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Polymer models with competing collapse interactions on Husimi and Bethe lattices
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In the framework of Husimi and Bethe lattices, we investigate a generalized polymer model that incorporates
as special cases different models previously studied in the literature, namely, the standard interacting self-
avoiding walk, the interacting self-avoiding trail, and the vertex-interacting self-avoiding walk. These models
are characterized by different microscopic interactions, giving rise, in the two-dimensional case, to collapse
transitions of an apparently different nature. We expect that our results, even though of a mean-field type, could
provide some useful information to elucidate the role of such different θ points in the polymer phase diagram.
These issues are at the core of a long-standing unresolved debate.
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I. INTRODUCTION

The collapse transition of a polymer chain in dilute solution
is one of the most classical topics in polymer physics [1–
3]. Such a phenomenon arises from a competition between
excluded volume and some kind of attractive interaction of the
monomers with one another. Depending on which of the two
effects prevails, the polymer takes on a swollen state (coil) or
a compact one (globule), also denoted as good- or bad-solvent
regimes, respectively. The two regimes are separated by a
phase transition (driven by temperature or by some actual
change in the solvent quality), which is characterized by
specific properties of the polymer, usually denoted as the θ

state.
Different lattice models have been proposed to investigate

these phenomena. In the standard interacting self-avoiding
walk (ISAW) model [1–3], polymers are forbidden from
visiting a lattice site more than once, and a contact interaction
is assigned to nearest-neighbor sites visited by noncon-
secutive monomers. Alternative models are the interacting
self-avoiding trail (ISAT) [4,5] and the vertex-interacting
self-avoiding walk (VISAW) [6,7], both characterized by the
fact that only lattice bonds (not sites) are subject to the
single-visit constraint. The two models differ in that the ISAT is
allowed to cross itself, while the VISAW is not. In both cases,
the self-attractive interaction is associated with the multiply
visited sites.

According to the paradigm of universality, one would
expect that the critical behavior of all three of the above models
should be described by the same universality class. Actually,
this seems to be the case in the good-solvent regime (which is
itself a critical state), but there are several evidences that, in two
dimensions, the θ state belongs to three different universality
classes and, for the ISAT and VISAW cases, it is also associated
with the onset of a peculiar maximally dense phase [5,7,8]
and other more subtle features [9–12]. In particular, analytical
investigations of completely packed two-dimensional loop
models with crossings [10,13–15] (i.e., ISAT-like models in
a maximally dense state) have pointed out the existence of an
unusual critical state (Goldstone phase [14]), which is absent
for noncrossing (i.e., VISAW-like) loops.

Note that, in general, two-dimensional models have at-
tracted great theoretical interest, due to the availability of

rigorous results coming from exact solutions and/or conformal
field theories, through the analogy with “magnetic” O(n)
models in the limit n → 0 [1–3]. The ISAW θ point has been
clearly identified as a tricritical point in the language of O(n)
models, and all of its properties are quite well established,
with good agreement between theory [16] and simulations [17]
for the values of critical exponents. Conversely, a number of
contradictory results have emerged for the ISAT and VISAW
θ points, in particular, some striking discrepancies among
Monte Carlo simulations [8,18–20], numerical transfer-matrix
methods [5–7,21,22], field-theoretic arguments [9–12], and
exact results [23].

Let us also note that most theoretical literature concerning
polymer lattice models in two dimensions appears to be
quite disconnected from experiments. Some experimental
realizations of two-dimensional (2D) polymers in solution
have actually been set up, even though a posteriori, with
the main purpose of testing scaling laws and theoretical
results [24,25]. The cited works do not reveal evidence of a
maximally dense low-temperature phase, and more generally
we are not aware of experimental results about specific
polymers that can be modeled as self-avoiding trails. In spite
of this, we find it interesting that the aforementioned toy
models of completely packed loops [10,13] turn out to exhibit
interesting connections (via field-theoretical description) to
models for quantum phase transitions, in particular the
Anderson metal-insulator transition [26], and the related hot
topic of topological insulators [27]. The latter phenomena are,
at present, of considerable experimental interest [28,29], which
makes the investigation of these models (and of the strictly
related polymer models) more intriguing than expected.

In this article, we study a generalized polymer model that
incorporates all the aforementioned ones, in the framework of
Husimi [30–34] and Bethe lattices [35–39]. The free parame-
ters characterizing such lattices (building blocks, coordination
numbers) are chosen, according to experience, in order to
obtain the best possible approximation to a regular 2D square
lattice model. The motivation for this work stems from the
difficulty of extracting, from the existing literature, a unified
view of the phase diagram in the presence of the different
topological constraints and competing collapse interactions
described above. Indeed, considerable work has been done in
this direction, in particular by Bedini, Owczarek, and Prellberg
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(making use of refined Monte Carlo simulations) [8,40,41]
and by Foster and Pinettes (mainly by means of numerical
transfer-matrix techniques) [5,7,21,22], but several unresolved
issues and contradictory results still remain. Just to give a
couple of examples, the mentioned authors have investigated
an asymmetric ISAT (denoted as AISAT) on the square
lattice, where doubly visited sites with or without crossing
are assigned a different attractive interaction. Now, in the
special case of crossing interactions only, the transfer-matrix
results [21] suggest the onset of a first-order collapse, while
the simulations [8] seem to predict a revival of the ISAW
θ state, i.e., a weak continuous transition, with no evidence
of a maximally dense phase. Moreover, while an exact solu-
tion [23] of the VISAW model predicts a correlation-length
exponent ν = 12/23, Monte Carlo simulations [20] suggest
the ISAW value ν = 4/7 and transfer-matrix methods [6,22]
are incompatible with either result.

In this context, a clear advantage of the approach developed
in the current article is the possibility of a sharp determination
of the phase diagram (with extremely high numerical precision
in the case of the Husimi lattice, even analytical in the case
of the Bethe lattice). For instance, we have no ambiguity on
the order of the transitions, which is usually not the case
with methods affected by higher numerical uncertainties. On
the other hand, a primary drawback of the matter is that
the resulting phase diagram, indeed exact on such infinite-
dimensional treelike lattices, is not guaranteed to correspond
to the actual phase diagram of the 2D model. Concerning
this point, we have nonetheless to say that Husimi and
Bethe-lattice models often turn out to exhibit a remarkably
good qualitative agreement with finite-dimensional results
when the latter are well-established by other methods. This
has been observed in different polymer models, such as the
semiflexible ISAW [30,35,42] or the bond ISAW [36,43,44]
and holds true, as we shall see, at least in a limiting case of
the model under investigation [40,41]. Indeed, we shall see
that the Bethe-lattice model yields a slightly less convincing
behavior for the general case, but we have found it interesting
(and therefore we have included it in the article) mostly by
virtue of the opportunity of a fully analytical solution.

A more substantial difficulty of our approach is that, even
though the Husimi or Bethe solutions take into account certain
local correlations, they still have a mean-field nature, so that,
in principle, they cannot predict critical exponents. As a
consequence, the universal points are to be naively identified
on the basis of physical intuition and/or according to their role
in the phase diagram. In conclusion, we cannot expect that our
results provide definitive answers to the open problems of the
2D case, in particular to the issue of universality classes, but
we believe they might be nonetheless of some use, mainly as
a coherent set of hypotheses yet to be tested by more specific
methods.

The paper is organized as follows. In Sec. II we give a
precise definition of the model that we investigate. In Sec. III
we briefly present the Husimi lattice solution, whose details are
reported separately in Appendix A . Section IV contains all the
results concerning the Husimi-lattice model, whereas Sec. V
is devoted to a discussion and some concluding remarks. The
Bethe-lattice solution is reported in full detail in Appendix B,
along with a comparison with the Husimi-lattice one.

τc τx

ω

ω

ω

FIG. 1. An example of polymer configuration on the 2D square
lattice, along with the statistical weights associated with the different
interactions: ω is associated with nearest-neighbor sites visited (once)
by nonconsecutive monomers; τc and τx are associated with doubly
visited sites with, respectively, colliding or crossing configurations.

II. THE MODEL

Let us define the model on the regular two-dimensional
square lattice, as in the original (partial) versions. The
definition for the Husimi or Bethe lattices follows in a
straightforward way. The polymer is represented as a self-
avoiding trail, that is, a walk such that lattice bonds can be
visited only once, whereas lattice sites can be visited more
than once (at most twice on the square lattice). Doubly visited
sites are assigned a Boltzmann weight τx or τc, depending on
whether the walk self-intersects or not, respectively. Moreover,
a weight ω is assigned to every pair of nearest-neighbor sites
that are visited (once) by nonconsecutive monomers. The latter
type of statistical weight is the usual one for the ISAW. All
kinds of weights are summarized in Fig. 1. For simplicity, in
the following we denote the configurations weighted by ω as
contacts, whereas those weighted by τc and τx are denoted as
collisions and crossings.

Let us briefly explain how this model incorporates different
polymer models that have been previously studied in the
literature. First of all, when τx = τc ≡ τ (i.e., collisions and
crossings are equally weighted), we obtain the Wu-Bradley
model [45], which has recently been the subject of an accurate
numerical investigation by Bedini and co-workers [41]. In
turn, the latter model contains the ordinary ISAT model for
ω = 1 (i.e., without contact interactions), the ordinary ISAW
model for τ = 0 (i.e., forbidding doubly visited sites), and
the so-called interacting nearest-neighbor self-avoiding trail
(INNSAT) model [40] for τ = 1 (i.e., a self-avoiding trail with
contact interactions only). The latter model has been proposed
in the cited article in order to investigate the stability of the
ISAW θ state with respect to a change in the self-avoidance
constraints. Furthermore, for ω = 1 and τx �= τc, we obtain
the previously mentioned AISAT model [8,21], studied in
order to test the stability of the ISAT θ state with respect
to perturbations in the attractive interaction. The latter model
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contains, in turn, the VISAW model, in the limiting case τx = 0
(crossings forbidden). Let us finally note, for completeness,
that Husimi and Bethe lattice calculations for the ISAT
model have been worked out by Oliveira and Stilck [46]
independently and almost contemporarily with ours.

We consider the model in a grand-canonical description,
with a fugacity parameter ζ associated with each polymer
segment, that is, to each visited bond. The partition function
can thus be written as

� =
∑
SAT

ωNnτNc
c τNx

x ζNs, (1)

where Ns denotes the number of visited bonds, and Nn,c,x

denote, respectively, the number of contacts, collisions, and
crossings. The sum is understood to run over all configurations
compatible with the self-avoiding trail constraint. Note that,
since we are interested in the properties of infinitely long
polymers, this set of configurations does not include loops
whose length remains finite in the thermodynamic limit.

III. THE HUSIMI-LATTICE SOLUTION

A Husimi tree is a self-similar lattice like the one depicted
in Fig. 2, where it is understood that the size of the tree
is arbitrarily increased (toward a thermodynamic limit) by
a self-replicating growth procedure. In a wide part of the
literature, a Husimi lattice is defined as the “inner region”
of a corresponding infinite Husimi tree [47], meaning a region
where a homogeneity condition holds for thermal averages
of local observables (for instance, the site magnetization for
the ferromagnetic Ising model). Such thermal averages can
thus be determined by the fixed points of relatively simple
self-consistency equations. Unfortunately, due to the fact that
in a Husimi tree the majority of sites is located on the boundary,
it turns out that in certain cases boundary conditions heavily
affect the properties of the inner region as well, which is not a
good fact to the purpose of approximating the thermodynamic
behavior of a regular lattice model. For a discussion of these
issues, see, for instance, Refs. [48,49]. The Husimi lattice is
therefore better defined [50] as an ensemble of random-regular
hypergraphs, that are, roughly speaking, random graphs made

FIG. 2. Sketch of a Husimi lattice made up of square clusters.

up of a unique type of hyperedge (for instance, a square cluster
as in Fig. 2), with a fixed coordination number. This kind of
system has no boundary, so that the problem of boundary
conditions is avoided, and is locally treelike, since the length
of closed paths diverges as the logarithm of the number of
sites in the thermodynamic limit (excluding, of course, short
paths that are closed within single clusters). The latter fact
means that a Husimi lattice still looks (locally) like Fig. 2 and,
more importantly, that its thermodynamic properties can still
be derived in terms of simple self-consistency equations. Of
course, our choice to use square clusters as building blocks
and a coordination number 2 (in this context, we define
the coordination number as the number of building blocks
attached to each given site) is motivated by the purpose of
approximating the model on the ordinary 2D square lattice.
The self-consistency equations (aka recursion equations) can
be worked out in different ways. A possible way, which we
believe likely to be the simplest one, is to derive them as
stationarity conditions for a suitable variational-free-energy
density, as explained in the following.

Let us consider the grand-canonical free-energy density per
site (in kBT units)

ψ = − lim
N→∞

1

N
ln �, (2)

where N denotes the number of sites. For the Husimi lattice
defined above, this free-energy density can be written as

ψ = − 1
2 ln q + ln z, (3)

where q is the cluster partition function, z is the single-site
partition function, and 1/2 is the ratio between the number of
square clusters and the number of sites present in the system.
Roughly speaking, the single-site term may be regarded as a
correction over the cluster term, due to the overlap between
clusters.

The cluster partition function q is the partition function of a
small subsystem made up of four sites on a square cluster,
interacting with one another and with effective fields that
represent the remainder of the system. It will therefore take
the form

q =
∑
i,j,k,l

χi,j,k,lwiwjwkwl, (4)

where i,j,k,l are labels for the polymer configurations on
each site, χi,j,k,l is the statistical weight of interactions inside
the square cluster (including topological constraints), and wi

are the effective fields. Note that these fields are sometimes
called cavity fields, since they represent the probabilities of
site configurations for a system in which a cluster interaction
is removed (that is, replaced by a cavity). Moreover, − ln q can
be regarded as the free-energy shift between the system with
a cavity and the unperturbed system. For clarity, let us note
that in most papers dealing with polymer models on Husimi
or Bethe lattices the cavity fields are called partial partition
functions. In Eq. (4) the treelike nature of the system is reflected
in the fact that, in the absence of the cluster interaction, the
joint probability distribution factorizes, meaning that the site
configurations are statistically independent. Indeed, in a real
tree graph the removal of a cluster splits the system into
noninteracting subsystems (usually called branches).
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The single-site partition function z is a similar quantity for
a single site, interacting with two cavity fields associated with
the two “branches” attached to the given site. It can be written
in the following form:

z =
∑
i,j

χi,jwiwj . (5)

Note that we have two configuration labels i,j even for
a single site because it is convenient to define the local
polymer configurations with respect to two different reference
frames, integral with each branch. As a consequence, the same
configuration may be identified by different labels with respect
to different branches. Moreover, the statistical weight χi,j also
has to ensure consistency between the two labels. This issue
should get clearer in Appendix A, where we report the explicit
expression of z.

All the information needed to solve the model is contained
in Eqs. (3)–(5), provided explicit expressions of the statistical
weights χi,j,k,l and χi,j (and therefore of q and z) are
derived. As previously mentioned, equilibrium states are
determined by the stationarity conditions for the free energy,
namely,

∂ψ

∂wi

= 0, (6)

which can be easily written in a self-consistent form,

wi ∝ fi(w0,w1,w2,w3). (7)

Explicit expressions for the functions fi are also reported in
Appendix A as Eqs. (A7)–(A11), along with a proof that four
cavity fields (denoted as w0, . . . ,w3) suffice to represent all
the relevant configurations. The recursion equations (7) can
be solved numerically by a simple iterative algorithm. Note
that a proportionality constant remains undetermined because
the free-energy density ψ is invariant under multiplication of
each cavity field by a constant, as one can easily verify. As
usual, we fix the constant so as to satisfy, at each iteration, a
normalization condition, namely,

3∑
i=0

wi = 1. (8)

For the benefit of readers who are not familiar with Husimi
lattice models, let us briefly note that the self-consistent form is
not only an efficient way to solve numerically a set of nonlinear
simultaneous equations, but it can be interpreted as a self-
similarity condition, namely, the equality between the cavity
fields associated with a given branch and those of its sub-
branches. Indeed, most studies directly derive the recursion
equations via self-similarity.

All equilibrium properties of the system can now be derived
from the knowledge of the cavity field values satisfying
Eqs. (7), along with the expression of the free-energy density,
Eqs. (3)–(5). The average number of segments per site, which
in the following we briefly refer to as segment density, or
simply density, can be evaluated as

ρ = − ∂ψ

∂ ln ζ
. (9)

Note that, in the above derivative, the dependence on ζ of the
cavity fields can be neglected, because we are interested in
equilibrium points, and the derivatives of ψ with respect to the
cavity fields vanish at such points. The density ρ is the main
order parameter for our system. Other meaningful observables
are the average number of contacts per site (contact density),

η = − ∂ψ

∂ ln ω
, (10)

and the average number of collisions or crossings per site
(respectively, collision or crossing density),

ξc,x = − ∂ψ

∂ ln τc,x
. (11)

Explicit expressions for ξc, ξx, and η can be derived straight-
forwardly.

In the presence of multiple solutions (i.e., fixed points)
of the recursion equations, revealing the occurrence of co-
existence phenomena, the free-energy values allow one to
discriminate the thermodynamically stable phase and therefore
to determine first-order transitions. Conversely, second-order
transitions can be better detected by analyzing the stability of
the solutions. The latter is a rather technical issue, which we
discuss in Appendix A.

IV. RESULTS

In the framework of the grand-canonical formulation, the
phase diagram can be described as a function of the Boltzmann
weights of the elementary interactions, also denoted as activi-
ties (in our case τc, τx, and ω), and of the fugacity variable ζ ,
which controls the segment density. For given activity values,
we expect a phase transition to occur at a certain fugacity
ζ0(τc,τx,ω), where the density changes from ρ = 0 for ζ < ζ0

to ρ > 0 for ζ > ζ0. The transition manifold, defined by the
function ζ0, can be identified as the canonical thermodynamic
limit for a single polymer chain, and in particular ln ζ0

represents the corresponding Helmholtz free-energy density
per segment (in kBT units). In the limit ζ → ζ+

0 , the properties
of the dense phase are expected to approach those of a single
chain (we denote it as the “single-chain” limit), so that, in
particular, the segment density ρ can be viewed as a measure
of the chain compactness. Therefore, a second-order transition
represents a swollen state, whereas a first-order transition
represents a collapsed state. For the well-known ISAW model
(τx = τc = 0 in our scheme), increasing the contact activity
ω (which usually means lowering the temperature) drives the
system from the former to the latter regime, giving rise to a
continuous transition (θ collapse).

Solving the recursion equations (7), we find, besides the
zero-density phase (also denoted as 0 phase in the following),
two different dense phases: an “ordinary” one (1 phase),
and a “maximally dense” one (2 phase). The 2 phase is
characterized by very large values of the segment density ρ

and of the crossing-collision density ξ ≡ ξc + ξx (quite close
to the respective upper bounds ρ = 2 and ξ = 1) and by small
values of the contact density η (quite close to 0). Conversely,
the 1 phase is characterized by smaller values of ρ and ξ and
larger values of η. The segment density ρ is the natural order
parameter for both 0–1 and 0–2 phase transitions, because the
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FIG. 3. Grand-canonical phase diagram (ζ vs τ ) for ω = 1.2.
The zero-density phase, the ordinary dense phase, and the maximally
dense phase are denoted, respectively, by 0, 1, 2. Solid lines denote
first-order transitions; dashed lines denote second-order transitions.
Thin solid lines are contour lines of the segment density per site
(numerals denoting density values). The point at which the 0–1
transition changes from second to first order is tagged as TC-1. The
critical end point, terminating the (second-order) 1–2 transition line,
is tagged as CE-2.

0 phase is characterized by ρ = 0, whereas ρ > 0 in the 1 and
2 phases. The 1–2 transition cannot be defined rigorously in
terms of densities, but a suitable order parameter is instead the
w1 cavity field, which turns out to be strictly positive in the 1
phase and zero in the 2 phase.

A. Wu-Bradley model

Let us first analyze the case of a symmetric crossing-
collision interaction (τx = τc ≡ τ ), which has been previously
denoted as the Wu-Bradley model. We present a sequence of
projections of the grand-canonical phase diagram in the plane
ζ vs τ , for different fixed values of the contact activity, namely,
ω = 1.2, 0.5, 1. Note that ω > 1 or ω < 1 means that contacts
are energetically favored or disfavored, respectively, whereas
the case ω = 1 corresponds to the ISAT model, with no contact
interaction.

The phase diagram for ω = 1.2 is displayed in Fig. 3.
The transition line between the 0 and the 1 phases turns
out to be partially first and partially second order. The point
separating the two regimes represents a continuous collapse in
the single-chain limit, so that it can be viewed as the analogous
of the θ point of the ISAW model, which is, a tricritical
point in the language of O(n) models. We denote this point
as TC-1 to avoid misunderstandings, because, as previously
mentioned, the θ point of the ISAW model corresponds to a
well-defined universality class, whereas Husimi lattice models
necessarily belong to a mean-field universality class. In the
dense region (ρ > 0) a second-order transition line separates
the 1 and 2 phases. This line joins to the transition line
with the 0 phase at a critical end point, which we denote
as CE-2. The latter corresponds, in the single-chain limit,
to a continuous transition between two different regimes of
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FIG. 4. Grand-canonical phase diagram (ζ vs τ ) for ω = 0.5.
Lines and phase tags are as in the previous figure. The critical end
point, which terminates the (second-order) 0–1 transition line, is
tagged as CE-1. The point at which the 1–2 transition changes from
second to first order is tagged as TC-2.

the collapsed state. The regime associated with the first-order
portion of the 0–1 phase represents a moderately compact
state, whose density rapidly increases upon increasing τ . On
the other hand, the regime associated with the 0–2 transition
(which is all first order) represents a very compact state, with
a large majority of doubly visited sites, whose density value
is almost saturated around ρ � 2. These observations can be
confirmed by inspection of the density contour lines, reported
in Fig. 3.

The transition scenario changes considerably for ω < 1.
Figure 4 displays the ζ vs τ phase diagram in the particular
case ω = 0.5. The TC-1 point disappears, so that the 0–1
transition line is now all second order. Conversely, the 1–2
transition line turns out to be partially second and partially first
order. As a consequence, the 0–1 transition line terminates in
a critical end point, which we denote as CE-1. The latter also
marks the separation between the first-order portion of the 1–2
transition line and the (all first order) 0–2 transition line. In the
single-chain limit the CE-1 point represents a discontinuous
(first order) collapse transition to the very compact state with
almost saturated density.

Analyzing the evolution of the ζ vs τ phase diagram
between the two regimes observed, from ω = 1.2 to ω = 0.5,
we realize that all the relevant changes occur precisely at
ω = 1, that is, in the case of the pure ISAT model. The phase
diagram for this case is reported in Fig. 5. We can observe that
all four of the “special points” defined above, namely, TC-1,
TC-2, CE-1, and CE-2, degenerate into a unique multicritical
point (tagged as MC). In the single-chain limit, this point
still represents an abrupt collapse transition to the saturated
compact state, but it turns out to exhibit rather peculiar features.

First of all, it is located precisely at τ = 3 and ζ = 1/3.
These values, which we can determine with very high
numerical precision (of the order of ten decimal places),
coincide with those pointed out (though with lower precision)
by both simulations [41] and transfer-matrix techniques [5].
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FIG. 5. Grand-canonical phase diagram (ζ vs τ ) for ω = 1 (ISAT
model). Lines and phase tags are as in the previous figures. The
multicritical point is tagged as MC.

By the way, let us note that, in the context of the Husimi-lattice
solution, the difficulty of obtaining the MC-point location
analytically is related to the fact that the density value of the 2
phase is not fully saturated, at odds with the Bethe-lattice case
(see Appendix B).

Furthermore, we can observe that all the density contour
lines in the 1 phase converge toward the MC point. This
means that precisely at the MC point there exists a continuum
of solutions of the recursion equations (i.e., a continuum of
minima of the free energy), all with the same free-energy
value, but with densities ranging from zero (the 0-phase value)
up to the 2-phase value. In other words, we can state that the
0 phase and the 2 phase remain distinct, but the free-energy
barrier associated with the 0–2 (first-order) transition vanishes
precisely at the MC point. As far as the single-chain limit
is concerned, we might analogously say that the collapse
transition of the ISAT model is a discontinuous transition with
a zero free-energy barrier.

Finally, it is noticeable that both the location and the specific
features of the MC point are preserved even in the Bethe lattice
solution. In this case all the details reported above can be
probed analytically, as discussed in Appendix B. In particular,
it turns out that, in a Landau expansion of the variational
free energy, the derivatives of any order vanish precisely at
the MC point. This is just the mean-field representation of a
multicritical point of infinite order, which remarkably agrees
with the characterization of the ISAT θ point, recently given
by Nahum and co-workers. [10]

To complete the picture of the phase diagram for the Wu-
Bradley model, we have systematically analyzed the evolution
of the “special points” as a function of ω. This analysis leads
to the graph reported in Fig. 6, which can also be regarded as
a single-chain phase diagram. Indeed, all the special points,
except TC-2, lie on the ζ = ζ0 manifold (i.e., on the 0-phase
boundary) and represent certain conformational transitions for
a single polymer chain in the thermodynamic limit (note that
all the points except MC evolve into lines upon varying ω). In
particular, TC-1 represents a continuous ISAW-like collapse
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FIG. 6. Single-chain phase diagram (τ vs ω). Here 0, 1, and 2
denote, respectively, the swollen, the moderately compact, and the
highly compact states. The solid line and the dashed line represent the
evolution of the CE-1 and CE-2 points, respectively. The evolution of
the TC-1 and TC-2 points is represented by the dash-dotted and dotted
lines, respectively. Note that TC-2 points lie outside the 0-phase
boundary and do not represent single-chain transitions.

from a swollen state to a moderately compact state, CE-2
represents another continuous collapse from the moderately
compact to the highly compact or saturated state, and CE-1
represents a direct discontinuous (first-order) collapse from
the swollen state to the highly compact state. Finally, MC can
be regarded as a limiting case of CE-1, in which the free-energy
barrier vanishes.

B. Generalized model and AISAT model

Let us now switch to the general case τx �= τc. Let us
note that, in principle, a complete description of the phase
diagram would require the exploration of the whole four-
parameter space (ζ,ω,τc,τx), which would be a rather heavy
task. Nevertheless, it turns out that the description can be
considerably simplified by introducing suitable alternative
parameters, namely, a particular average crossing-collision
activity,

τ ≡ 2τc + τx

3
, (12)

and an asymmetry parameter,

� ≡ τx − τc

τx + τc
. (13)

The range of the latter turns out to be the interval [−1,1],
where � = 0 corresponds to the symmetric case τx = τc = τ

(Wu-Bradley model), whereas � = +1, − 1 correspond,
respectively, to the extreme asymmetric cases τc = 0 and
τx = 0 (VISAW model).
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FIG. 7. Parametric plot of the position of the MC point in the τ vs
ω plane, as a function of �. Special � values are indicated by arrows.

The key point is that, for fixed � values, the single-chain
phase diagram in the τ vs ω plane remains topologically
equivalent to that of the symmetric case (Fig. 6), with just
a small displacement of the MC-point location (ωMC,τMC)
with respect to its “original” position (1,3). A parametric plot
of (ωMC,τMC) as a function of � is reported in Fig. 7. We
notice a peculiar cusp around the point (1,3), which can be
characterized as follows. We verify numerically that for small
�, the MC-point coordinates behave as

τMC − 3 ∼ �2, (14)

ωMC − 1 ∼ �3. (15)

This obviously implies

τMC − 3 ∼ |ωMC − 1|2/3, (16)

which is indeed represented by a cusp in the τ vs ω plane.
Apart from details, the plot of Fig. 7 gives us some important

information also about the behavior of the AISAT model,
which corresponds to the plane ω = 1. Keeping in mind the
shape of the τ vs ω phase diagram (Fig. 6), we can argue
that, as soon as � > 0 (i.e., τc < τx), the ω = 1 line will
cross the CE-1 line, which means that the AISAT polymer
undergoes a first-order-like collapse from the swollen state
to the highly compact state. Conversely, when � < 0 (i.e.,
τc > τx), the ω = 1 line will cross both the TC-1 line and the
CE-2 line, which means that the AISAT polymer undergoes
two different continuous transitions, from the swollen state
to the moderately compact state, and then to the highly
compact one. These two transition scenarios are qualitatively
equivalent to those previously reported for the Wu-Bradley
model, respectively, for ω > 1 and ω < 1. Indeed, such
an equivalence appears rather intuitive because a collision
interaction is somehow similar, on a shorter length scale,
to a contact interaction (even though the former necessarily
implies polymer bending, whereas the latter does not). As
a consequence, a symmetric ISAT model (τx = τc = τ ) with
the addition of a favored nearest-neighbor contact interaction
(ω > 1) can be argued to be similar to an AISAT model
with collisions preferred to crossings (τc > τx). Analogously,

-1.0 -0.5 0.0 0.5 1.0

2.95

3.00

3.05

3.10

0 2 4 6 8 10
0
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8

10
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CE-2CE-1
1

2

0
TC-2
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TC-1
CE-2

CE-1

2
0

τc

τx

−Γ

τ

FIG. 8. Single-chain phase diagram for the AISAT model (τx vs
τc in the main graph and τ vs −� in the inset). Lines and tags are
defined as in Fig. 6.

a symmetric ISAT model with the addition of a disfavored
contact interaction (ω < 1) appears similar to an AISAT model
with collisions penalized with respect to crossing (τc < τx).

We have devoted special attention to the AISAT model,
because it has recently been the subject of different studies on
the ordinary 2D square lattice [8,21]. In Fig. 8 we report the
single-chain phase diagram for the Husimi-lattice case. In the
τx vs τc diagram, the collapse transition looks like a single line
passing through the MC point (which occurs for τx = τc = 3),
separating the swollen state from the highly compact state.
Nevertheless, the mapping on the alternative parameters τ and
� (Fig. 8, inset) reveals the fine structure of this “line.” In fact,
for τc > τx, the transition line splits into two different lines

4.00 4.05 4.10

0.333

0.335

0.337
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CE-2

1.9725
1.9720

1.9715
1.5

1.9
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ζ

FIG. 9. Grand-canonical phase diagram (ζ vs τc) for ω = 1 and
τx = 1 (colliding model). Lines and tags are as in previous figures.
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FIG. 10. Grand-canonical phase diagram (ζ vs τx) for ω = 1 and
τc = 1 (crossing model). Lines and tags as in previous figures.

of TC-1 and CE-2 points, whereas for τc < τx it turns out to
be a line of CE-1 points, which is a first-order collapse. The
similarity of the τ vs −� diagram for the AISAT model with the
τ vs ω diagram of the Wu-Bradley model is now evident. The
most relevant difference is that, in the latter case, the TC-1 and
CE-2 lines become well separated for large ω values, whereas,
in the former case, they remain very close to each other over the
whole range of admissible � values. In Figs. 9 and 10 we report
grand-canonical phase diagrams for the two special cases
τx = 1 and τc = 1, respectively. These two cases have been
respectively denoted as colliding model and crossing model [8]
since either only collisions or only crossings are energetically
favored, even though both collisions and crossings are always
allowed. We can fully appreciate the analogy with the ω > 1
and ω < 1 cases of the Wu-Bradley model (Figs. 3 and 4,
respectively), though at a much smaller energy scale.

V. DISCUSSION AND CONCLUSIONS

Let us now discuss our results, paying special attention
to comparing them with those appeared in the literature for
corresponding two-dimensional models.

As far as the Wu-Bradley model (τx = τc) is concerned,
we have obtained a nice agreement with the (single-chain)
phase diagram proposed by Bedini and co-workers [41]. The
0–2 transition (CE-1 line in Fig. 6) is conjectured to be first
order, in agreement with our prediction. Moreover, the 0–1
transition is conjectured to be in the ISAW-θ universality class,
and, even though in this case we cannot give a corresponding
prediction for critical exponents, we find it significant that
our 0–1 transition line is indeed made up of tricritical (TC-1)
points. Note also that for τ = 0 (ISAW model) the TC-1 point
occurs at ω ≈ 1.55, to be compared with the θ point of the
2D square lattice model, occurring at ω ≈ 1.95 [17]. Finally,
the 1–2 transition is not characterized precisely in the cited
article, due to difficulties in simulating dense polymers, but
there is reasonable evidence that it is a continuous transition,
which is also in agreement with our prediction. On top of
this, Bedini and co-workers identify the merging point of the
above transitions with the ISAT collapse, characterized by
specific properties (putatively, an infinite-order multicritical

point [10]), which disappear as soon as an arbitrarily small
contact interaction is introduced. There is indeed a striking
analogy with the MC point of our Husimi-lattice model.
We also find it noticeable that the Husimi-lattice solution
reproduces some fine details of the 2D phase diagram, for
instance, the slight positive slope of the CE-1 line and the
precise location of the MC point.

As far as the AISAT model (ω = 1) is concerned, the
situation is more involved. For the case of preferred crossings
(τc < τx), our prediction, that the collapse transition becomes
first order, agrees with Foster’s transfer-matrix results [21]. In
the cited reference, it is not possible to estimate the precise
point at which the change of regime takes place, but the
results seem to be compatible with our scenario. Unfortunately,
the first-order transition is not confirmed by Bedini and
co-workers’ simulations [8], which conversely predict, for
the crossing model (τc = 1), an ISAW-like transition, with a
moderately compact collapsed state. Let us note that, probably
with an eye to Foster’s findings, the latter authors report having
observed some evidence of a multiply peaked probability
distribution, which seems nonetheless to become unimodal
at large lengths. Our scenario might be compatible with such
not fully definite results because the close proximity of the
TC-2 point (where the 1–2 transition becomes critical) to
the CE-1 point (see Fig. 10) implies a very weak free-energy
barrier, which might, in fact, give rise to a broad probability
distribution, rather than two sharp peaks. Note indeed in Fig. 4
the much larger distance between the TC-2 and the CE-1 points
for the Wu-Bradley model with ω = 0.5, where the first-order
transition is clearly pointed out by the simulation [41].

In the opposite case of preferred collisions (τc > τx), a
comparison with 2D findings presents even more difficulties.
Our results predict a two-stage collapse, with a TC-1 point
followed by a CE-2 point (see Fig. 9). As mentioned in the
text, both these points correspond to continuous transitions, the
former (which we have conjectured to be ISAW-like) toward a
moderately compact state, and the latter toward a highly com-
pact one. Again, due to the close proximity of the two points
in the parameters space, we believe that such a scenario is not
incompatible with Bedini and co-workers’ simulations [8],
predicting a highly dense collapsed phase for the colliding
model (τx = 1). On the other hand, Foster’s transfer-matrix
results [21] seem to suggest that the ISAT critical properties
extend to the whole range of preferred collisions (or penalized
crossings) τc � τx > 0, but the validity of these results (for
the pure ISAT case itself [5]) has recently been questioned,
by means of field-theoretic arguments [10], pointing out the
presence of very strong logarithmic corrections.

The limiting case τx = 0 (VISAW model) is worth a sepa-
rate discussion, because in this case an exact solution [23] of
the corresponding O(n) model (due to Blöte and Nienhuis [6])
points out a specific universality class, different from that of
the ISAW. The critical exponent values predicted by the exact
solution turn out to be quite elusive, since transfer-matrix
approaches [6,22] give incompatible results, whereas Monte
Carlo simulations [20] are almost compatible (at least for
the ν exponent) with the ISAW universality class itself. A
careful investigation of the Blöte-Nienhuis θ state, recently
performed by Vernier, Jacobsen, and Saleur [11], suggests that
so difficult numerical estimates might arise from the peculiar
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nature of the associated conformal field theory, characterized
by a continuous spectrum of critical exponents. In order to
reconcile our phase diagram for the VISAW case (in fact,
practically equivalent to that of Fig. 9) with the exact results,
we should postulate that the actual collapse transition is
indeed the TC-1 point, so that the Blöte-Nienhuis θ state
should be associated with a different object, which we might
tentatively identify with the CE-2 point. Of course, on the sole
basis of our arguments, this possibility is nothing more than
speculation, but we find it quite intriguing, because it seems
not to be inconsistent with the most up-to-date results [11],
still inconclusive about the role of the different integrable
points in the phase diagram. On the other hand, a slight
evidence supporting our interpretation is provided by the fact
that the Blöte-Nienhuis point is characterized by a nonzero
density [7,11] and that, approached upon increasing fugacity,
it corresponds to a discontinuous transition [11]. Both features
qualitatively agree with our predictions for the CE-2 point.

Let us finally devote a few words to the analytical
technique that we have used in this article. Even though
the solution of Husimi and Bethe-lattice models is a very
standard technique [47], we would like to emphasize that
our variational-free-energy approach considerably simplifies
the derivation of the recursion equations, which may be of
use in particular when dealing with models of considerable
complexity like the current one. This approach is not fully
original, because it has been demonstrated, for instance, in
certain specialized literature dealing with spin glasses (where
a quenched variational free energy is considered) [51], but we
find it significant to have practically exploited it in the context
of polymer models [30–39].

APPENDIX A: RECURSION EQUATIONS

In this Appendix, we report a detailed derivation of the
recursion equations for the Husimi-lattice model. In Table I
we report all possible site configurations, along with the
cavity fields associated with the two attached branches. The
association rules between fields and configurations are as
follows. First of all, wn is associated with a configuration with
n segments incident from the branch for n = 0,1,2. Moreover,
w0 and w0′ distinguish whether the site is empty or visited,
respectively. Finally, w2′ represents the case in which the two
incident segments are connected by a loop whose number of
steps does not diverge in the thermodynamic limit, whereas
w2 represents all other cases, namely, either the segments are
connected by a macroscopic loop or they are not connected.
Note that a single segment incident from a branch can arrive
from two different directions. Since in the absence of stiffness

we expect the two possibilities to be equivalent (i.e., the system
to be isotropic), we assume w1 to be the total weight of both,
so that a single one has weight 1

2w1.
The second row of Table I reports the terms of z corre-

sponding to each configuration. The last two terms take into
account the possibility of a finite loop (w2′ field) in one of the
two branches, or neither of them, but not both. In conclusion,
the single-site partition function reads

z = w2
0 + w2

1 + 2w2[w0′ + (τc + τx)w2′] + (2τc + τx)w2
2.

(A1)

Let us observe that w0′ and w2′ appear only in the linear
combination w0′ + (τc + τx)w2′ . We argue that this will be a
general feature of our equations, because this linear combina-
tion represents the total weight of configurations such that the
polymer enters a given branch and exits after a finite number
of steps. In particular, w0′ can be regarded as the zero-step
case, in which the polymer visits only the root site of the
branch (without a collision), whereas the latter term includes
all other cases. The above observation motivates the definition
of a “composite” cavity field, namely,

w3 ≡ w0′ + (τc + τx)w2′ , (A2)

so that the single-site partition function can be rewritten as

z = w2
0 + w2

1 + 2w2w3 + (2τc + τx)w2
2. (A3)

As far as the cluster partition function is concerned, let us
first observe that we can write

q =
4∑

n=0

qnζ
n, (A4)

where ζ is the fugacity and qn can be denoted as the canonical
cluster partition function for a cluster with n segments.
According to (9), the segment density will therefore take the
form

ρ = 1

2q

4∑
n=0

nqnζ
n. (A5)

In Table II we report the possible arrangements of polymer
segments on a square cluster, along with the corresponding
cavity fields. We can identify the following rules.

Let κ be the number of segments placed on a given corner
of the square.

(i) If κ = 0, then the possible fields are w0 and w2. In
the former case the corner site is empty. In the latter case the
corner site is visited once, by a walk along the corner outside
the cluster; there can occur contacts (ω weight) with other
visited sites of the cluster.

TABLE I. The first row reports the possible configurations of the polymer on a lattice site, with wi denoting the corresponding cavity
fields associated with the two branches attached to the site (top-right and bottom-left corners). The “prime” symbol in parentheses denotes the
possibility of both fields w2 and w2′ . The second row reports the contribution of each configuration to the site partition function z (see the text).

w0

w0

1
2
w1

1
2
w1

1
2
w1

1
2
w1

1
2
w1

1
2
w1

1
2
w1

1
2
w1

w0

w2

w2

w0

w2

w2

w2( )

w2( )

w2( )

w2( )

w2
0

1
4
w2

1
1
4
w2

1
1
4
w2

1
1
4
w2

1 w2w0 w2w0 τcw
2
2 τc w2

2 + 2w2w2 τx w2
2 + 2w2w2
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TABLE II. The first row reports the possible arrangements of polymer segments on a square cluster and the corresponding cavity fields.
The second row reports the number n of polymer segments in each case. The third row reports the multiplicity m of each arrangement, i.e., the
number of different configurations that can be generated by rotations.

w2

w0

w2

w0

w2

w0

w2

w0

w1 w1

w2

w0

w2

w0

w2

w3 w1

w1 w2

w0

w1 w1

w1 w1

w2

w3 w1

w2

w3 w1

w2

w3

w2

w3

w2

w3

w2

w3

n 0 1 2 2 3 4

m 1 4 4 2 4 1

(ii) If κ = 1, then the only possible field is w1. The site
is visited once, by a walk that exits (or enters) the cluster;
contacts can occur with other visited sites.

(iii) If κ = 2, then the possible fields are w3 and w2. In
the former case the site is visited either once, by a walk along
the corner inside the cluster, or twice, by a walk that exits
the cluster and reenters after a finite number of steps. In the
latter case the site is visited twice. Note that the w2 field does
not incorporate Boltzmann weights of crossing or collisions
occurring at the corner site, whereas the w3 field does. The
complete field combination for the case κ = 2 is therefore
(2τc + τx)w2 + w3.

The above rules, together with Table II, explain the
following expressions:

q0 = w4
0 + 4w3

0w2 + (4ω + 2)w2
0w

2
2 + 4ω2w0w

3
2 + ω4w4

2,

(A6a)

q1 = 4 w2
1

(
w2

0 + 2ωw0w2 + ω3w2
2

)
, (A6b)

q2 = 4 w2
1(w0 + ω2w2)[(2τc + τx)w2 + w3] + 2 ω2w4

1,

(A6c)

q3 = 4 ωw2
1[(2τc + τx)w2 + w3]2, (A6d)

q4 = [(2τc + τx)w2 + w3]4 − (τcw2 + w3)4. (A6e)

With respect to the previous discussion, the only extra
ingredient is that we must subtract from the expression
of q4 the weight of configurations with finite-length loops
(namely, τcw2 + w3) on all four corners. Note that τcw2 is
the weight associated with the presence of a walk along the
corner inside the square, colliding with a (macroscopic) walk
outside.

Let us now also report explicitly the recursion functions
fi appearing in Eq. (7). Due to the form (A4) of the cluster
partition function, they take the similar form,

fi =
4∑

n=0

fi,nζ
n. (A7)

The explicit expressions of fi,n turn out to be

f0,0 = w3
0 + 3w2

0w2 + (2ω + 1)w0w
2
2 + ω2w3

2, (A8a)

f0,1 = 2w2
1(w0 + ωw2), (A8b)

f0,2 = w2
1[(2τc + τx)w2 + w3], (A8c)

f0,3 = 0, (A8d)

f0,4 = 0; (A8e)

f1,0 = 0, (A9a)

f1,1 = 2w1

(
w2

0 + 2ωw0w2 + ω3w2
2

)
, (A9b)

f1,2 = 2w1(w0 + ω2w2)[(2τc + τx)w2 + w3] + 2ω2w3
1;

(A9c)

f1,3 = 2ωw1[(2τc + τx)w2 + w3]2, (A9d)

f1,4 = 0; (A9e)

f2,0 = 0, (A10a)

f2,1 = 0, (A10b)

f2,2 = w2
1(w0 + ω2w2), (A10c)

f2,3 = 2ωw2
1[(2τc + τx)w2 + w3], (A10d)

f2,4 = [(2τc + τx)w2 + w3]3 − (τcw2 + w3)3; (A10e)

f3,0 = w3
0 + (2ω + 1)w2

0w2 + 3ω2w0w
2
2 + ω4w3

2,

(A11a)

f3,1 = 2ωw2
1(w0 + ω2w2), (A11b)

f3,2 = ω2w2
1[(2τc + τx)w2 + w3], (A11c)

f3,3 = 0, (A11d)

f3,4 = (τc + τx)(τcw2 + w3)3. (A11e)

Let us note that we have obtained the above formulas by a
trivial exercise of derivatives, but, as mentioned in the text, they
can also be interpreted in terms of self-similarity conditions.
Indeed, this is the more usual (recursive) route followed for
these kinds of calculations, at least in the context of polymer
models. For this reason we felt it appropriate to set out also
these formulas in full detail.
As mentioned in the text, the numerical technique we employ
to solve the recursion equations is a simple fixed-point method.
Given a tentative set of cavity fields w0, . . . ,w3 (which we
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collectively denote as w in the following formulas), a new
estimate of each field can be computed, according to Eq. (7),
by an expression of the form

ŵi(w) = fi(w)∑3
k=0 fk(w)

, (A12)

where the denominator takes into account the normalization
condition (8).
A second-order phase transition is characterized by the fact
that a minimum of the free energy becomes a saddle point,
so that the corresponding thermodynamic equilibrium state is
no longer stable. Thermodynamic (in)stability is reflected in
the (in)stability of the fixed point of the recursion equations.
Therefore, in order to determine second-order transitions with
good precision, it is convenient to analyze the eigenvalues of
the Jacobian matrix associated with the recursion equations
and the conditions in which any eigenvalue equals unity.
According to Eq. (A12), the elements of such a Jacobian matrix
can be written as

∂ŵi

∂wj

(w) =
∂fi

∂wj
(w) − ŵi(w)

∑3
k=0

∂fk

∂wj
(w)∑3

k=0 fk(w)
. (A13)

The derivatives of fi(w) can be determined from Eqs. (A7)–
(A11). As far as the transition lines are concerned, we can
locate them numerically as loci of zeroes of det(J − I ),
where J is the Jacobian matrix and I the identity matrix.
This can be safely done, because the peculiar form of the
recursion equations allows us to follow a given solution
(fixed point) even in the parameter region where it becomes
unstable. More specifically, if one starts with tentative fields
satisfying w1 = w2 = 0 (which characterizes the 0 phase),
the new estimates computed by Eq. (A12) turn out to satisfy
rigorously the same condition. The same holds for the 2 phase,
characterized by the sole condition w1 = 0.

APPENDIX B: BETHE-LATTICE SOLUTION

We now discuss the solution of the model on the Bethe
lattice. This solution is interesting in particular for the Wu-
Bradley model, because the whole phase diagram, which turns
out to be qualitatively equivalent to that of the Husimi lattice
case, can be worked out analytically, including the peculiar
features of the MC point. Let us remind the reader that the
Bethe lattice can be viewed as a thermodynamic limit of a
random-regular graph, the latter being defined as a random
graph (with ordinary pairwise edges) with fixed coordination
number. Like the Husimi lattice, the Bethe lattice can be treated
locally as if it were a tree graph, because the length of closed
paths diverges (logarithmically) with the system size. Still
with the idea of approximating the 2D square lattice model,
we choose a coordination number 4. Let us warn the reader
that, throughout the following calculations, we use the same
symbols used for the Husimi-lattice case, sometimes with a
slightly different physical meaning.

The free-energy density per lattice bond can still be written
in the form

ψ = − 1
2 ln q + ln z, (B1)

TABLE III. Possible configurations of the polymer on a Bethe-
lattice site: wi denote the cavity fields associated with the four
branches attached to the site (one for each nearest neighbor). The
“prime” symbol in parentheses denotes the possibility of both fields
w0 and w0′ . The expressions below each figure are the respective
contributions (including multiplicity) to the star-cluster partition
function q.

w0( ) w0( )

w0( )

w0( )

w1 w1

w0( )

w0( )

w0( ) w1

w1

w0( )

(w0 + w0 )4 2ζ2w2
1(w0 + ωw0 )2 4ζ2w2

1(w0 + ωw0 )2

w1 w1

w1

w1

w1 w1

w1

w1

2τcζ
4w4

1 τxζ
4w4

1

where now q is star-cluster partition function (where a star
cluster can be defined as a set of lattice bonds incident to a
given site), z is the single-bond partition function, and 1/2 is
the ratio between the number of star clusters and the number of
bonds present in the system. In analogy to the Husimi-lattice
solution, the single-bond term may be viewed as a correction
over the cluster term, due to the overlap between clusters.

In Table III we sketch possible configurations of the
polymer on a lattice site, along with the cavity fields associated
with its nearest neighbors (i.e., the root sites of the four
branches attached to the given site). Note that each figure
represents indeed a multiplicity of configurations, that can
be obtained from one another by rotations. The cavity fields
are defined as follows: wn is associated with a configuration
with n = 0,1 segments incident from a root site, whereas w0

and w0′ distinguish whether the root site is empty or visited,
respectively. The terms of the star-cluster partition function
q, corresponding to each configuration, are also reported in
Table III. Summing these terms, we obtain

q = (w0 + w0′)4 + 6ζ 2w2
1(w0 + ωw0′ )2 + (2τc + τx)ζ 4w4

1.

(B2)

As far as the single-bond partition function is concerned, we
have

z = w2
0 + 2w0w0′ + ωw2

0′ + ζw2
1, (B3)

which can be explained as follows. The first three terms cor-
respond to an empty lattice bond, where the two neighboring
sites are, respectively, both empty, one visited and one empty,
or both visited. The last term takes into account the case of
a bond visited by a polymer segment, both neighboring sites
being obviously visited as well.

We are now in a position to work out the model
solution, since all the needed information is contained in
Eqs. (B1)–(B3). Setting at zero the free-energy derivatives
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with respect to the cavity fields, we obtain the self-consistency
equations

w0 ∝ (w0 + w0′)3, (B4)

w0′ ∝ 3ζ 2w2
1(w0 + ωw0′ ), (B5)

w1 ∝ 3ζw1(w0 + ωw0′)2 + (2τc + τx)ζ 3w3
1. (B6)

As previously mentioned, these equations can also be inter-
preted as self-similarity conditions, where the proportionality
constant remains undetermined, because of the invariance of ψ

under multiplication of each cavity field by a constant. Thermal
averages can be evaluated as derivatives of the free energy, and
in particular the average number of segments (segment density)
per bond reads

ρ = − ∂ψ

∂ ln ζ
. (B7)

Exploiting as usual the fact that the derivatives of ψ with
respect to the cavity fields vanish at equilibrium points, we
arrive at

ρ = ζw2
1

z
. (B8)

The last simple expression can also be rationalized from the
previous explanation of the various terms appearing in the
single-bond partition function.

Let us observe that in all the previous equations the collision
and crossing activities τc and τx always appear only in the
combination 2τc + τx. As a consequence, using the τ and �

parameters defined by Eqs. (12) and (13) (as we do in the
following calculations), the model turns out to depend only
on the average τ , being thus completely unaffected by the
asymmetry parameter �. This means that the Bethe lattice
model, at odds with the Husimi-lattice one, does not exhibit
any “fine structure” in the asymmetric case τx �= τc.

1. Critical 0–1 transition and TC-1 point

It can be easily verified that the self-consistency equa-
tions (B4)–(B6) always admit a solution with w0′ = w1 = 0
(and therefore ρ = 0), whereas w0 depends on the normaliza-
tion condition. In the following, we choose the latter as z = 1,
so that (B3) implies w0 = 1, whence (B2) and (B1) trivially
lead to

ψ = 0. (B9)

This solution is obviously identified with the 0 phase.
In the event of a critical transition (to the 1 phase), we expect

that w0′ and w1 are small near the transition line, whereas
w0 ≈ 1. Let us define the ratios x ≡ w0′/w0 and y ≡ w1/w0.
From (B4)–(B6) we can derive two self-consistency equations

for x and y, namely,

x = 3ζ 2y2(1 + ωx)

(1 + x)3
, (B10)

y = 3ζy(1 + ωx)2 + 3τζ 3y3

(1 + x)3
, (B11)

which no longer depend on the arbitrary normalization. For
small x, we have, respectively,

x = 3ζ 2y2[1 + O(x)], (B12)

y = 3ζy[1 + (2ω − 3)x + O(x2)] + 3τζ 3y3[1 + O(x)].

(B13)

Equation (B12) confirms that also y must be small, and it
shows in particular that x = O(y2). As a consequence, it can
also be rewritten as

x = 3ζ 2y2 + O(y4). (B14)

Replacing the latter equation into (B13), we finally obtain
a self-consistency equation for y alone (valid for small y),
namely,

y = 3ζy + 3[3(2ω − 3) + τ ]ζ 3y3 + O(y5). (B15)

The criticality condition (0–1 transition line) occurs when the
coefficient of the degree-1 term on the right-hand side equals
unity, that is, for

ζ = 1
3 . (B16)

Furthermore, the transition changes from second to first order
(TC-1 point) when the degree-3 term vanishes, which happens
for

τ = 9 − 6ω. (B17)

In the single-chain phase diagram τ vs ω, the latter equation
represents the line of continuous transitions between the
swollen state and the ordinary compact state (TC-1 line). This
line turns out to be numerically quite close to the homologous
line determined for the Husimi-lattice model (see Fig. 11).

2. Critical 1–2 transition and TC-2 point

Equations (B4)–(B6) also admit a solution with
w0 = w0′ = 0. With z = 1, Eqs. (B8) and (B3) imply
ρ = ζw2

1 = 1, whence (B2) and (B1) lead to

ψ = − 1
2 ln(3τζ 2). (B18)

This solution can be identified with the 2 phase. Note that a
density of exactly 1 segment per lattice bond means that all
lattice sites are doubly visited; i.e., on the Bethe lattice this
is actually a saturated phase, which was not the case on the
Husimi lattice.

In the event of a critical transition (to the 1 phase), we
expect that w0 and w0′ are small near the transition line,
whereas w1 ≈ 1/

√
ζ . Let us define the ratios a ≡ w0/w1

and b ≡ w0′/w1. As in the previous case, Eqs. (B4)–(B6)
allow us to derive two recursion equations for a and b,
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FIG. 11. Single-chain phase diagram (τ vs ω) for the Bethe-lattice
model. Lines and tags as in Fig. 6. Thin lines represent the Husimi-
lattice results for the Wu-Bradley model.

namely,

a = (a + b)3

3ζ (a + ωb)2 + 3τζ 3
, (B19)

b = ζ (a + ωb)

(a + ωb)2 + τζ 2
. (B20)

For small b, from Eq. (B19) one can easily argue that
a = O(b3), which, replaced into the same equation, leads to

a = 1

3τζ 3
b3 + O(b5). (B21)

Plugging this equation into (B20), we obtain a self-consistency
equation for b alone (valid for small b), namely,

b = ω

τζ
b + 1 − 3ω3ζ

3τ 2ζ 4
b3 + O(b5). (B22)

The criticality condition (1–2 transition line) occurs when the
coefficient of the degree-1 term on the right-hand side equals
unity, that is, for

ζ = ω

τ
. (B23)

The TC-2 point occurs when we add the condition that the
degree-3 term vanishes:

ζ = 1

3ω3
. (B24)

Putting these conditions together, we obtain

τ = 3ω4, (B25)

which represents the TC-2 line in the single-chain phase
diagram (see Fig. 11). Note that also this line turns out

to be rather close to the analogous one computed for the
Husimi-lattice model.

3. First-order 0–2 transition, CE and MC points

In the previous two sections, we have argued that the 0 and 2
phases are characterized by constant density values (ρ = 0 and
ρ = 1, respectively), which implies that there cannot exist a
continuous phase transition between them. Conversely, a first-
order transition exists, and it can be determined by equating
the free energies (B9) and (B18), which yields

ζ = 1√
3τ

. (B26)

The CE-1 point occurs where the 0–2 transition line
encounters the continuous 0–1 transition line (see Fig. 4), so
that it is defined by the simultaneous solution of Eqs. (B26)
and (B16). Eliminating ζ , we obtain

τ = 3, (B27)

which is denoted as CE-1 line in Fig. 11. The CE-2 point
occurs where the 0–2 transition line meets the continuous
1–2 transition line (see Fig. 3). This is determined by the
simultaneous solution of Eqs. (B26) and (B23). Eliminating ζ ,
we now obtain

τ = 3ω2, (B28)

denoted as CE-2 line in Fig. 11. Finally, the MC point occurs
in the event of a simultaneous merging of the 0–2 line with the
(continuous) 0–1 and 1–2 lines (see Fig. 5). As a consequence,
it is defined by the simultaneous solution of Eqs. (B16), (B23),
and (B26), or equivalently of (B27) and (B28),
yielding

ω = 1, τ = 3. (B29)

It is noticeable that the MC point is the unique transition
point, whose location in the phase diagram remains precisely
the same for both the Husimi and the Bethe lattice models,
besides being also equal to the conjectured location of the
ISAT collapse transition for the ordinary 2D square lattice.

4. ISAT model

Let us now focus on the special case ω = 1, which is the
pure ISAT model. The ζ vs τ phase diagram is reported
in Fig. 12, where we can observe that the transition lines,
determined analytically by Eqs. (B16), (B23), and (B26),
are numerically very close to the corresponding ones for
the Husimi-lattice model. In particular, as far as the 0–2
transition is concerned, the numerical discrepancy is so
small that it cannot be appreciated at the scale of the
figure.

Let us note that, with ω = 1, the variational free-energy
density ψ can be expressed as a function of only two
“modified” cavity fields, which we can define as

u ≡ w0 + w0′ , (B30)

v ≡ w1

√
ζ . (B31)
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(see the text), at the points tagged by A, B, C.

According to such definitions, the star (B2) and bond (B3)
partition functions become, respectively,

q = u4 + 6ζv2u2 + 3τζ 2v4, (B32)

z = u2 + v2, (B33)

whereas ψ is still expressed by (B1). Due to linearity of (B30)
and (B31), the free energy is still invariant under multiplication
of u and v by a coefficient, so that we can then freely choose
the (u,v) vector to have a unit magnitude. As a consequence, it
can be parametrized as function of a single angular coordinate
α as

(u,v) = (cos α, sin α), (B34)

with α ∈ [0,π/2], because u and v must be both non-negative.
Replacing Eq. (B34) into (B32) and (B33) and then into (B1),

by simple algebra we arrive at

ψ = − 1
2 ln

[
1 + 1

2 (3ζ − 1) sin2(2α) + (3τζ 2 − 1) sin4 α
]
.

(B35)

Moreover, taking into account (B31) and (B8), we obtain

ρ = sin2 α. (B36)

In conclusion, both the free-energy density ψ and the segment
density ρ have been expressed as functions of a unique
variational parameter α.

Equilibrium points can now be determined from Eq. (B35)
by setting at zero the derivative of ψ with respect to α. It
turns out that two constant solutions exist, namely, α = 0
and α = π/2, corresponding, respectively, to the 0 and 2
phases. Taking also into account (B36), the third solution,
corresponding to the 1 phase, can be characterized by

τ = 1

ζ

[
1 −

(
1 − 1

3ζ

)(
1

ρ
− 1

)]
. (B37)

The latter equation can be regarded as a family of contour lines
of the density ρ in the ζ vs τ diagram. It is easily observed that
all such lines pass through the MC point (B29), in agreement
with the result obtained numerically for the Husimi-lattice
model.

We are now also in a position to probe analytically (for the
Bethe case) the peculiar characterization of the MC point that
has been discussed in the text. Indeed, in Eq. (B35) we see that
the occurrence of the 0–2 transition condition (B26) implies
that the sin4 α term vanishes. Therefore, the free energy barrier
is due entirely to the sin2(2α) term, whose amplitude vanishes
precisely at the MC point ζ = 1/3. In the inset of Fig. 12, we
have reported ψ as a function of α at different points in the ζ

vs τ plane, namely, those tagged by A, B, C. Point A is located
along the 0–2 first-order transition line, so that we can observe
a free-energy barrier between two equivalent minima. Point B
coincides with the MC point, so that we observe a vanishing
barrier. Finally, point C is located in the region of the 1 phase,
so that we can observe the absolute free-energy minimum
at an intermediate density value. Note that, since the point
is located slightly off the analytical continuation of the 0–2
transition line, the sin4 α term no longer vanishes, so that the
free energies of the (unstable) 0 and 2 phases become different.
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[25] B. Maier and J. O. Rädler, Phys. Rev. Lett. 82, 1911 (1999).
[26] L. Fu and C. L. Kane, Phys. Rev. Lett. 109, 246605 (2012).
[27] P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. Lett.

105, 036803 (2010).
[28] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.
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