (16) and (17) (solid curves) of a circular box with
radius Rbox = 60R and different initial densities. (a) The plot shows
the coefficient cρ of Eq. (16) as a function of α. (b) The plot shows
r0/Rbox as a function of α with different ρ0 [Eq. (17)].

observed experimentally in the suspension of Quincke rotors
[31].

Moving clumps, moving clusters, and vibrating rings can
be observed by changing the ratio of repulsion to alignment
(Fig. 7). Toward that end, we set ε = 0.1 and change α. If we
have no alignment (α = 1) we obtain a gaseous homogeneous
state again, but particles in this homogeneous state have a more
robust ballistic motion in comparison to the homogeneous state
observed in high noise. A slight decrease in α could lead to
the formation of a vortex. Even for very small α we can see
rotation, e.g., Fig. 7(a) shows the rotation for α = 0.01. Since
the repulsion between particles is not strong, they form dense
bunches near the walls with a large empty space in the center
in such a way that almost all the particles walk on the walls.
Upon increasing the repulsion, more space is covered by the
particles. By turning off the repulsion completely, particles
form very high density clumps that bounce off the walls
[Fig. 7(b)]. Clump formation is not observed in the periodic
boundary condition because the particles do not meet each
other as frequently as confined particles. The shape of the
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FIG. 6. Snapshots of the simulations with various noises and fixed
repulsion factor α = 0.5, initial density ρ0 = 1, box size L = 120R,
and noise intensity ε = 1.2, 0.8, and 0 for (a), (b), and (c), respectively.
Open circles indicate particles, and line segments inside circles
are along the particle trajectories. Color (gray scale) shows the
direction of motion corresponding to the color (gray scale) wheel
located in the top-left corner of each box. Squared windows represent
zooming in a part of the box; the length of the selected area and the
magnification factor are written close to the corresponding window.

clumps in a square and circular box is square and circular,
respectively. For negative α’s, particles rotate toward each
other, and if this attraction is small we see multiple clusters
traveling and bouncing off the walls [Fig. 7(c)]. These clusters
are extremely packed and unstable. They may divide into
smaller groups or join together to make a bigger mass of
particles. The division takes place when particles are more
distant than their interaction range so that they cannot return to
each other. Finally, a strong attraction produces vibrating rings
of particles when they cannot escape from the ring [Fig. 7(d)].

To identify the detailed properties of these regimes, we look
at velocity autocorrelations over time [Cv(τ ) = (1/v2

0)〈�vi(t) ·
�vi(t + τ )〉i,t ] and space [Cv(r) = (1/v2

0)〈�vi(t) · �vj (t)〉i,j |rij =r ].
We see that autocorrelations in time oscillate in both the vortex
phase and the band structures (Fig. 8). The oscillation in the
vortex phase [Fig. 8(a)], however, damps over time gradually.
This damping is due to the different frequencies of rotation
of the particles, and we demonstrate this fact in Appendix D.
In contrast to the vortex phase, the traveling band-structure
regime shows more robust Cv(τ ) oscillations [Fig. 8(b)]. In
this state, band structures travel in the medium with a constant
speed that depends on the noise strength. These waves bounce
from the walls and periodically move from one corner to
another. Finally, in the homogeneous gaseous state, Cv(τ )
spontaneously reaches zero [Fig. 8(b) ε = 1.2].

In the vortex phase, Cv(r) (Fig. 9) exhibits the behavior and
characteristic length scale of rotation [Fig. 9(a)]. This length
scale is the same as the box dimension. In higher noise, no
negative correlation at long-range distances is seen except for
the rotating pattern in ε = 0.6 [Fig. 9(b)].

We plot 2M/Lv0 as a function of scaled noise ε/εc in
Fig. 10. Figure 10 shows that M has a crossover behavior close
to εc. Because M �= 0 needs symmetry breaking, it seems that
we have a phase transition from the disordered to the vortex
phase near εc. Moreover, the closeness of this crossover to εc

for different densities in Fig. 10 shows that the vortex phase is
a consequence of the confinement of the polar state. However,
a massive finite-size analysis is required to prove these facts.

To illustrate the different behaviors of the system and their
regions in parameter space, we plot the map of parameters
in Fig. 11. To construct different regions of the map, we do
the following: We look at the angular momentum per particle
(2〈M〉/Lv0 > 0.5) to map points to the rotation phase. To
recognize vibrating rings and disordered phases from moving
clumps and clusters, we compute the local cohesion,

� = 1

Nw

∣∣∣∣∣∣
∑
ij

cos(θi − θj )

∣∣∣∣∣∣. (19)

Here, Nw is the number of particles in a certain window, and
the sum is over particles within that window.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
By decreasing the noise, one can see (a) the homogeneous phase,
(b) the inhomogeneous phase with curved stripes, and (c) the vortex
phase. In the vortex phase, suppressed spreading and four defect lines
are observable.
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FIG. 7. Snapshots of the simulated system with ρ0 = 1, L =
120R, ε = 0.1, and different values of α. Open circles indicate par-
ticles, and line segments inside circles along the particle trajectories.
Color (gray scale) shows the direction of motion corresponding to the
color (gray scale) wheel located in the top-left corner of each box.
Squared windows represent zooming in a part of the box; the length
of the selected area and the magnification factor are written close to
the corresponding window. (a) α = 0.01, particles rotate cohesively
close to the walls and a very small defect line is observable. (b)
α = 0, a clump forms with a large number of particles in a small area.
This clump is moving and gets reflected from the walls; sometimes
it is divided into smaller clumps due to the noise, and at other
times small clumps join to make a bigger clump. (c) α = −0.01,
clusters of particles continuously divide and join during simulation.
(d) α = −0.2, vibrating rings emerge.

C. Suppressed spreading and defect lines

Suppressed spreading and the presence of defect lines are
two of the interesting features of the system. For a clearer
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FIG. 8. Velocity autocorrelation over time for systems with ρ0 =
1, L = 120R, α = 0.5, and various ε. (a) The noise is lower than
critical noise and the system is in the vortex phase. (b) A big polar
rotating structure (ε = 0.6), locally propagating band structures (ε =
0.7, 0.8, and 1.0), and the homogeneous gaseous phase (ε = 1.2).
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FIG. 9. Velocity autocorrelation over distance for systems with
ρ0 = 1, L = 120R, α = 0.5, and various ε. (a) The noise is lower than
critical noise and the system is in the vortex phase. (b) A big polar
rotating structure (ε = 0.6), locally propagating band structures (ε =
0.7, 0.8, and 1.0), and the homogeneous gaseous phase (ε = 1.2).

observation of defect lines, we can measure the cohesion
between particles. Figure 12 shows time-averaged ρ(�r), �(�r),
and �v(�r). Near the corners, the density reaches its highest
value. The velocity field shows an outgoing flow of particles
at each corner that is suppressed by the collision of incoming
flow to the same corner. This collision creates a defect line
that corresponds to lower cohesion but high density. The term
“defect line” is used due to the spontaneous change of velocity
at the boundary between incoming and outgoing flows.

Defect lines are also present in the solution of the continuum
model introduced in Sec. III C. Density and velocity fields in
the numerical solution and particle simulations are plotted in
Figs. 13 and 14, respectively, for a system with ρ0 = 1, gp = 2,
α = 0.5, and v0 = 0.3, which show excellent qualitative but
not precise quantitative agreement between the simulation and
the continuum model.

Figure 15 shows the change in the average density, co-
hesion, velocity, and rotational frequency of particles across a
horizontal line y = y0 for y0 = 53 and y0 = 0. One can see that

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4

2M
/
L

v 0

c

R2ρ0 = 0.2
R2ρ0 = 0.4
R2ρ0 = 0.6
R2ρ0 = 0.8
R2ρ0 = 1.0

FIG. 10. Scaled angular momentum per particle (2M/Lv0) vs
scaled noise ε/εc for different values of density ρ0. Simulation
parameters are α = 0.5 and L = 120R. Upon decreasing the noise,
the system exhibits a behavior change. Moreover, the behavior change
in different densities happens close to the same point.
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0 0.4 0.8 1.2 1.6

α

√
gpρ0/2

rotation

disordered

cluster
vibrating ring

clump

FIG. 11. Map of parameter space of the system with ρ0 = 1
and L = 60R. This diagram is constructed from the results of
625 points, each averaged over 15 realizations. The dashed curves
represent the boundary between regions with different behavior.
The solid curve between rotation and the disordered phase is from
the theoretical prediction of the nonpolar-to-polar transition. Each
regime is recognized by looking at angular momentum and cohesion.
Rotation is recognized by looking at the scaled angular momentum per
particle (2M/Lv0) greater than 0.5. Vibrating rings were recognized
by local cohesion smaller than 0.1 when α < 0. The remaining points
are either in the moving clusters or the clumps regime. All points with
α = 0 correspond to the formation of moving clumps, and the rest of
the points are in the moving clusters regime.

right after the defect (lower cohesion), the density decreases
exponentially [Fig. 15(a)]. In examining the velocities, we find
that they are tangent to the wall, and by moving away from the
wall we see that the component of velocity perpendicular to
the wall is independent of the horizontal position [Fig. 15(b)],
and it is proportional to the distance from the wall [Fig. 15(d)].
This proportionality corresponds to the exponential shape of
the defect line. To show this, we first define u(x), the distance
between the top defect line in Fig. 12(c) from the top wall
as a function of x. The linear relation of the component of
velocity perpendicular to the wall gives us vy = cvu, where cv

is a positive number. This linear relation enables us to find a
differential equation with an exponential solution:

du(x)

dx
= −vy

vx

= − vy√
1 − v2

y

≈ −vy = cvu(x). (20)

Here we assume |vy | 	 1, which is clear from Fig. 15(d).
The defect lines in the experiment of Ref. [31] also seem to

have an exponential form. We extracted experimental images
from a movie in the supplemental material on the Quincke
rotors experiment [31], and we assumed that the averaged gray

−0.4−0.2 0 0.2 0.4
x/L

−0.4

−0.2

0

0.2

0.4

y
/
L

(a)

−0.4−0.2 0 0.2 0.4
x/L

0
0.5
1
1.5
2
2.5
3ρ(b)

−0.4−0.2 0 0.2 0.4
x/L

−0.4

−0.2

0

0.2

0.4

y
/
L

(c)

−0.4−0.2 0 0.2 0.4
x/L

0

0.5

1Φ(d)

−0.4

−0.2

0

0.2

0.4

−0.4−0.2 0 0.2 0.4

y
/
L

x/L

(e)

−0.4−0.2 0 0.2 0.4
x/L

0

0.5

1v(f)

FIG. 12. Time average of ρ, �, and �v in space for ρ0 = 1 and
ε = 0,0.5 in a box of size L = 120R. (a) and (b) Density with grid
dimension 128 by 128. (c) and (d) Cohesion with grid dimension 64
by 64. (e) and (f) Velocity with grid dimension 25 by 25. Color (gray
scale) corresponds to the magnitude of each field, and the lengths of
the arrows in (e) and (f) show the average speed. Parts (a), (c), and (e)
belong to the same noiseless simulation of a clockwise vortex (ε = 0).
Parts (b), (d), and (f) belong to the simulation of a counterclockwise
vortex with noise (ε = 0.5). Defect lines corresponding to suppressed
spreading are observed in regions with low cohesion and high density.

scale over the images is proportional to the density. The forms
of the defect lines in the simulation, the continuum model, and
the experiment are sketched in Fig. 16, which shows a very
good agreement between these three data sets.

Figure 15(c) shows that the angular velocity of particles
across y = 0 is not constant. We also computed the average
angular velocity (ω = �θ/�t) of any particle around the
center of the box, and we observed that the angular velocity
is almost proportional to the inverse of the distance from
the center (ω ∼ 1/r). This means that the particles’ velocity
component perpendicular to their position vector is rather
constant (ω = v⊥/r). The result shows that in the low-noise
regime, v⊥ ≈ 〈v〉 ≈ v0. However, a reduction in v⊥ as well as
the time-averaged velocity of the particles is observed when
the noise is high.
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FIG. 13. Comparison of the averaged density field for (a) the
particle model and (b) the continuum model. Parameters are set to
ρ0 = 1, v0 = 0.3, α = 0.5, ε = 0, and L = 120R. The color (gray
scale) represents density. The grid size is 128 by 128. A few points
of the continuum model are in the range ρ ∈ (−0.1,0), but in order
to obtain a better comparison we plot both maps in the same interval,
ρ ∈ (0,2.5).

V. DISCUSSION

In this study, we presented a minimal model to mimic the
behavior of Quincke rotors in a square box. In our model
there is alignment and repulsion between particles. The model
shows six different regimes by changing the noise strength and
the ratio of alignment to repulsion. The observed regimes are
homogeneous disordered, moving clumps, moving clusters,
vibrating rings, traveling stripes, and a vortex state. Our
focus in this paper was on the formation of a vortex. Vortex
formation is a consequence of the confinement of a polar state.
Actually, there is a crossover for the angular momentum of
particles close to the transition point of a nonpolar to polar
state. Further investigations with finite-size analysis could
be done to accurately characterize the phase transition. In
the vortex phase, defect lines are observed at the points
where the particles suddenly change direction. As in the
experiment, the defect lines in a vortex phase have fourfold
symmetry, and each has an exponential form. This fourfold
symmetry is because the spread of particle flow going out of
a corner is suppressed by the collision of another flow, and a
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FIG. 14. Comparison of the averaged velocity field for (a) the
particle model and (b) the continuum model. Parameters are set to
ρ0 = 1, v0 = 0.3, α = 0.5, ε = 0, and L = 120R. The color (gray
scale) represents the velocity magnitude. The length of the arrows
is proportional to the speed. The grid size is 32 by 32. To enhance
the velocity map of the continuum model, we removed points with
density lower than 0.03 that have large computational errors.
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FIG. 15. Cross-sectional value of time-averaged fields. (a) ρ

and � across the horizontal line y = 53. (b) and (d) Velocity
components across horizontal lines for (b) y = 53 and (d) y = 0.
(c) Angular velocity ω across the horizontal line y = 0. Simulation
parameters are ρ0 = 1.0, ε = 0.05, and L = 120R. One can see
that the density decreases exponentially and the cohesion has a
falloff corresponding to crossing the defect line in (a). The velocity
component perpendicular to the wall is constant along the wall (b),
and it increases linearly with the distance from the wall (d). Finally,
(c) shows that the rotation frequency of the particles depends on their
position.

defect line emerges for each corner. The exponential form of
the defect lines is also seen in experiment and our theory.

We derived hydrodynamic equations to describe the behav-
ior of the system analytically. The usual method of deriving
hydrodynamic equations gives us equations that can only
predict the transition point, and they are not stable for the
enumeration of the vortex phase. To enumerate the vortex
phase, a more stable set of low-noise hydrodynamic equations
is required. We introduced a method called “small deviation”
to obtain stable equations. In this method, we assumed that
in low noise, the distribution of the particle orientation is
narrow. We did not assume any specific distribution (such
as Gaussian or Poisson distribution), and we only assumed
that the standard deviation and the higher cumulant of the
distribution are small. Using the hydrodynamic equation of
the small deviation approximation, we were able to describe
our system theoretically in a vortex phase. The result of the
theory is in very good agreement with simulation results. For
example, we observed that in experiments, theory, and also
simulations, the center of the box is empty. To test the theory
further, we derived an analytic result for the density profile
of a vortex in a circular box that exactly matches the result
of the simulations. Therefore, the small deviation accurately
describes our system in low noise. This small deviation could
be used in the future as a helpful tool to study systems of active
matter in low noise.
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FIG. 16. The defect line distance from the wall u as a function
of horizontal position x from the corner in three cases of Quincke
rotors experiment, simulation, and continuum theory. Simulation
and continuum parameters are set to ρ0 = 1, α = 0.5, v0 = 0.3,
ε = 0, and L = 120R. Experimental data are averaged movie frames
of Ref. [31] with an enhancement of the final image to avoid
computational error. The gray scale of each point is proportional to the
density. u is defined as the points where | 1

ρ

∂ρ

∂y
|
[x,L/2−u(x)]

> 0.1. One

can see that at the interval −0.3 < x/L < 0.2 the defect line shape
is exponential, which is in agreement with the exponential decay of
density in Fig. 15(a). We also see that experiment, simulation, and
the continuum model are all in good agreement.

As we mentioned, there is an empty region in the center
of the box. Our theoretical and simulation results show
that the size of this empty region depends on the strength
of the repulsion, the density of the particles, and their speed.
The speed dependence of the density profile could be used
as a separator of fast- and slow-moving particles. Because
the speed of Quincke rotors depends on their radius and
other environmental factors [31], they are particularly good
candidates for future experiments on this separation technique.
Our next research goal is to study the behavior of mixtures of
fast and slow particles using simulations. Other studies are
also possible, such as a more precise study of the transition
with finite-size scaling, or a study of confinement in other
geometries, e.g., n-sided polygons. One could also find the

limit of n in an n-sided polygon in which the vortex no longer
has the symmetry of the polygon. Finally, one can construct
hydrodynamic equations using the Gaussian approximation,
checking the accuracy of the results and comparing them with
the results from the small deviation method [51].
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APPENDIX A: HIGH-NOISE LIMIT

We use the Boltzmann approximation to derive the Fokker-
Planck equation. Using the method presented in Ref. [52], we
derive the Fokker-Planck equation for f (θ,�r) up to second
order of spatial derivatives [Eq. (10)]. The resulting drift
velocity is

Vdrift = (1 − α)gp

×
[ ∫ 2π

0
sin(θ ′ − θ )

(
f (θ ′,�r) + ∇2f (θ ′,�r)

8

)
dθ ′

]

+
[αgp

3
�∇ρ(�r) · (v̂θ ∧ êz)

]
, (A1)

where the first bracketed term is the alignment interaction and
the second is the repulsion.

To construct the hydrodynamic equation from Eq. (10),
we write the orientational density f in terms of Fourier
components: f (θ,�r) = 1

2π

∑
k eıkθ f̃k , where ı is an imaginary

number, k is an integer number between −∞ and +∞, and
f̃k is the kth Fourier component of f . Thanks to the linear
independence of the Fourier basis eıkθ , we can split Eq. (10)
into an infinite set of separate recurrence equations for different
k in Fourier space with

∂f̃k(�r)

∂t
= −Drk

2f̃k + (1 − α)gpk

2

[
f̃k−1

(
f̃1 + 1

8
∇2f̃1

)
− f̃k+1

(
f̃−1 + 1

8
∇2f̃−1

)]

− αgpk

6
�∇ρ · (x̂(f̃k−1 − f̃k+1) − ıŷ(f̃k−1 + f̃k+1)) − v0∂x

f̃k−1 + f̃k+1

2
− v0∂y

f̃k−1 − f̃k+1

2ı
. (A2)

To deal with the equations, we need to find a closure. If
we look at Eq. (A2), we see that there is a damping term
−Drk

2f̃k with a time scale τk = −Drk
2, meaning that higher

moments of f̃k vanish faster. Here we assume that moments
of f̃k for k � 3 are zero and the second moments converge
to their equilibrium values fast enough so that we can assume
˙̃f±2 = 0. This assumption is valid until the damping terms for

higher moments are dominant. Comparing the coefficients of

the RHS of Eq. (A2) when k = 3 with τ−1
3 , we obtain the

conditions Dr � (1−α)gp

6 , Dr � αgp

18 , and Dr � v0
9 to truncate

Eq. (A2) for k � 3. Given the values of α = 0.5, gp = 2, and
v0 = 1 (the same as the simulations), we find the inequality
Dr � 0.16, which satisfies all the conditions.

After the truncation, we can find f̃±2 in terms of f̃±1 and
f̃0. Then in the equation of ˙̃f±1 we replace f̃±2 with f̃±1 and
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f̃0. Also, we use the facts that f̃0 = ρ [Eq. (6)] and f̃±1 =
Wx ∓ ıWy [Eq. (9)]. Then, with a straightforward calculation,

we can solve separately for real and imaginary parts to find the
hydrodynamic equations (11) and (12) with �W∇ as

�W∇ = − α2g2
p

72Dr

| �∇ρ|2 �W +
[(

v2
0

16Dr

+ (1 − α)ρgp

16

)
∇2 �W − (1 − α)2g2

p

32Dr

( �W · ∇2 �W ) �W
]

− (1 − α)gpv0

16Dr

[
− 5

2
�∇W 2

+ 5 �W �∇ · �W + 3 �W · �∇ �W
]

−
(

αgp

6
ρ + v0

2

)
�∇ρ + α(1 − α)g2

p

12Dr

( �W · �∇ρ) �W + αgpv0

48Dr

(2 �W∇2ρ + 2 �∇ρ · �∇ �W

− 3 �∇ · �W �∇ρ + 3 �∇ρ ∧ ( �∇ ∧ �W )). (A3)

On the RHS of Eq. (A3), the first term introduces a reduction in polarity due to the net repulsive torque in the density gradient.
The first bracketed term is very important for the spread of polarization. It is a diffusionlike term for �W and comes from the
alignment of neighboring particles. The second bracketed term comes from alignment interaction between particles, and it is
well known in both phenomenological and analytical studies [16,41–43]. The rest of the equation shows an escape of particles
from higher densities due to repulsion and advection.

APPENDIX B: LOW-NOISE LIMIT

Equation (10) is an equation for the dynamics of f . However, in our derivation it is more convenient to work with P instead
of f . To find the evolution of P , we replace ρP with f in Eq. (10), and we also use the continuity equation [Eq. (11)] and Eq. (9)
to replace ρ̇ with −v0 �∇ · ρ〈v̂θ 〉. Using simple calculations we find Ṗ ,

∂P (θ,�r)

∂t
= −(1 − α)gp∂θ

[
P (θ,�r)

∫ 2π

0
sin(θ ′ − θ )

(
ρP (θ ′,�r) + ∇2ρP (θ ′,�r)

8

)
dθ ′

]

− ∂θ

[
αgp

3
P (θ,�r) �∇ρ · (v̂θ ∧ êz)

]
+ Dr

∂2P (θ,�r)

∂θ2
− v0v̂θ

ρ
· �∇[ρP (θ,�r)] + v0

ρ
P (�r,θ ) �∇ · [ρ〈v̂θ 〉]. (B1)

In our derivation, we need to find the evolution of many average fields over θ in space, such as 〈θ〉(�r,t), 〈θ2〉(�r,t), and 〈v̂θ 〉(�r,t).
Therefore, to simplify the calculation we define an arbitrary function b(θ ) that could be θ , θ2, and components of v̂θ , and we find
the governing dynamics of 〈b(θ )〉(�r,t). Toward that end, we multiply both sides of Eq. (B1) with b(θ ) and integrate both sides
over θ from 0 to 2π ,

d〈b(θ )〉
dt

= (1 − α)gp〈b′(θ ) sin(θ ′ − θ )〉θ ′,θ

(
ρ + 1

8
∇2ρ

)

+ 1

8
(1 − α)gpρ(�r)〈b′(θ )∇2〈sin(θ ′ − θ )〉θ ′ 〉θ + αgp

3
�∇ρ(�r) · [〈b′(θ )v̂θ 〉 ∧ êz] − v0

ρ
�∇ · [ρ(�r)〈b(θ )v̂θ 〉]

+ 1

4
(1 − α)gp

�∇ρ(�r) · 〈b′(θ ) �∇〈sin(θ ′ − θ )〉θ ′ 〉θ + v0

ρ
〈b(θ )〉 �∇ · [ρ(�r)〈v̂θ 〉] + Dr〈b′′(θ )〉 + O(∇3). (B2)

We write 〈〉θ and 〈〉′θ to recognize the averaging over θ and θ ′, respectively. Because the noise is low, we can assume that the
orientational probability distribution of particles, P (θ,�r), is sharply peaked around the mean value 〈θ〉θ (�r,t). In other words, the
variance of θ , σ 2

θ = 〈θ2〉θ − 〈θ〉2
θ , is very small (σ 2

θ 	 1). Thus we can approximate sin(θ ′ − θ ) in the averaging process with
θ ′ − θ to find an analytical expression. If we neglect derivatives to find homogeneous equations, for b(θ ) = θ and b(θ ) = θ2, we
can find the evolution of the deviation,

dσ 2
θ

dt
= Dr − (1 − α)gpρ0σ

2
θ , (B3)

where Dr is acting here as a source of dispersion for θ , while the alignment interaction (1 − α)gpρ reduces the dispersion.
From this equation, we find that σ 2

θ decays with a time scale τσ = 1/(1 − α)gpρ0 to its equilibrium value σ 2
θ = Dr/(1 − α)gpρ.

Our assumption for the sharpness of the distribution function is true when σ 2
θ 	 1, and this gives us a limit for the noise,

Dr 	 (1 − α)gpρ. By expanding eıθ up to second order around the mean value 〈θ〉 and using the facts that 〈e±ıθ 〉 = Px ± ıPy and
e±ı〈θ〉 = 1

P (Px + ±ıPy), we can find a relation between σ 2
θ and polarization P as P = (1 − σ 2

θ /2). The same assumption—small
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deviation—in Eq. (B2) with b(θ ) = eıθ helps us to find the dynamics of the polarization, �P(�r,t) [Eq. (14)], with �P∇ defined as

�P∇ = (1 − α)gp

4
[(1 − P) �P∇2ρ] + (1 − α)gpρ

8
[(2P − 1)∇2 �P − (4P − 3)P̂P̂ · ∇2 �P]

+ (1 − α)gp

4

[
(2P − 1) �∇ρ · �∇ �P − 4P − 3

2P2
�P �∇ρ · �∇P2

]
+ αgp

3
[(1 − 2P ) �∇ρ + (4P − 3)P̂ · �∇ρP̂]

+ v0

ρ
[2 �∇[ρ(P − 1)] + P̂ · �∇[ρ(P − 1)(P − 3)P̂] + (P − 1)(P − 3)P̂ �∇ · P̂ − �P · �∇ �P] + O(∇3). (B4)

The first bracketed term on the RHS of Eq. (B4) is a driving
term, the second spreads polarization because of interaction
with neighboring particles, the third shows an alignment
competition between high- and low-density regions, the fourth
represents the repulsion of particles (moving against �∇ρ), and
the last one shows advection.

APPENDIX C: DENSITY PROFILE IN A CIRCULAR BOX

We use Eq. (16) and we set Dr = 0 to find a simpler density
equation in a circular box,

ρ(r) = 3v0

αgp

ln

(
r

r0

)
. (C1)

We integrate both sides of Eq. (C1) over the surface of the
box. One should be aware that Eq. (C1) is not physically valid
for r < r0 because it gives negative density values at these
points. Therefore, our integral must be from r0 up to Rbox.
This integral is

∫ Rbox

r0

2πrρ(r)dr =
∫ Rbox

r0

2πr
3v0

αgp

ln

(
r

r0

)
dr. (C2)

The left-hand side is the total number of particles, and it is
equal to πR2

boxρ0. The right-hand side can be computed using
integration by parts,

πR2
boxρ0 = 3πv0

αgp

[
− R2

box ln

(
r0

Rbox

)
− R2

box

2
+ r2

0

2

]
. (C3)

Dividing both sides of Eq. (C3) by πR2
box, one obtains

Eq. (17).

APPENDIX D: TIME AUTOCORRELATION DAMPING IN
A VORTEX PHASE

An ordered vortex inside a circular geometry, Cv(τ ), could
be computed by its definition,

〈�vi(t) · �vi(t + τ )〉i,t

= 1

NT

∫ T

0
dt

∫
�v(�r,t) · �v(�r + ��r,t + τ )ρ(�r)d�r, (D1)

where N is the total number of particles, T is the duration of
averaging, �v(�r,t) is the average velocity field at point �r and
time t , and ��r is the displacement of particles at point �r and
time t during time τ .

If we suppose that all particles are rotating with their
velocity v0 on an annulus between two circles with radii
rmin and rmax in the box, then ��r is easily computed in polar
coordinates. The radial component r remains unchanged, and
the polar coordinate φ changes by �φ = v0τ/r . We also
know that the velocity of the particle rotates by the same
amount, thus the angle between the two velocities is �φ and
�v(�r,t) · �v(�r + ��r,t + τ ) = v2

0 cos(�φ), which is independent
of time t . This independence of time helps us to drop the
time averaging of Eq. (D1). Furthermore, we replace the dot
product of velocities with v2

0 cos(v0τ/r) in Eq. (D1) and write
the integral over the surface of the annulus as an integral over
r with its corresponding Jacobian 2πr . The final result is

Cv(τ ) = 1

N

∫ rmax

rmin

2πrρ(r) cos
(v0τ

r

)
dr. (D2)

This nice result shows us the damping of Cv(τ ) for large τ .
In the large values of τ , the cosine in the integrand of Eq. (D2)
changes fast, and if ρ(r) is a smooth and slowly changing
function, the positive and negative parts of the integral in one
oscillation cancel each other out. Hence, the integration gives
us a negligible result when τ is large.
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[48] H. Chaté, F. Ginelli, G. Grégoire, and F. Raynaud, Collective
motion of self-propelled particles interacting without cohesion,
Phys. Rev. E 77, 046113 (2008).

[49] E. Bertin, M. Droz, and G. Grégoire, Hydrodynamic equations
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