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Tsallis statistics generalization of nonequilibrium work relations
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Nonequilibrium work relations such as Jarzynski equality and Crooks fluctuation theorem relate the free energy
differences between two equilibrium states and the work distribution of nonequilibrium processes. We use the
third constraint formulation of Tsallis statistics and derive the q-statistics generalization of nonequilibrium work
relations.

DOI: 10.1103/PhysRevE.93.032107

I. INTRODUCTION

Recent advances in theory of nonequilibrium statistical
mechanics have established the methods to calculate the free
energy differences between the two equilibrium states of
the driven system from the nonequilibrium work measure-
ments [1–3]. These methods are generally called nonequilib-
rium work relations and, in particular, named as the Jarzynski
equality [1] and the Crooks work fluctuation theorem [2].
Consider a system initially in equilibrium at temperature
(inverse) β = 1/kT (k is the Boltzmann constant), which is
externally driven from its initial equilibrium state A to final
equilibrium state B by nonquilibrium process. Let PF [γ F ]
be the probability of the phase-space trajectory γ F , for the
system driven between the two states in forward direction.
This satisfies the Crooks work fluctuation theorem [2,4],

PF [γ F ]

PR[γ R]
= eβ(W−�F ), (1)

where W is the work performed on the driven system, �F is
the free energy difference between the two equilibrium states,
and PR[γ R] is the probability of the phase-space trajectory
γ R , for the system driven in the reversed direction. This is the
direct relation between the work dissipation and the ratio of
probabilities for the forward and the reversed trajectories and
its integrated version is Jarzynski equality [1,5],

〈exp[−βW ]〉 = exp[−β�F ]. (2)

The average 〈· · · 〉 is over a statistical ensemble of realizations
of a given thermodynamic process.

In Crooks work fluctuation theorem, the probabilities of
nonequilibrium forward and reversed trajectories are related by
taking the initial conditions from the Boltzmann-Gibb’s (BG)
equilibrium distribution. There are very few studies on work
fluctuation theorem relating the nonequilibrium forward and
reverse trajectories taken from other statistical distributions
which are based mainly on q statistics [6–10]. Although the
foundations of q statistics seem to face certain difficulties [11],
considerable effort has been made to resolve them [12].

Based on Tsallis statistics [13], finite bath work fluctuation
theorem was derived [7], which includes the microcanonical
work fluctuation theorem and the Crooks work fluctuation
theorem as the two limiting cases. This has been obtained by
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considering Tsallis statistics as a finite heat bath statistics [7].
However, this theorem generally contains two temperatures
instead of one as observed usually in nonequilibrium work
relations [Eqs. (1) and (2)]. There is no generalized connection
established between Tsallis statistics and nonequilibrium work
relations at a single temperature [9,10]. In this paper, we
derive the q-statistics generalization of Jarzynski equality
and the Crooks work fluctuation theorem for the classical
system driven between two equilibrium states by a nonequi-
librium process using Tsallis statistics. This generalized
connection may exhibit interesting applications in complex
systems [10,14,15].

The theory of Tsallis statistics based on a generalized form
of entropy, Sq , characterized by the index q ∈ R, such that q =
1 recovers the standard theory of Boltzmann and Gibbs. This
generalized (Tsallis) entropy is given by the expression [13]

Sq = k
1 − cq

(q − 1)
, (3)

where k is the positive (Boltzmann) constant and

cq =
w∑

i=1

p
q

i . (4)

Here, w is the total number of microstates of the system and
pi is the probability of the system at microstate i. In the limit
q → 1 one can recover BG entropy

SBG = −k

w∑
i=1

pi ln pi. (5)

Preserving the standard variational principle, Tsallis estab-
lished the canonical generalized distributions and its refine-
ments [14,16]. Using Tsallis statistics, Chame and Mello
have derived the generalization of the fluctuation dissipation
theorem [17]. Tsallis nonextensive statistical mechanics is
also considered as an approach to nonequilibrium stationary
states of small or complex systems [14]. However, its equilib-
rium formulation remains valid for obtaining thermodynamic
properties of the equilibrium system [14,18]. There are four
versions of Tsallis statistics [19]; in particular, we use the most
widely accepted third constraint (escorted probability) [14]
formulation of Tsallis statistics.
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In Tsallis third constraint formulation, the generalized
equilibrium canonical distribution at β is given by [16]

pi = 1

Zq

[
1 − (1 − q)

β[εi − Uq]

cq

]1/(1−q)

≡ expq[−β(εi − Uq)/cq]

Zq

, (6)

where εi is the energy of the ith microstate, Uq is the normal-
ized constrained internal energy which is given by [16,20]

Uq = 1

cq

w∑
i

p
q

i εi (7)

and Zq is the q-generalized partition function which is given
by [14]

Zq =
w∑
i

[
1 − (1 − q)

β[εi − Uq]

cq

]1/(1−q)

. (8)

The normalization condition of pi leads to the relation [16]

cq = Z1−q
q . (9)

This modified formalism also becomes ordinary canonical
ensemble theory in the limit q → 1 [14] with cq=1 = 1 and

Zq=1 = exp[βU ]
w∑
i

exp[−βεi] ≡ exp[β(U − F )], (10)

where the internal energy

U = exp[βU ]

Zq=1

w∑
i

εiexp[−βεi]

=
∑w

i εiexp[−βεi]∑w
i exp[−βεi]

(11)

and the free energy

F = −kT ln
w∑
i

exp[−βεi]. (12)

Consider a system in an initial macrostate A (for example,
closed system of volume Vi) which is in equilibrium at β.
The probability for the system in a microscopic phase space
(microstate) �A is given by [16,21]

P (�A) = 1

Zq(A)

[
1 − (1 − q)

β[H (�A) − Uq(A)]

cq(A)

]1/(1−q)

,

(13)

where H (�A) is the Hamiltonian for the system in a microstate
�A, Uq(A) is the internal energy which is the (escorted
probability) weighted Hamiltonian eigenvalue [16] averaged
over all microstates in an initial equilibrium state A [see,
Eqs. (6)–(8)] and

Zq(A) =
∑
�A

[
1 − (1 − q)

β[H (�A) − Uq(A)]

cq(A)

]1/(1−q)

(14)

with

cq(A) =
∑
�A

[P (�A)]q . (15)

Suppose the given system evolves in time under Hamilto-
nian dynamics and reaches a different macrostate B which is
to be in equilibrium at same β. The probability distribution for
the system in a microstate �B is given by

P (�B) = 1

Zq(B)

[
1 − (1 − q)

β[H (�B) − Uq(B)]

cq(B)

]1/(1−q)

,

(16)

where H (�B) is the Hamiltonian for the system in a microstate
�B , Uq(B), Zq(B), and cq(B) have the same meaning as above
but for the macrostate B. In order to derive the nonequilibrium
work relations for a given β, we formulate the problem as
follows.

II. SETUP

Consider a classical Hamiltonian system in a macrostate
A which is initially in equilibrium with reservoir at inverse
temperature β. Let λt be an external protocol applied in
the arbitrary time interval τ to drive the system from its
initial equilibrium state A to another state B at constant
bath temperature β. It is assumed that the final state B is
not necessarily to be in equilibrium. However, the system in
the state B at the constant bath temperature relax towards
the equilibrium state B for the same β without doing any
work [5]. Let H (�t ,λt ) be the Hamiltonian with externally
controlled time-dependent protocol λt and the phase-space
coordinates of the system, �t , at a particular time t . At t = 0,
the system Hamiltonian which is in any one of the microstates
�A is H (�0,λ0) = H (�A); and at time t = τ , the system
Hamiltonian is H (�τ ,λτ ). Let γ denote the entire trajectory
of the driven system from t = 0 to τ . One can obtain the
statistical ensemble of possible realizations by performing the
above process repeatedly. In following Refs. [4,5,7], the work
performed on the system for a given trajectory can be defined as

W = H (�τ ,λτ ) − H (�0,λ0)

≡ H (�τ ,λτ ) − H (�A). (17)

It should be noted that the work defined in Eq. (17) is different
from the q-dependent work as given in Ref. [16] (see also
Refs. [21,22]). A different definition of work and its physical
meaning has been discussed in detail in Refs. [4,23,24].

During the time interval τ in which the system is driven,
we assume that the reservoir should always be in equilibrium
at a given β [25]. In such a case, the total heat transferred by
the system can be written into two parts as

Q = Qd
q + Qr, (18)

where Qd
q is the q-dependent heat transferred between the

system and the reservoir which should preserve the (q-
dependent) equilibrium nature of the reservoir and Qr is the
heat transferred when the system relaxes towards the required
equilibrium state from the final state B at a given β [26]. There
is no work performed on the system during relaxation [5]. We
can define the heat transfer due to relaxation as

Qr = H (�B) − H (�τ ,λτ ). (19)

Since the energy conservation is also valid for nonequilibrium
process [25,27,28], the above driven system should obey
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the principle of energy conservation for any microscopic
trajectory as

W + Q = �Uq, (20)

where �Uq = Uq(B) − Uq(A). The principle of energy con-
servation as given in Eq. (20) for the nonequilibrium pro-
cess [28] is different from the q generalization of first law
as proposed in Refs. [16,21,22] for an equilibrium system.
Therefore, the q-dependent heat transferred by the driven
system between the two equilibrium states is

Qd
q = �Uq − W − Qr

= �Uq − [H (�B) − H (�A)], (21)

which depends only on the initial and final system states. Since
Qd

q is independent of the nonequilibrium trajectories of the
driven system, we impose the condition for the system relaxing
towards the required (q-dependent) equilibrium state at a given
β as

cq(B) = cq(A)

[
1 − (1 − q)

βQd
q

cq(A)

]
. (22)

Using Eq. (3), the above equation can be written as

− βQd
q = 1 − cq(B)

q − 1
− 1 − cq(A)

q − 1

= 1

k
[Sq(B) − Sq(A)]

= σq

k
, (23)

where σq = Sq(B) − Sq(A) is the q-dependent change in
entropy of the equilibrium system [14]. From the above
condition [Eq. (22)], the q-dependent change in (equilibrium)
reservoir entropy for the driven nonequilibrium process is
obtained as [28–30]

�Sr
q

k
= βQd

q. (24)

The above equation provides the consistent usage of β = 1/kT

as the (inverse) reservoir temperature in Tsallis statistics [22].
The usage of thermodynamic laws is not mandatory for the

proof of nonequilibrium work relations [4,5]. Since internal
energy, applied work, and heat are formulated clearly for the
above driven system [31], we use Eqs. (20) and (22) and obtain
the q-generalized nonequilibrium work relations in which the
initial probability distributions [Eqs. (13) and (16)] are taken
from the Tsallis statistics.

III. q-GENERALIZED JARZYNSKI EQUALITY

In order to obtain the q-generalized version of Jarzynski
equality for the above driven process, one can take the follow-
ing q-exponential average over an ensemble of realizations in
which the initial distribution is taken from Tsallis statistics.
〈
e
−β(W+Qr−�Uq )/cq (B)
q

〉 =
∫

e
−β(W+Qr−�Uq )/cq (B)
q P (�A)d�A.

(25)

Using the q-exponential identity ex
qe

y
q = e

[x+y+(1−q)xy]
q [14]

and Eq. (13), the integral of the above equation can be

rewritten as

〈
e
−β(W+Qr−�Uq )/cq (B)
q

〉 = 1

Zq(A)

∫
e
Mq+Nq

q d�A, (26)

where

Mq = −β[W + Qr − �Uq]

cq(B)
(27)

and

Nq = −β[H (�A) − Uq(A)]

cq(A)
[1 + (1 − q)Mq]. (28)

Using Eqs. (20) and (22), one can rewrite

1 + (1 − q)Mq = 1 + (1 − q)
βQd

q

cq(B)

= 1 + cq(A) − cq(B)

cq(B)

= cq(A)

cq(B)
. (29)

Using Eqs. (17) and (19), one can obtain

Mq + Nq = −β

cq(B)
[H (�B) − Uq(B)]. (30)

Therefore, Eq. (26) becomes

〈
e
−β(W+Qr−�Uq )/cq (B)
q

〉 = 1

Zq(A)

∫
e
−β[H (�B )−Uq (B)]/cq (B)
q d�A.

Since Hamiltonian dynamics preserve the phase-space vol-
ume, d�A = d�B [4,5], and using Eq. (16) we can rewrite the
above equation as

〈
e
−β(W+Qr−�Uq )/cq (B)
q

〉 = Zq(B)

Zq(A)

∫
P (�B) d�B

= Zq(B)

Zq(A)
. (31)

We have obtained a q-generalized version of one of the
nonequilibrium work relations. It should be noted that β

appeared in the q-exponential average to ensure that the
temperature of the reservoir remains the same, however, one
does not know anything about system temperature during the
driven process. Further, Qr and cq(B) in the above relation also
takes care of the heat exchange due to relaxation of the system
towards the final equilibrium state [26]. This may provide a
possible physical meaning of the above average for the driven
nonequilibrium process instead of thinking of it as an ad hoc
method [5,26].

The interesting aspect of Jarzynski equality is to obtain the
free energy difference between two equilibrium states from
the nonequilibrium process. In this nonequilibrium process,
initially the system should be in equilibrium at the given
temperature, however, it is not necessary that the final state
also be in equilibrium. This raises the criticism that the heat
due to relaxation is not taken properly in the original Jarzynski
equality [26]. Our general formulation may solve this issue as
follows.
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In the limit q → 1, expq(x) = exp(x) and cq = 1 [14], then
using Eqs. (10)–(12), Eq. (31) becomes

〈exp[−β(W + Qr − �U )]〉 = exp[β(�U − �F )],

〈exp[−β(W + Qr )]〉 = exp[−β�F ], (32)

where �U = U (B) − U (A) is the change in internal energy
and �F = F (B) − F (A) is the change in equilibrium free
energy of the BG canonical system. Thus, we can obtain a
more general form of Jarzynski equality which includes heat
due to system relaxation [26] for the BG canonical system in
the limit q → 1.

For example, in protein unfolding experiments or simula-
tions, one end of the biomolecule is fixed and the other end
can be driven either by constant force or constant velocity. In
our earlier work for a fixed unfolding distance, we find that the
folded protein which is initially in equilibrium with the reser-
voir undergoes different unfolding pathways which depends
on the nature of the unfolding pulling protocols [32,33]. For
fast pulling protocols the final state of the unfolded protein
need not to be in equilibrium with the reservoir [33]. The
system relaxes to final equilibrium state by exchanging heat
with the surroundings without doing any work. Since heat due
to relaxation is not taken properly in the original Jarzynski
equality, our general formulation of Jarzynski equality which
includes heat due to system relaxation can be useful for free
energy calculation of such complex systems. If Qr is within
the measurements or numerical error for work calculation in
experiments or simulations, the original Jarzynski equality
(without the heat term due to relaxation [5,26]) can provide
reliable estimates of the free energy differences.

IV. q-GENERALIZED CROOKS WORK
FLUCTUATION THEOREM

In order to derive the q-generalized version of the Crooks
work fluctuation theorem, we proceed with the problem
analogous to Ref. [4] as follows. Since H (�0,λ0) = H (�A),
the probability of the phase-space trajectory γ F , for the system
driven between the two equilibrium states obtained from the
initial equilibrium distribution in the forward direction (A to
B) is given as [4]

PF [γ F ] = P
eq
A

(
�F

0

)

= 1

Zq(A)

[
1 − (1 − q)

β[H (�A) − Uq(A)]

cq(A)

]1/(1−q)

.

(33)

Suppose the system is driven from equilibrium state B

to state A using the time reversed protocol, λR
t = λF

τ−t ,
H (�R

t ,λR
t ) is the Hamiltonian for the externally controlled

time-dependent protocol λR
t , and �R

t is the phase-space
coordinate of the system at a particular time t . At t = 0, the
system Hamiltonian which is in any one of the microstates
�B is H (�R

0 ,λR
0 ) = H (�B); and at time t = τ , the system

Hamiltonian is H (�R
τ ,λR

τ ). The probability of the phase-space
trajectory γ R , for the system driven in reverse direction
obtained from the initial equilibrium distribution is given

as [4]

PR[γ R] = P
eq
B

(
�R

0

)

= 1

Zq(B)

[
1 − (1 − q)

β[H (�B) − Uq(B)]

cq(B)

]1/(1−q)

.(34)

Using Eq. (17), Eq (19), and Eq. (20), Eq. (33) can be
rewritten as

PF [γ F ]

= 1

Zq(A)

[
1 − (1 − q)

β[H (�B) − Uq(B) + Qd
q ]

cq(A)

]1/(1−q)

.

PF [γ F ] = 1

Zq(A)

[
1 − (1 − q)

βQd
q

cq(A)

]1/(1−q)

×
[

1 − (1 − q)
β[H (�B) − Uq(B)]

cq(A)
[
1 − (1 − q)

βQd
q

cq (A)

]
]1/(1−q)

. (35)

Using Eq. (22) and Eq. (34), Eq. (35) becomes

PF [γ F ] = Zq(B)

Zq(A)

[
1 − (1 − q)

βQd
q

cq(A)

]1/(1−q)

PR[γ R]. (36)

We can get from Eq. (20) that

PF [γ F ]

PR[γ R]
= Zq(B)

Zq(A)

[
1 + (1 − q)

β[W + Qr − �Uq]

cq(A)

]1/(1−q)

.

≡ Zq(B)

Zq(A)
expq

[
β(W + Qr − �Uq)

cq(A)

]
. (37)

We have obtained the q-generalized version of another
nonequilibrium work relation. In the limit q → 1, expq(x) =
exp(x) and cq = 1 [14], then using Eqs. (10)–(12), Eq. (37)
becomes

PF [γ F ]

PR[γ R]
= exp[β(W + Qr − �F )]. (38)

Thus, we can obtain a more general form of Crooks work
fluctuation relation which includes heat due to system relax-
ation [26] for the BG canonical system in the limit q → 1.

In order to obtain the q-generalized version of Jarzynski
equality from the q-generalized work fluctuation relation, one
can take the following q-exponential average over ensemble
of realization in forward direction as〈

e
−β(W+Qr−�Uq )/cq (B)
q

〉

=
∫

e
−β(W+Qr−�Uq )/cq (B)
q PF [γ F ] dγF . (39)

Using Eq. (37), the above equation can be rewritten as

〈
e
−β(W+Qr−�Uq )/cq (B)
q

〉 = Zq(B)

Zq(A)
Iq, (40)

where

Iq =
∫

e
−β(W+Qr−�Uq )/cq (B)
q e

β(W+Qr−�Uq )/cq (A)
q PR[γ R]dγR.

(41)

Since Hamiltonian dynamics preserve the phase-space vol-
ume, dγF = dγR [4,5]. Using the q-exponential identity
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ex
qe

y
q = e

[x+y+(1−q)xy]
q [14], we rewrite the integral of the above

equation as

Iq =
∫

e
β(W+Qr−�Uq )Dq

q PR[γ R]dγR. (42)

where

Dq =
[

1

cq(A)
− 1

cq(B)
− (1 − q)

β(W + Qr − �Uq)

cq(A)cq(B)

]
.

(43)

Using Eq. (20) and Eq. (22), the above equation becomes

Dq =
[

1

cq(A)
− 1

cq(B)
− [cq(B) − cq(A)]

cq(A)cq(B)

]
= 0. (44)

Since e0
q = 1, Iq = ∫

PR[γ R]dγR = 1 and Eq. (40) becomes〈
expq

[−β(W + Qr − �Uq)

cq(B)

]〉
= Zq(B)

Zq(A)
. (45)

We have obtained the q-generalized version of Jarzynski
equality.

V. CONCLUSION

We have derived the more general form of Jarzynski
equality and Crooks work fluctuation theorem which include
the heat due to system relaxation in the framework of Tsallis
statistics. Our general result may resolve the criticism raised
earlier that heat due to relaxation is not taken properly in
the original Jarzynski equality [5,26]. In the Tsallis third

constraint formulation, one cannot directly obtain the canon-
ical probability distribution because the distribution [Eq. (6)]
is self-referential [14,19]. Since pi depends upon cq , one
should iterate Eqs. (6), (8), and (9) repeatedly until numerical
consistency is achieved. We have utilized the self-referential
nature of the Tsallis distribution and have obtained the q-
generalized version of nonequilibrium work relations. This
generalized relation may also find interesting applications in
complex systems [10,33].

In our Tsallis statistics formulation the initial and the
final states of the system are in equilibrium. So we have
taken the escorted averages only in the initial and the final
equilibrium states as given in Eq. (7). Since we have taken
the work as defined by Jarzynski (but not q-dependent work)
and also the averages of Eqs. (25) and (39), taken from
the nonequilibrium trajectories whose distribution does not
necessarily follow the Tsallis statistics, we have not taken
escorted averages for Eqs. (25) and (39). This type of average
can be useful for protein unfolding experiments since proteins
exhibit refolding behavior during unfolding only for slow
pulling rate protocols [32,33]. This behavior can not be
observed for fast pulling rate protocols even though the system
has long range interactions.

There is a general impression among a few of us that Tsal-
lis’s formalism has nothing to do with equilibrium statistical
mechanics. If the system relaxes towards the equilibrium, one
may not rule out the equilibrium formulation of the Tsallis
statistics. Although we have taken the initial distribution as
the equilibrium, our formulation may also be applicable for
nonequilibrium stationary state conditions [9].
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