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Established populations often exhibit oscillations in their sizes that, in the deterministic theory, correspond to
a limit cycle in the space of population sizes. If a population is isolated, the intrinsic stochasticity of elemental
processes can ultimately bring it to extinction. Here we study extinction of oscillating populations in a stochastic
version of the Rosenzweig-MacArthur predator-prey model. To this end we develop a WKB (Wentzel, Kramers
and Brillouin) approximation to the master equation, employing the characteristic population size as the large
parameter. Similar WKB theories have been developed previously in the context of population extinction from
an attracting multipopulation fixed point. We evaluate the extinction rates and find the most probable paths to
extinction from the limit cycle by applying Floquet theory to the dynamics of an effective four-dimensional WKB
Hamiltonian. We show that the entropic barriers to extinction change in a nonanalytic way as the system passes
through the Hopf bifurcation. We also study the subleading pre-exponential factors of the WKB approximation.
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I. INTRODUCTION

Populations of individuals (of molecules, bacteria, animals,
or even humans) can often be viewed as stochastic. The
intrinsic (demographic) noise in the elemental processes
governing these systems profoundly affects their dynamics.
A dramatic example is the extinction of a long-lived isolated
population resulting from a rare sequence of events when
deaths prevail over births. Stochastic population dynamics in
general, and population extinction in particular, have always
been a part of population biology [1]. More recently they
have attracted attention from statistical physicists, who view
stochastic populations as a many-body system far from thermal
equilibrium.

Extinction of single populations, driven by weak intrinsic
noise, is by now well understood (see Refs. [1,2] and references
therein). Extinction of one or more populations in long-lived
multipopulation systems has also been extensively studied,
assuming that, prior to extinction, the populations reside in the
vicinity of an attracting fixed point in the space of population
sizes [3–8,10,11]. Many coexisting populations, however,
exhibit persistent oscillations in their sizes [12–16]. At the level
of deterministic theory, these oscillations are usually described
by a stable limit cycle in the space of population sizes. A
well-known deterministic model that shows this feature—a
variation of the celebrated Lotka-Volterra model [17,18]—is
due to Rosenzweig and MacArthur [19]. Qualitatively similar
models are used in epidemiology for a description of the
dynamics of susceptible and infected populations during an
epidemic [20–22] and for a description of the oscillatory
dynamics of tumor growth [23,24]. Similar models describe
oscillatory chemical reactions [25,26].

In this work we study extinction caused by the weak
intrinsic noise of populations that exhibit a limit cycle in the
space of population sizes. We evaluate the extinction rates
and most likely routes to extinction in a stochastic version of
the Rosenzweig-MacArthur (RMA) model that we propose.
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We extend a WKB (after Wentzel, Kramers, and Brillouin)
theory, previously developed for multiple populations residing
in the vicinity of an attracting fixed point [3–8,10,11,27,28], to
populations residing in the vicinity of a stable limit cycle. We
show that the most likely routes to extinction in such systems
are described by a new type of instantons—special phase
trajectories of the underlying effective classical mechanics.
In its leading order of the large-population-size expansion,
the WKB theory yields the mean time to extinction (MTE)
with an exponential accuracy that is up to a subleading
prefactor. As we show here, our WKB results agree with
numerical solutions of the master equation and with direct
Monte Carlo simulations for this model up to a prefactor
which is a subleading correction to the WKB result. We find
that the entropic barrier to extinction behaves in a nonanalytic
way at the Hopf bifurcation describing the birth of the limit
cycle. Furthermore, we evaluate the subleading WKB prefactor
numerically and find that it too changes its behavior at the Hopf
bifurcation. We suggest theoretical arguments to explain these
features. The results of this work can be extended to a whole
class of models of isolated multiple populations which exhibit,
at the deterministic level, a stable limit cycle.

Here is how the remainder of the paper is structured. In
Sec. II we briefly recap the main properties of the deterministic
RMA model and focus on the parameter region where the
system exhibits a stable limit cycle in the space of population
sizes. Section III deals with the stochastic version of the RMA
model that we suggest. In particular, Sec. III A discusses the
two routes to extinction that this model exhibits. In Sec. III B
we present the master equation for the stochastic version of the
RMA model and discuss its long-time properties. In Sec. III C
we develop a WKB theory of population extinction in this
model. We summarize our results in Sec. IV.

II. ROSENZWEIG-MACARTHUR MODEL:
DETERMINISTIC DYNAMICS AND THE LIMIT CYCLE

We denote the population sizes of the predators and prey
F (foxes) and R (rabbits), respectively, and assume that the
population densities are homogeneous in space. The elemental
processes and rates of the RMA model [19] are listed in Table I.
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TABLE I. Stochastic Rosenzweig-MacArthur model.

Process Type of transition Rate

Birth of rabbits R → 2R aR

Predation and birth of foxes F + R → 2F sRF

1+sτR

Death of foxes F → 0 F

Competition among rabbits 2R → R R(R+1)
2N

The rabbits reproduce at rate a and die, due to competition for
resources, at rate 1/N . The foxes die or leave at a constant
per-capita rate, and the units of time are chosen such that this
rate is equal to 1. The parameters s and τ are related to the
predation rate as follows: For a small rabbit population R, the
predation rate, sR, is proportional to R. For a very large rabbit
population, the predation rate saturates at 1/τ so as to describe
satiation of the predators.

The deterministic equations for the RMA model are

Ṙ = aR − 1

2N
R2 − sRF

1 + sτR
, (1)

Ḟ = −F + sRF

1 + sτR
. (2)

We assume that s scales with the system size as s ∝ 1/N ,
where N � 1 is the scale of the population sizes. We introduce
x = R/N , y = F/N , and σ = sN = O(1) and arrive at the
rescaled equations

ẋ = ax − 1

2
x2 − σxy

1 + στx
, ẏ = −y + σxy

1 + στx
, (3)

where all the quantities are assumed to be of order 1.
The deterministic RMA model has been extensively studied

[19,29,30]. Here we recap the main results of these works that
we need for our purposes. We are interested only in the regime
of parameters

0 < τ < 1, σ > σ0 = 1

2a(1 − τ )
, (4)

when Eq. (3) have three fixed points describing nonnega-
tive population sizes. The fixed point M1 (x̄1 = 0, ȳ1 = 0)
corresponds to an empty system. It is a saddle point: at-
tracting in the y direction (when there are no rabbits in the
system) and repelling in the x direction. The fixed point
M2 (x̄2 = 2a, ȳ1 = 0) describes a steady-state population of
rabbits in the absence of foxes. It is also a saddle: attracting
in the x direction (when there are no foxes) and repelling in a
direction corresponding to the introduction of a few foxes into
the system. The third fixed point M3 (x̄3,ȳ3), where

x̄3 = 1

σ (1 − τ )
, ȳ3 = 2aσ (1 − τ ) − 1

2σ 2(1 − τ )2 , (5)

describes the coexistence state of the rabbits and foxes. Its
stability properties depend on the parameters: For

σ0 < σ < σ̄ =
aτ (1+τ )
2(1−τ ) − 1 −

√
1 + a 1+τ

1−τ

a2τ 2 − 4a(1 − τ )
, (6)

FIG. 1. Phase portrait of the deterministic RMA model, (3), for
a = 1, τ = 0.5, and two values of σ : (a) σ = 2.6, where M3 is a
stable focus, and (b) σ = 3.2, where M3 is an unstable focus.

M3 is a stable node. For

σ̄ < σ < σ ∗ = 1 + τ

2aτ (1 − τ )
, (7)

it is a stable focus. Finally, for σ > σ ∗, M3 is unstable, and a
stable limit cycle appears around it. Noise-driven population
extinction from a limit cycle has not been studied before.
Therefore, in most of the paper we assume that σ > σ ∗. A Hopf
bifurcation occurs at σ = σ ∗. Figure 1 shows the the behaviors
of the deterministic model for σ̄ < σ < σ ∗ [Fig. 1(a)] and for
σ > σ ∗ [Fig. 1(b)]. The characteristic time scale tr of the
deterministic dynamics is determined by the real part of the
eigenvalues of the linear stability matrix at the fixed point M3

when the latter is stable and by the period of the limit cycle
and the relaxation time toward it when M3 is unstable.

III. STOCHASTIC ROSENZWEIG-MACARTHUR MODEL:
EXTINCTION FROM A LIMIT CYCLE

A. Two routes to extinction

How does the deterministic picture change when one
accounts for the stochasticity of the elemental processes of the
RMA model and the discrete character of the population sizes?
Figure 2 shows a stochastic realization of the RMA model in
the R,F plane. As one can see, at sufficiently large N and
at intermediate times, the stochastic trajectory closely follows
the deterministic one. The long-time behavior, however, is

FIG. 2. Phase-space trajectories of the deterministic RMA model
(dashed line) vs a Monte Carlo simulation of the stochastic model
(solid line). Parameters are a = 1, σ = 3.2, τ = 0.5, and N = 1600.
For intermediate times, the stochastic dynamics closely follow the
deterministic dynamics. For much longer times (not shown), at least
one of the populations goes extinct (see Fig. 3).
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FIG. 3. Two stochastic realizations of the RMA model for a = 1,
τ = 0.5, σ = 3.2, and N = 192. Shown are the population sizes of
rabbits (solid lines) and foxes (dashed lines) versus time. (a) Foxes go
extinct first, whereas rabbits approach a steady state around the fixed
point M2 and live on forever. (b) Rabbits go extinct first, at t � 137,
and foxes go extinct very soon afterwards, at t � 142.

dramatically different: At least one of the populations here
goes extinct, and this happens in one of two possible ways.
Figures 3(a) and 3(b) show two stochastic realizations for
the same values of parameters [which coincide with those in
Fig. 1(b)] and for the same initial conditions. In Fig. 3(a)
the foxes go extinct, while the rabbit population approaches a
nonzero steady state. In Fig. 3(b) the rabbits go extinct first,
followed by a quick extinction of the foxes. The population
extinction results from the presence of two absorbing states
in this system: the empty state and the state without foxes but
with a nonzero rabbit population. (Note that, in our model, the
rabbits are immortal in the absence of foxes.) One of these two
absorbing states is always ultimately reached. At N � 1 this
usually happens due to a rare large fluctuation when starting
from the long-lived population state in the vicinity of the
deterministic limit cycle.

B. Master equation and long-time dynamics

Let Pm,n(t) be the probability of finding m rabbits and n

foxes in the system at time t . The dynamics of Pm,n(t) is
governed by the master equation,

Ṗm,n = ĤPm,n = a[(m − 1)Pm−1,n − mPm,n]

+ σ (m + 1)(n − 1)

N + στ (m + 1)
Pm+1,n−1 − σmn

N + στm
Pm,n

+ (n + 1)Pm,n+1 − nPm,n

+ (1/2N )[(m + 1)mPm+1,n − m(m − 1)Pm,n], (8)

where Pm,n = 0 when any of the indices is negative. At times
much longer than tr but shorter than the MTE (see below), a
quasistationary distribution appears around the deterministic
limit cycle [9]. Following Ref. [10], we can define the effective
probability contents of the vicinities of the fixed points M1,
M2 and the limit cycle:

P1(t) = P0,0(t), (9)

P2(t) =
∞∑

m=1

Pm,0(t), (10)

P3(t) =
∞∑

m=1

∞∑
n=1

Pm,n(t). (11)

Assuming N � 1 and t � tr , the main contributions to the
sums in Eqs. (10) and (11) come from the close vicinities
of the fixed point M2 and the limit cycle, respectively. The
effective long-time dynamics of P1, P2, and P3 are given by a
three-state master equation [10],

Ṗ1(t) = R1P3(t),

Ṗ2(t) = R2P3(t), (12)

Ṗ3(t) = −(R1 + R2)P3(t),

where R1 and R2 are the extinction rates along the first and
second extinction routes, respectively. At t � tr , we assume
that initially the populations occupy the coexistence state in
the vicinity of the limit cycle:

[P1(0),P2(0),P3(0)] = (0,0,1). (13)

Then the solution of Eq. (12) is [10]

P1(t) = R1 [1 − e−(R1+R2)t ]

R1 + R2
, (14)

P2(t) = R2 [1 − e−(R1+R2)t ]

R1 + R2
, (15)

P3(t) = e−(R1+R2)t . (16)

As one can see from Eqs. (14)–(16), the long-term behavior of
the system is determined by the extinction rates R1 and R2.
Their evaluation, therefore, is our main objective.

From Eqs. (14)–(16), the mean time to extinction of foxes
is [10]

MTEF =
∫ ∞

0
dt t

[
Ṗ1(t) + Ṗ2(t)

] = −
∫ ∞

0
dt tṖ3(t)

= 1/(R1 + R2), (17)

whereas the mean time to extinction of the rabbits is formally
infinite. As we see below, the first extinction scenario is much
less likely than the second, i.e., R1 � R2. As a result, the
MTE of the foxes can be approximated as

MTEF � 1/R2. (18)

We now briefly discuss, for completeness, how the extinc-
tion rates are encoded in the spectrum of the linear operator
Ĥ , introduced in Eq. (8). Let us denote the eigenvalues and
eigenstates of Ĥ by λi and π (i)

m,n, respectively, i.e.,

Ĥπ (i)
m,n = −λiπ

(i)
m,n. (19)
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We can write the solution of the time-dependent master
equation, (8), in terms of the eigenstates as

Pm,n(t) =
∞∑
i=1

Ciπ
(i)
m,ne

−λi t , (20)

where the constants Ci are determined by the initial condition
Pm,n(0) [10]. Two of the eigenstates describe the (truly)
steady-state solutions, corresponding to the empty state and the
fox-free state with a steady-state population of rabbits. Their
corresponding eigenvalues are both equal to 0. The smallest
nonzero eigenvalue is λ3 = R1 + R2 [10].

Our principal task in the remainder of this paper is to
evaluate this eigenvalue and the extinction rates R1 and R2 by
examining the eigenvalue problem,

Ĥπm,n = −(R1 + R2)πm,n, n > 0. (21)

Since the extinction rates are exponentially low in N � 1,
one can approximate the full Eq. (19) for πm,n by the
quasistationary equation

Ĥπm,n � 0, m > 0, n > 0. (22)

C. WKB approximation

1. General

For N � 1, Eq. (22) can be approximately solved via the
WKB ansatz [27],

πm,n = exp[−NS(x,y)], (23)

where x = m/N and y = n/N . Assuming that S(x,y) is a
smooth function of x and y, we plug this ansatz into Eq. (22)
and Taylor-expand S around (x,y). In the leading order in 1/N ,
this procedure yields a zero-energy Hamilton-Jacobi equation,
H (x,y,∂xS,∂yS) = 0, with the effective Hamiltonian

H (x,y,px,py) = ax(epx − 1) + σxy

1 + στx
(epy−px − 1)

+ y(e−py − 1) + x2

2
(e−px − 1). (24)

The Hamilton equations are

ẋ = axepx − x2

2
e−px − σxy

1 + στx
epy−px ,

ẏ = σxy

1 + στx
epy−px − ye−py ,

(25)
ṗx = a(1 − epx ) + x(1 − e−px ) + σy

(1 + στx)2
(1 − epy−px ),

ṗy = (1 − e−py ) + (1 − epy−px )
σx

1 + στx
.

We are only interested in the zero-energy manifold H = 0.
Note that in the zero-energy invariant hyperplane px = py =
0, the dynamics of x and y reduce to the deterministic
dynamics, (3). Therefore, the three deterministic fixed points,
M1 = (0,0,0,0), M2 = (2a,0,0,0), and M3 = (x∗,y∗,0,0) are
also fixed points of the Hamiltonian dynamics, (25). In its
turn, the deterministic limit cycle is an exact time-periodic
solution of the Hamilton equations, (25), with px = py = 0.

In addition, there are two “fluctuational” fixed points:

F1 = (0,0, − ∞,0),
(26)

F2 =
[

2a,0,0, ln

(
1 + 2aτσ

2aσ

)]
.

Fluctuational fixed points have a nonzero px or py compo-
nent and appear in a whole class of stochastic population
models that exhibit extinction in the absence of an Allee
effect [1–4,31].

We can evaluate the extinction rates R1 and R2 by eval-
uating the QSD πm,n at (x = 0, y = 0) and (x = 2a, y = 0),
respectively. This is done by calculating the actions S1 and S2

along the corresponding instantons: phase-space trajectories
which begin, at t = −∞, in the deterministic limit cycle and
end, at t = ∞, at the fluctuational fixed points F1 and F2,
respectively. These actions are

S1 =
∫ F1

(xlc,ylc)
pxdx + pydy and

S2 =
∫ F2

(xlc,ylc)
pxdx + pydy.

With exponential accuracy, the extinction rates R1 and R2

are [10]

R1 ∼ exp(−NS1), R2 ∼ exp(−NS2). (27)

2. Some properties of the instantons. Shooting method

For the case of extinction from a fixed point, the instantons
can be found numerically: either by shooting [3,4,10] or by
iterating the equations for ẋ and ẏ forward in time and the
equations for ṗx and ṗy backward in time [8,31,32]. Here we
modify the shooting method [3,4,10] to make it suitable for an
instanton which exits, at t = −∞, a deterministic limit cycle
and enters, at t = ∞, one of the fluctuational fixed points.
First, we need to discuss some important properties of such
instantons. In particular, how the instanton exits the limit cycle
is crucial for the shooting method we present.

In the case of extinction from an attracting fixed point, one
proceeds by linearizing the Hamilton equations near the fixed
point and finding the unstable eigenvectors of the linearizing
matrix. The matrix will have two “stable” (deterministic)
eigenvectors and two “unstable” eigenvectors, whose eigenval-
ues have a positive real part (see, e.g., Eq. (7.25) in Ref. [33]).
The instanton (which, in this case, is a heteroclinic trajectory
going to a fluctuational fixed point) is then found by looking
for a linear combination of the two unstable eigenvectors of a
fixed (and very small) norm, using the shooting method [3,4].

When the extinction is from a stable limit cycle, the
leading-order dynamics in the vicinity of the limit cycle is
best described by Floquet theory (see, e.g., [34]). For each
point vl c = (xlc,ylc,0,0) in the limit cycle, we define its
Floquet matrix B as follows: Given a starting point which
is near the limit cycle, vl c + δv, and advancing in time
according to the Hamilton equations, we will arrive, after one
period of the limit cycle, at the point vl c + Bδv + O(‖δv‖2).
The eigenvectors and eigenvalues of the Floquet matrix will
determine the stable and unstable directions in phase space.
(We assume everywhere in the following that the eigenvectors
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are normalized to unity.) Although the Floquet matrix B itself
and its eigenvectors are local quantities which vary along the
limit cycle, its eigenvalues are independent of the choice of
the point (xlc,ylc,0,0) in the limit cycle [33,34].

As in the fixed-point case, B will have two “deterministic”
(zero-momentum) eigenvectors. The corresponding eigenval-
ues will be λ and 1. λ < 1 corresponds to a stable eigenvector,
and 1 corresponds to a neutral eigenvector, which is tangent to
the limit cycle at its every point. Note that λ must be positive;
otherwise, phase-space trajectories would cross each other.
The two additional eigenvalues ofBmust be equal to 1 (another
neutral eigenvector) and 1/λ (an unstable eigenvector) (see
Eq. (7.27) in Ref. [33] or Ref. [35] for the proof). Therefore,
there is only one unstable direction through which a trajectory
can exit the limit cycle. We now understand how the instanton
exits the limit cycle. It starts in the limit cycle at t = −∞ and
then performs an infinite number of rotations around the limit
cycle, each one farther from the limit cycle by a factor of 1/λ,
before departing.

In view of this basic property of the instanton, our
numerical method consists of several steps. The first step is
to choose an arbitrary point vl c = (xlc,ylc,0,0) in the limit
cycle. This is done by numerically integrating the deterministic
equations, (3). The period T of the limit cycle is computed
numerically as well.

We then numerically compute the Floquet matrix B at the
point vl c we chose. This is done by adding small perturbations
to each of the four coordinates of vl c in turn and then advancing
the Hamiltonian equations, (25), from time t = 0 to t = T . The
result is a point which is near vl c, but the small distance from
it gives us a column of the Floquet matrix. For example, we set
u(t = 0) = (xlc,ylc,δpx,0) and then advance u(t) according to
the Hamilton equations, until time t = T . The third column
in the Floquet matrix is then given by [u(t = T ) − vl c]/δpx +
O(δpx).

Next we diagonalize the Floquet matrix and find its only
unstable vector v, whose eigenvalue 1/λ is larger than 1. Since
the instanton must exit the limit cycle through this unstable
direction, we expect there to be a discrete set of ε’s for which
vl c + εv is on the instanton (to leading order in ε). What is left
is to find one such ε by the shooting method. We emphasize
that ε can be taken to be as small as we like, because if vl c + εv

is on the instanton, then so is vl c + λεv to leading order in ε.
It is easy to show that ∂H/∂v ≡ ∇H · v, the derivative of

the Hamiltonian H in the direction of the unstable eigenvector
v, vanishes. Let us start from some initial condition

u(t = 0) = u0 = (xlc,ylc,0,0) + εv.

Assuming that ε is small enough, ε � 1, the energy at this
point is H (u0) � ε ∂H/∂v. After advancing the Hamiltonian
dynamics by the period T of the limit cycle, the system will
be at the point

u(t = T ) � (xlc,ylc,0,0) + λ−1εv,

and the energy will be

H [u(t = T )] � λ−1ε
∂H

∂v
.

FIG. 4. Numerically found instantons from the stable limit cycle
(solid line) to F1 (dot-dashed line) and to F2 (dashed line). Parameters
are a = 1, σ = 3.2, and τ = 0.5. (a) The xy projections; (b) the pxpy

projections.

By virtue of energy conservation,

H [u(t = T )] = H (u0).

Since λ is different from 1 (λ < 1), this implies that
∂H/∂v = 0.

As we see now, there are three directions which are tangent
to the zero-energy manifold: the two deterministic directions
and the unstable direction v. Is the fourth direction—the
neutral “quantum” eigenvector—also tangent to the zero-
energy manifold? The answer is no. The reason is that, in
the limit cycle, ∇H = 0 (the gradient of H vanishes only at
fixed points of the Hamiltonian dynamics), so there cannot be
four independent directions for which the directional derivative
is 0.

3. Finding the instantons and evaluating S1 and S2

Examples of numerically found instantons which start at
the limit cycle and end at the fluctuational fixed points F1 and
F2 are shown in Fig. 4. Figure 5 compares the extinction
rates Ri obtained by solving numerically the (truncated)
master equation, (8), with the result of the leading-order WKB
approximation, e−NSi . The truncation of the master equation is
done by introducing a sufficiently large artificial cutoff size for
the populations, as described in [9]. Figure 6 shows our results
for the the mean time to extinction of foxes MTEF and for the
ratio of the probabilities of the two extinction routes, P1/P2,
obtained by averaging over many Monte Carlo simulations.
The same figure shows the corresponding leading-order WKB
predictions 1/(e−NS1 + e−NS2 ) � eNS2 and eN(S2−S1). In both
cases a good agreement, up to undetermined WKB prefactors,
is observed between the numerical and the WKB results. We
investigate the prefactors in Sec. IIIC5.
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FIG. 5. Extinction rates Ri , determined by solving the master
equation, (8), numerically for different N ’s, are compared with
the extinction rates e−NSi calculated in the leading-order WKB
approximation. Parameters are a = 1, τ = 0.5, and σ = 3.1. The
actions along the instantons are S1 � 0.0466 and S2 � 0.0211.
Vertical shifts are due to the undetermined WKB prefactors F1 and
F2 (see Sec. IIIC5).

4. Nonanalytic behavior of the entropic barrier
near the Hopf bifurcation

Figure 7 presents our numerical results for the actions
S1,2 calculated along the instantons leading to F1 and F2,
respectively, for the same a = 1 and τ = 0.5 and different
values of σ close to the Hopf bifurcation, σ = σ ∗. For σ < σ ∗
the fixed point M3 is stable, and the actions were calculated on
the instantons which start at M3. An immediate observation
is that S1 > S2 for all σ , so that the effective transition rate
R2 is exponentially greater than R1, as observed previously
for extinction from a fixed point [10]. The (numerically
evaluated) first derivatives of the entropic barriers with respect
to σ are also shown as functions of σ [Figs. 7(b) and 7(d)].
Interestingly, the first derivatives exhibit corner singularities
at σ = σ ∗ indicating jumps in the second derivatives (so the
phenomenon can be classified as a dynamic second-order
phase transition).

Let us now consider a simple toy model of a “noisy” Hopf
bifurcation that displays qualitatively the same phenomenon
but can be solved analytically. The model is defined by two

FIG. 6. N dependence of the mean time to extinction of the foxes
MTEF and of the ratio of probabilities of the two extinction scenarios
P1/P2 for fixed a = 1, τ = 0.5, and σ = 4. Results obtained by
averaging over many Monte Carlo simulations are compared with
leading-order WKB predictions. Values are plotted on a semilog scale.
The actions are S1 � 0.0167 and S2 � 0.00665. Since S2 < S1, the
MTE of the foxes is approximated in the WKB theory as MTEF �
eNS2 [see Eq. (18)]. Vertical shifts are due to the undetermined WKB
prefactors Fi (see Sec. IIIC5).

Langevin equations in polar coordinates,

ṙ = αr − βr3 + γ r5 + εξ (t), θ̇ = 1, (28)

where ξ (t) is zero-mean Gaussian noise, delta-correlated in
time. As the equations for r and θ are decoupled, the problem
is effectively one-dimensional. We assume that β and γ are
positive and examine the Hopf bifurcation which occurs when
α changes sign. Close to the bifurcation |α| � 1. We consider
the weak-noise limit, ε → 0, and assume that the noise is
smaller than the rest of the parameters, including |α|.

The equation for r can be written in the form ṙ = −V ′(r) +
εξ (t), where we have defined the deterministic potential

V (r) = −α

2
r2 + β

4
r4 − γ

6
r6 (29)

(see Fig. 8).
In the toy model, the mean escape time (MET) from the

metastable state near the origin rmin is given by Kramers’
formula [36]. To leading order, ln (MET) � 2�V/ε2, where
�V = V (rmax) − V (rmin) is the height of the potential barrier,
rmax is the global maximum of V , and rmin is the coordinate
of the metastable state near the origin (see Fig. 8). The
quantities �V and 1/ε2 are analogous to the action S and the
characteristic population size N , respectively, in the stochastic
RMA model.

For α < 0, the origin is a stable fixed point of the
deterministic dynamics and a local minimum of V , so rmin = 0
and V (rmin) = 0. For α > 0, the origin is unstable, and a limit
cycle appears around it, of radius rmin � √

α/β. Now the local
minimum of the potential is V (rmin) � −α2/(4β), where we
have assumed that rmin � 1, which holds near the bifurcation.

If we now consider �V as a function of α, we can easily
see that it is nonanalytic at α = 0, because of the nonanalytic
behavior of V (rmin). From the expressions for V (rmin) below
and above the bifurcation, we find that the second derivative
∂2�V/∂α2 jumps by 1/(2β).

This prediction from the toy model is quite general and
depends only on the behavior of the potential near the origin.
In particular, the value (and even the sign) of γ in Eq. (29)
does not affect the results in any way: all that matters is
that higher order terms in r guarantee the existence of a
finite rmax.

The prediction of nonanalytic behavior at the Hopf bi-
furcation can be extended to the stochastic RMA model.
Near the bifurcation, and in the vicinity of M3 and/or the
limit cycle around it, the Fokker-Planck approximation of the
master equation, (8), is applicable and can be obtained by the
van Kampen system-size expansion [36]. After rescaling the
coordinates, a radial Langevin equation can be deduced, and
it is of the same form as Eq. (28). However, the amount by
which ∂2Si/∂σ 2 jumps in the stochastic RMA model is in
disagreement with the prediction of the toy model. To begin
with, the jumps of the second derivatives for S1 and S2 are,
in general, not equal to each other, as clearly shown in Fig. 7.
The reason for the disagreement is that, in a nonequilibrium
system like the stochastic RMA model, the actions S1 and
S2, and therefore the jumps in their second derivatives with
respect to the σ , are affected by the variation along the
entire instantons. Therefore, the toy model misses one crucial
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FIG. 7. Jumps in the second derivatives of the entropic barriers to extinction with respect to the bifurcation parameter σ at the Hopf
bifurcation. Solid lines: the actions (a) S2 and (c) S1 along the instantons. Dashed lines: the first derivatives (b) ∂S2/∂σ and (d) ∂S1/∂σ .
The actions and their first derivatives are continuous, while the second derivatives are discontinuous at the Hopf bifurcation. Parameters are
a = 1, τ = 0.5. The Hopf bifurcation occurs at σ ∗ = 3 [see Eq. (7)].

feature of the stochastic RMA model: its nonequilibrium
character.

5. Prefactors of the extinction rates

We now study the prefactors F1 and F2, which are the
subleading corrections to the extinction rates Ri = Fie

−NSi ,
i = 1,2, at N � 1. Our numerical results for the dependence
of the prefactors on N (for fixed a, σ, and τ ) are shown
in Fig. 9. One can see an apparent power-law dependence,
whose exponent changes at the Hopf bifurcation σ = σ ∗. We
observed the same behavior for other sets of a,σ,τ as well (not
shown). When the fixed point M3 is attracting, the prefactors
appear to behave as F ∝ N1/2. For a stable limit cycle, they
appear to be independent of N .

How can we interpret these numerical results? For mul-
tipopulation systems the prefactors cannot, in general, be
found analytically. It is natural to assume, however, that
the prefactors depend on N � 1 as a power law, F ∝ Nμ.
Indeed, apart from our numerical results for the RMA model,
power-law behaviors of the prefactors of the extinction rates
have been observed in all cases where the prefactors could
be calculated analytically: for single populations [2,37–39]
and for two-population systems which possess a time-scale
separation [6].

We now propose a simple argument which explains why
the exponent of the power law μ changes by 1/2 at the Hopf
bifurcation, as evidenced by Fig. 9. The argument is based
on the normalization of the quasistationary distribution πmn,
which is strongly affected by the Hopf bifurcation.

FIG. 8. Deterministic potential, (29), of the toy model. Parame-
ters are β = 3, γ = 1, and α = 1 (solid line) or α = −1 (dashed line).
rmin and rmax are labeled. The Hopf bifurcation is at α = 0, where rmin

changes from 0 to a positive value. Close to the bifurcation |α| � 1.
However, for clarity of the figure we used values of α which are
not small.

When M3 is a stable fixed point, the quasistationary
distribution πmn in the vicinity of M3 is a two-dimensional
Gaussian peaked at M3, with standard deviations of order√

N in either direction. This part of the distribution gives
the main contribution to the normalization. The value of the
quasistationary distribution function at its peak is therefore of
order πm∗n∗ ∼ 1/N , where (m∗,n∗) = (Nx∗,Ny∗) is the fixed
point M3.

In the case of a limit cycle, the distribution πmn is well
approximated by a Gaussian “ridge” around the limit cycle,
whose width is of order

√
N [40]. Since the length of the limit

cycle increases linearly with N , the value of the quasistationary
distribution function in the limit cycle is of order π (mlc,nlc) ∼
N−3/2. This will in turn add a factor of order N−1/2 to the
whole distribution πmn, compared to the fixed-point case. We
therefore expect the prefactor’s power-law dependence on N

to change at the bifurcation, and the exponent μ to drop by
1/2 at the Hopf bifurcation, as Fig. 9 indeed suggests.

IV. CONCLUSIONS

We have studied population extinction from a limit cycle
due to intrinsic noise in the Rosenzweig-MacArthur model.
In the leading-order WKB approximation, the calculation
of the extinction rates and the most probable extinction
paths boils down to finding a new type of instanton of an
effective Hamiltonian system. We have developed a numerical
method of computing these instantons. The method is based

FIG. 9. N dependence of the numerically evaluated prefactors
Fi(a,σ,τ,N ) (i = 1,2) for fixed a = 1, τ = 0.5, and σ = 3.1 (limit
cycle; L.C.) or σ = 2 (fixed point; F.P.). For N � 1, there is an
apparent power-law dependence on N , whose exponent changes at
the bifurcation. For a fixed point, the prefactor scales as F ∝ N1/2,
while for a limit cycle it appears to be independent of N . The dashed
line has a slope of 1/2 and is a guide for the eye.
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on Floquet theory and involves numerical determination
of the unstable direction in which the instantons exit the
limit cycle.

We have shown numerically that the entropic barriers to
extinction S1 and S2 exhibit a nonanalytic behavior—a second-
order dynamic phase transition—at the Hopf bifurcation.
We leave as an open problem the challenge of analytically
calculating the jump in the second derivative. We believe that
there are two contributions to this jump: one is a contribution
from the close vicinity of the fixed point M3 that can be
calculated analytically, as we have shown by using a simple
toy model. The second contribution comes from the variation
of the action due to the global change in the shape of the
instanton. This contribution is hard to calculate analytically.

We also obtained numerical results for the extinction rate
prefactors: the subleading corrections of the WKB theory.
As we found, the prefactors show a power-law dependence
on the population size scale N . The exponent of the power
law changes at the Hopf bifurcation, and we suggested an
explanation of this change in terms of a simple normalization
argument.
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