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We study the onset of eigenstate thermalization in the two-dimensional transverse field Ising model (2D-
TFIM) in the square lattice. We consider two nonequivalent Hamiltonians: the ferromagnetic 2D-TFIM and the
antiferromagnetic 2D-TFIM in the presence of a uniform longitudinal field. We use full exact diagonalization to
examine the behavior of quantum chaos indicators and of the diagonal matrix elements of operators of interest
in the eigenstates of the Hamiltonian. An analysis of finite size effects reveals that quantum chaos and eigenstate
thermalization occur in those systems whenever the fields are nonvanishing and not too large.
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I. INTRODUCTION

The transverse field Ising model (TFIM) is one of the
simplest models that exhibits both ground-state and finite-
temperature (in dimensions higher than one) phase transi-
tions between paramagnetic and ordered phases. The three-
dimensional TFIM was used by DeGennes to characterize the
ferroelectric phase of KH,PO, [1], and the one-dimensional
TFIM was recently realized in experiments with ultracold
bosons in tilted optical lattices [2]. This was possible via
a mapping of the site occupation of the bosonic atoms
onto pseudo-spins [3]. The one-dimensional TFIM has been
extensively studied theoretically in recent years in the context
of quantum quenches in integrable systems [4-9]. The two-
dimensional TFIM (2D-TFIM), on the other hand, is not
integrable. It was examined by two of us (K.R.F. and M.S.)
[10] to understand whether eigenstate thermalization [11-13]
occurs in the presence of long-range order.

Eigenstate thermalization is a phenomenon that has re-
ceived much attention recently as it explains why thermaliza-
tion occurs in generic isolated quantum systems when taken far
from equilibrium [14]. Specifically, the fact that observables
after relaxation can be described using traditional ensembles
of statistical mechanics has been argued to be the result of
the matrix elements of those observables in the eigenstates
of the Hamiltonian being equal to the thermal expectation
values [11-13]. Another way to state this is that the eigenstate
to eigenstate fluctuations of the expectation values of the
observables are very small, more precisely, exponentially
small in the system size [14]. Many studies of quantum
systems, mainly in one-dimensional lattices, have found results
consistent with this [15-23]. Eigenstate thermalization can be
understood as being a result of quantum chaos [14], and indeed
the onset of eigenstate thermalization has been seen to coincide
with the onset of quantum chaos in some one-dimensional
systems [17,24].

In this work, we present an in depth study of quantum
chaos and eigenstate thermalization indicators in the 2D-TFIM
in the square lattice. In contrast to the study in Ref. [10],
we do not introduce any symmetry breaking perturbation in
the Hamiltonian to discern order. Instead, we use structure
factors, which reveal order even in the absence of symmetry
breaking. Also, in addition to the ferromagnetic 2D-TFIM
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considered in Ref. [10], here we study the antiferromagnetic
2D-TFIM in the presence of a longitudinal field. We study both
models in various clusters with periodic boundary conditions,
which allows us to present a finite size scaling analysis of the
quantities of interest.

The presentation is organized as follows: In Sec. II we
introduce the model and discuss the numerical approach used
to study it. Section III is devoted to the analysis of quantum
chaos indicators and their scaling. Section IV is devoted to
the analysis of eigenstate thermalization indicators and their
scaling. A summary of the results are presented in Sec. V.

II. MODEL AND NUMERICAL APPROACH

The Hamiltonian of the 2D-TFIM in the presence of a
longitudinal field can be written as

A=17) 6'6i+g) & +e) & (1)
(i.j) i i

where 67 and 6;* are the z and x Pauli matrices, respectively,
at site i of the lattice. J is the strength of the nearest neighbor
({(i,j) in the summation) Ising interaction. We consider both
the ferromagnetic (J < 0) and the antiferromagnetic (J > 0)
cases, and set |J| = 1 as our energy scale. g and ¢ are the
strength of the transverse and longitudinal fields, respectively.
We denote the total number of sites in the system by N.

First, it is important to mention some symmetries of this
model in the square lattice, which is a bipartite lattice. In the
absence of the longitudinal field (¢ = 0), the ferromagnetic and
the antiferromagnetic 2D-TFIMs are connected through the
transformation 7 — (—1)**»67. This transformation maps
the uniform magnetization per site M = (}_; 07)/N, which
is the order parameter in the ferromagnetic case, onto the
staggered magnetization per site Myae = () ;(—1)*T>07) /N,
which is the order parameter in the antiferromagnetic case, and
vice versa. Thus, the phase transitions in both models occur
at the same values of g. For this reason, for ¢ = 0, in this
work we study only the ferromagnetic case. (The ground-
state phase transition separating the paramagnetic and ordered
phases occurs at a critical transverse field g. ~ 3.044 [25].)
We note that this model has a Z, symmetry associated with its
invariance under the transformation 67 — —&;. In addition,
here we study the antiferromagnetic 2D-TFIM in the presence
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FIG. 1. Clusters with periodic boundary conditions used in this
work. All clusters, with the exception of the nontilted lattice with 20
sites (bottom right), support the Néel state. Each cluster displays the
basis in which translation symmetry operations are implemented.

of a uniform longitudinal field. We restrict our analysis to
the case ¢ = g. This model is equivalent to the ferromagnetic
2D-TFIM in the presence of a staggered longitudinal field,
which breaks the Z, symmetry of the model with ¢ = 0.

In order to study quantum chaos indicators and calculate
the expectation values of observables in eigenstates of the
Hamiltonian, we use full exact diagonalization of clusters
with different sizes and periodic boundary conditions. All
the clusters considered in this work are shown in Fig. 1.
Most of them have a tilted structure that is needed to
accommodate the Néel state [26], which is the ground state
of the antiferromagnetic Ising model.

We make use of translation symmetry to break up the
Hamiltonian in momentum sectors. In addition, for the
ferromagnetic model, we break up each momentum sector
using the Z, symmetry. There are some momentum sectors
that exhibit space symmetries. We do not use them all. We only
implemented inversion (whenever present). In Table I we show
the breakup of the Hilbert space for all the clusters studied. We
note that, for the calculations of the antiferromagnetic case, the
Z, symmetry is absent so the linear dimension of all matrices
diagonalized was around twice as large as those involved in the
calculations of the ferromagnetic case. We also note that the
cluster 20B (see Fig. 1) does not accommodate the Néel state;
besides, it displays larger finite size effects in comparison to
cluster 20A (see the Appendix). This is why we omit its results
in the main text in favor of the ones for lattice 20A.

III. QUANTUM CHAOS INDICATORS

A. Distribution of the ratio of consecutive gaps

We first study the statistics of energy level spacings. A
system is said to be quantum chaotic if the distribution of
normalized energy level spacings follows a Wigner-Dyson
function, which exhibits level repulsion [27]. On the other
hand, as per Berry-Tabor’s conjecture [28], one expects a
Poisson distribution when the system is integrable. To avoid
the unfolding procedure of the spectra needed to guarantee
that the energy level spacings are normalized to unity, here
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TABLE I. Dimension D of the Hilbert subspaces for the different
clusters in Fig. 1 after the breakup in the Z, and momentum sectors.
In the left columns, the number in the first (second) parentheses is the
size of the odd (even) subspace associated with the Z, symmetry.
Momentum sectors are indicated in the right column. There are
momentum sectors that exhibit spatial symmetries. We have only
implemented inversion. Whenever there are two numbers inside
parentheses in the first column, the first (second) number indicates
the size of the odd (even) subspace associated with the inversion
symmetry. The axes used for the translations (in n,,n,,n,, and ny)

are indicated in Fig. 1.

N = 10 (kxsky) = %(nxany)
D (ny,ny)
(18+34)+(12+44) (0,0)
(34 +18) + (24 +24) (5,0)
(51)+(48) (1,0);(3,0);(7,0); (9,0)
D+ (54 (2,0); (4,0); (6,0); (8,0)
N =12 (kkay) =

Z@ny —ny, —3ny +2ny)
D (nx’vny’)
(704 102) + (55 +135) 0,0

(704+102) + (75 +91)

(0.3):(1,0):(1,3)

(170) + (165) (0,1);(0,5);(1,1)

(1,2);(1,4); (1,5)
(170) 4 (185) (0,2);(0,4)
N =16 (ky,ky) = 5 (ny,ny)
D (ny,ny)
(960 + 1088) + (894 + 1214) (0,0)
(960 + 1088) + (1014 + 1078) 2,2)
(1088 +960) + (1078 + 1014) (0,2);(2,0)

(2048) 4+ (2032) (0,1); (1,0); (0,2); (2,0)

(0.3):3,0);(1,25,2,1)

(13:(3.1):(2.3):3.2)
N =18 (ky.ky) = 5 (@2ny —ny,ny)
D (n)c/sny)
(3520 +3776) + (3408 4 3920) (0,0)
(3776 4 3520) + (3632 + 3632) 0, -3)

(7280) + (7252) 0, & 1);(£1, = 3); (1, £ 1)
(7280) + (7308) (£1,0); (1, £2);(0, £2)
N =20 (ky.ky) = Z(=5n, + 2ny.ny)
D (ny,ny)
(12 8524 13 364) + (12 546 + 13 826) (0,0
(12 8524 13 364) + (12 954 + 13 210) 1,5)
(13 364 4 12 852) + (13 210 + 12 954) (0,5);(1,0)

(26 214) + (26 163)

(26 214) + (26 367)

(0,1);(0,3); (0,7);(0,9)
(1,1);(1,3); (1,7);(1,9)
(1,2);(1,4); (1,6);(1,8)
(0,2);(0,4); (0,6);(0,8)

we use the ratio of the smallest to the largest consecutive
energy gaps [29]: r, = min(§,,8,+1)/ max (5,,8,+1), Where
6p = E,y1 — E, and {E,} is the ordered list of eigenenergies
in a particular symmetry sector. For quantum chaotic systems
with time-reversal symmetry, for which the relevant random
matrices belong to the Gaussian orthogonal ensemble (GOE),
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FIG. 2. Distribution of the ratio of consecutive energy gaps in
the spectra for (a) the ferromagnetic case with g = 1.0 (¢ = 0) and
(b) the antiferromagnetic case with ¢ = g = 1. The results were
obtained in the cluster 20A (see Fig. 1). Results are reported for P(r)
averaged over all momentum sectors with k # (0,0) and k # (7,7),
in which Z, (for the ferromagnetic case) and parity under inversion
[for k = (0,7) and k = (7,0)] are the only additional symmetries.
and they are resolved. We also show the average P(r) between the
momentum sectors k = (0,0) and k = (;r,7) when divided in the
even (A; = +1) and odd (A; = +1) parity sectors under inversion. In
those momentum sectors inversion is not the only space symmetry.
(Insets) Average value of r as a function of the strength of the fields.
The horizontal dashed lines depict the average predicted by Pgog(r)
(top) and Pp(r) (bottom). All results were obtained using the the
central half of the spectrum in each subspace.

the distribution of r is given by the expression [30]:

27 r+r?
Pooe(r) = ——— 01 —r). (2)
4 (L +r+r2)e
This distribution is expected to apply to the 2D-TFIM in the
quantum chaotic regime as the Hamiltonian (1) can always be
written as a real matrix. In integrable regimes, on the other
hand, the Poisson distribution results in

2
Pp(r) = m®(1 —r). 3

In quantum chaotic systems, the presence of unresolved
symmetries results in a distribution P(r) that is between
Pgoe(r) and Pp(r).

Figure 2 shows the numerical results obtained for P(r)
averaged over all momentum sectors excluding k = (0,0) and
k = (7,7). In the latter two sectors inversion is not the only
space symmetry. In Fig. 2(a) we report results for the ferro-
magnetic case and, in Fig. 2(b), for the antiferromagnetic case.
They are in very good agreement with Pgog(r). We should
add that Pgog(r) in Eq. (2) was obtained for 3 x 3 matrices
and is expected to be slightly different in the thermodynamic
limit [30]. Our results indicate that, in the thermodynamic
limit, Pgog(r) is slightly larger (smaller) than in Eq. (2) for r
smaller (larger) than the value for which Pgog(r) is maximal,
in agreement with the analysis in Ref. [30].
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In the momentum sectors with k = (0,0) and k = (7r,7),
Fig. 2 shows that P(r) is between Pgog(r) and Pp(7) in the even
parity sector under inversion (A; = +1). On the other hand, in
the odd parity sector under inversion (A; = —1), we find that
there are pairs of degenerate states across the spectrum, which
results in a §-like peak in P(r) at r ~ 0. This highlights the
importance of resolving all symmetries for one to be able to
identify the presence of quantum chaos in the distribution of
level spacings. We note that, the highly symmetric clusters with
16 and 18 sites [ P(r) is not shown for those clusters] exhibit
space symmetries (not necessarily inversion) in all momentum
sectors.

The insets in Fig. 2 display the average value of r
as a function of the strength of the fields in the sectors
with k # (0,0) and k # (r,7), in which all symmetries are
resolved. We plot as horizontal dashed lines the predictions of
Pgog(r),(r)coe = 0.5359, and of Pp(r),(r)p =2In2 -1~
0.386 [30]. Note that, away from the integrable limits g = 0
and g = oo, the results are consistent with (r)gog. For k =
(0,0) and k = (7r,7),{r) is close to (r)p for all values of
g studied. It is worth stressing that, given the fact that our
Hamiltonian contains only short-range interactions, the GOE
prediction is valid only away from the edges of the spectrum
[17,24,31-33]. This, and to minimize finite-size effects, is why
all results reported in Fig. 2 were obtained using the central
half of the spectrum in each subspace analyzed.

B. Delocalization of eigenvectors

An understanding of how quantum chaos onsets in dif-
ferent parts of the spectrum can be gained by studying the
delocalization of the energy eigenstates in the basis used
to diagonalize the Hamiltonian [17,24]. Let {|«)} be the
eigenstates of the Hamiltonian in a given symmetry sector,
and {|m)} be the computational basis used in that sector,
ie., |a) =), c%|m), where the sum runs over the D states
that make that particular symmetry sector. The amount of
delocalization in the computational basis is usually measured
using two quantities, the Shannon (information) entropy

St = =3 ea (e ). )

and the inverse participation ratio (IPR),

1

e —
2 len]
Within the GOE, these delocalization indicators are predicted
to be: Sg(f)E =~ In(0.48D) and IPRgog =~ D/3 [34,35];i.e., they
depend on D.

Since here we are dealing with symmetry sectors with a
wide range of dimensionalities, and for some of them we
do not even resolve all space symmetries, a better quantity

to characterize the onset of quantum chaos is the structural
entropy [17]. It is defined as [36,37]

S =8M _Ing,. (6)

Within the GOE: E%E ~ (0.3646; i.e., it is, to leading order,
independent of D. Hence, this quantity allows one to compare
eigenvectors in different symmetry sectors without the need of
extra manipulations [17].

€a (&)
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FIG. 3. Structural entropy in all symmetry sectors of the ferromagnetic 2D-TFIM (J = —1 and ¢ = 0) for different system sizes (see

Table I). The narrowing of the support of the values of the structural entropy with increasing system size, in any given energy window, is an

indication of the occurrence of quantum chaos.

In Figs. 3 and 4, we show the structural entropy for the
ferromagnetic and antiferromagnetic models, respectively, for
five different systems sizes and eight values of the transverse
field. We note that, for each system size, the results obtained
for all symmetry sectors (as per Table I) are reported using
the same symbol. The results in Figs. 3 and 4 are qualitatively
similar. As one departs from the integrable limits g = 0 and
g = 00, and as one increases the system size, the structural
entropy away from the edges of the spectrum becomes a
smoother function of the energy of the eigenstates. This is
a clear signature of quantum chaos. The narrowest support
for S5 within a small energy window in the middle of the
spectrum is seen in Fig. 4 when ¢ = g &~ 2. In general, the
results for the antiferromagnetic model are slightly better than

for the ferromagnetic one. This is understandable as, for any
given system size, the former has less symmetries.

Our results support the conclusion in Ref. [17] that the
structural entropy is a useful quantity to detect quantum chaos
in systems with unaccounted symmetries. To make this point
even clearer, in Fig. 5 we compare the structural entropy of
the ferromagnetic 2D-TFIM (g = 1) for systems with N = 12
and 16 sites when (a) one accounts for translational, Z,,
and inversion symmetry (when present) and (b) one does not
resolve any symmetry (in which case we can fully diagonal-
ize the Hamiltonian only up to N = 16). While numerical
degeneracies lead to obvious quantitative differences between
panels (a) and (b), the results are qualitatively similar and, with
increasing system size, one could potentially identify that there

(a)

str
«

S

str

«

S

04 00 04 08
Eo/[(I7]+ g +¢)N]

0 —0.4 0.0 0.4 0.8
E./[(|J] +g+¢e)N

04 00 04 08
Eo/[(I71+ g +¢)N]

—-0.6 —-0.3 0.0 0.3 0.6
E./I(|J] +g+¢e)N

—0.8

FIG. 4. Same as Fig. 3 for the antiferromagnetic 2D-TFIM (J = 1) with a longitudinal field of strength ¢ = g.
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FIG. 5. Structural entropy of the ferromagnetic model with g =
1.0 (¢ =0) for N = 12 and 16 sites. (a) Results after accounting
for translational, Z,, and inversion symmetry (when present). (b) No
symmetry is used when fully diagonalizing the Hamiltonian.

is quantum chaos in the system even if one does not resolve
any of the symmetries of the model.

IV. EIGENSTATE EXPECTATION VALUES

In order to check whether eigenstate thermalization oc-
curs in the models studied in Sec. IV, we compute the
energy-eigenstate expectation values of two operators that
can be used to detect long-range order in those models.
For the ferromagnetic one, we compute the energy-eigenstate
expectation values of the ferromagnetic structure factor

sz ™

Analogously, for the antiferromagnetic model, we compute the
energy-eigenstate expectation values of the antiferromagnetic

Sp=—
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structure factor

Sar = — Z( D% 676f, ®)

where 6;; = 1 if i and j belong to the same sublattice of the
bipartite square lattice, and 6;; = —1 otherwise. (Note that
these two quantities are invariant under the Z, symmetry
operation mentioned before.) In the ordered phase, these two
quantities are proportional to N, while in the paramagnetic
phase they are O(1).

Figures 6 and 7 show the eigenstate expectation values of
the ferromagnetic and antiferromagnetic structure factors in
the ferromagnetic and antiferromagnetic 2D-TFIMs, respec-
tively, as computed in all the eigenstates of the Hamiltonian.
As for the structural entropy in Figs. 3 and 4, one can see that
as one departs from the integrable limits g = 0 and g = oo,
and as one increases the system size, the eigenstate expectation
values away from the edges of the spectrum become a smoother
function of the eigenstate energies. This is a clear indication
of the occurrence of eigenstate thermalization. Similarly to the
results for the structural entropy (though maybe slightly less
obvious), the narrowest supports for the eigenstate expectation
values are obtained for the antiferromagnetic case, which has
the least symmetries.

Next, we attempt to address whether the eigenstate expec-
tation values of the structure factors in the ordered phases
exhibit eigenstate thermalization. In order to do that, we need
to identify which eigenstates fall in the part of the spectrum
that exhibits long-range order. This can be done using the
critical temperature for the phase transition 7.. Given T,
one can calculate the mean energy of the system, E,, at that
temperature:

Za Ea CXP(_Ea/Tc)

E.=
2w eXp(—Eo/T)

, &)

N=10 N=12
20F T ' ' '
S | (a)
15[ !
O% 10 I -:.:...
= b, g=00
51 g csetes.
I .-::.'1.’;!:.
ol oAy P
-2 I ~1 0 2 I
12f
| (e) 1
o 1. |
3 i, t
s Af
S0 1z g=25 [: 9=30
& O3 r
= | 4 |
3t 1 I
I I
0 1

05 00 05
E./[(1J] + g)N]

05 00 05
E./I(17]+ g)N]

-1.0 1.0-1.0

1.0-1.0

05 00 05 10
E./[(1J] + g)N]

05 00 05
E./[(|J] + g)N]

1.0-1.0

FIG. 6. Energy-eigenstate expectation values of the ferromagnetic structure factor, (Sg)se = (&|S|a), in the ferromagnetic 2D-TFIM
(¢ = 0). The narrowing of the support of the eigenstate expectation values with increasing system size is an indication of the occurrence of
eigenstate thermalization. Vertical dashed lines depict the critical energies E. [Eq. (9)] below which the system is expected to display long-range

order.
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N=12
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51 00 04 08
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—04 0.0 0.4 I).s
E./[(I7] + g +¢)N]
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FIG. 7. Energy-eigenstate expectation values of the antiferromagnetic structure factor, (Sap)ee = (a|§AF|a), in the antiferromagnetic
2D-TFIM with a longitudinal field of strength ¢ = g. As for the ferromagnetic case, the narrowing of the support of the eigenstate expectation
values with increasing system size is an indication of the occurrence of eigenstate thermalization.

where we have set the Boltzmann constant to one. One can
then say that, as the system size increases, the eigenstates with
energies E, < E. fall in the part of the spectrum that exhibits
long-range order.

The ferromagnetic 2D-TFIM has been intensively studied
in the past (Refs. [38—41]). Its finite temperature phase diagram
was computed in a pioneering series expansions study [39] and
has been corroborated using quantum Monte Carlo simulations
[42,43]. Using the results for 7.(g) from the latter study, we
have calculate E.(g) in all clusters (for g < 3.044, which
is the critical value for the ground-state phase transition).
The results obtained for E.(g) are presented in Fig. 6 as
dashed lines. These estimates are significantly lower than
those made in Ref. [10] using fluctuation-corrected mean-field
theory [44], indicating that much of the branch structure for
the magnetization seen in Ref. [10] actually occurs in the
disordered phase. We find that, for the system sizes accessible
to us via full exact diagonalization, only a few states reside
in the ordered phase. Therefore it is not possible for us to
make a definitive statement about the appearance of eigenstate
thermalization in the ordered phase of the spectrum.

We are not aware of studies of the phase diagram of the
antiferromagnetic 2D-TFIM with a longitudinal field ¢ = g.
Because of this, its 7.(g) is not known to us, and we are not
able to report results for E.(g) as we do for the ferromagnetic
case.

A. Scaling with system size

Next we address how the eigenstate to eigenstate fluctua-
tions in the expectation value of the structure factors scale with
increasing system size. We compute

(ASF)a = [(SF)a+1,a41 = (SFa,el (10)
for the ferromagnetic 2D-TFIM and
(ASAR)a = [(SaF)a+1,0+1 — (SaF)aal (11)

for the antiferromagnetic 2D-TFIM with a longitudinal field.
We stress that to compute these quantities we order all
the energy eigenstates with increasing energy. For that, we
collect the results from all sectors that are diagonalized
independently, i.e., the entire spectrum is put together into
a single ordered list before calculating Eqgs. (10) and (11).
From the eigenstate thermalization hypothesis (ETH) [14], one
expects the maximal values of (A Sg), and (A Saf), to decrease
exponentially with system size. In Ref. [22] this was shown to
be the case for observables in various one-dimensional models

T = H0% T = 90%
—=— Average (ASp)a —o— Average (ASar)a

0 1 8 1 L
= 10 8- st largest -0-- st largest 10 =
F@ w0 5th largest =
w0 10th largest 0o

{7‘ - © th largest =
C; ---a N —~
20 = N >
—C;’ 100 g: I [ (JU EQ
= =

= =}
i )
< PN =]
= £ o
Z]) o 101
CC +
’Cw <
= (a) g=1.5 =
102 102
10 12 14 16 18 20 22 10 12 14 16 18 20 22

N N

FIG. 8. Largest, fifth largest, tenth largest, and average value of
(a) (ASg), for the ferromagnetic 2D-TFIM (g = 1.5 and ¢ = 0) and
(b) (ASaFr), for the antiferromagnetic 2D-TFIM in the presence of
a longitudinal field with ¢ = g = 1.5, plotted as a function of the
number of lattice sites in the cluster. All those quantities are computed
within two windows of eigenstates characterized by x,, = 50% (filled
symbols) and xy,, = 90% (open symbols). See text for the definition
of Xthr-
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(including the TFIM with a longitudinal field) when taking
the central half of the energy eigenstates. As the system size
increases, this is a statement about eigenstates whose energies
are that of a thermal ensemble at infinite temperature, which
constitute the overwhelming majority of states in the spectrum
of large systems.

In order to make a stronger statement about the eigenstate
to eigenstate fluctuations, we compute their largest values, as
well as their average, after removing all states with energy
E, such that (E, — Eo)/|Eo| < xmr (Eo is the ground state
energy) and (Ep — E,)/Ep < xm: (Ep is the eigenstate with
the highest energy in the spectrum). States at the edges of
the spectrum need to be removed because, as mentioned
before, they neither exhibit quantum chaos nor eigenstate
thermalization. So as long as xy, 2 1, our statements about
the eigenstate to eigenstate fluctuations are not restricted to
eigenstates whose energy is that of a thermal ensemble at
infinite temperature (for which E, = 0 and xg,, = 1).

In Figs. 8(a) and 8(b) we plot the results obtained for (A Sg),
and (A Sar)q, respectively, as a function of the number of lattice
sites for two values of xy,,. We report results for the largest, the
fifth largest, and the tenth largest values of those quantities in
the windows selected, as well as the average value (which
is dominated by the aforementioned “infinite-temperature”
states). The decrease of the average value is consistent with an
exponential for the systems with N > 12, independent of the
value of xy,. For the extremal values, on the other hand, the
onset of the exponential decrease requires larger lattices and
is better seen for xy,, = 0.9.

The distribution of values of (A Sg), and (ASaf)q, for xg, =
0.5,1s shown in Figs. 9(a) and 9(b), respectively. The results for
both quantities are not only qualitatively but also quantitatively
similar. One can see that, as expected, the distributions
become increasingly peaked about (ASg)y, = (ASap)y =0
as the system size increases, and their support decreases
significantly (consistent with decreasing exponentially fast)
as the system size is increases. The exponential increase of the
density of states with increasing system size, as well as the
Gaussian nature of the density of states in the systems studied
here, can be seen in the insets in Fig. 9.
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FIG. 9. Distribution of: (a) (ASg), for the ferromagnetic 2D-
TFIM (g = 1.5 and ¢ = 0) and (b) (ASar). for the antiferromagnetic
2D-TFIM in the presence of a longitudinal field with ¢ = g = 1.5.
The distributions were computed for xy,, = 0.5. (Insets) Density of
states in the clusters.
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V. SUMMARY

We have systematically studied quantum chaos indicators
and energy-eigenstate expectation values of structure factors
in the ferromagnetic 2D-TFIM, and the antiferromagnetic
2D-TFIM in the presence of a longitudinal field, in the square
lattice. We have shown how quantum chaos and eigenstate
thermalization onset in those systems as one departs from
integrable limits and increases the system size. While many
systematic studies of these topics have been undertaken in
one-dimensional lattices [15-24], this is among the first
to be carried out in two dimensions, for which scaling
analyses are very challenging due to the fast increase of
the Hilbert space with the linear dimension of the system.
We leave open the questions of whether quantum chaos and
eigenstate thermalization occur in eigenstates of a Hamiltonian
that exhibit long-range order. Answering those questions
appears challenging to full exact diagonalization studies and
other computational techniques might be needed to address
them.

ACKNOWLEDGMENTS

This work was supported by CNPq (R.M.), NSF Grant
PHY13-16748 (K.F. and M.S.), and the Office of Naval
Research (M.R.). The computations were performed in the
Institute for CyberScience at Penn State, the Center for
High-Performance Computing at the University of Southern
California, and CENAPAD-SP.

APPENDIX

The narrowing of the support of the energy-eigenstate
expectation values of few-body operators with increasing
system size is a direct consequence of the occurrence of
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FIG. 10. Energy-eigenstate expectation values of the ferromag-
netic structure factor, (Sp)eq = (| Sr|e), in the ferromagnetic 2D-
TFIM (e = 0) for the two clusters with N = 20 (20A and 20B; see
Fig. 1). For all the values of the transverse field depicted, the support of
the eigenstate expectation values is narrower in cluster 20A. One can
then conclude that this cluster suffers from smaller finite size effects
than cluster 20B. All results shown in the main text for N = 20 are
for cluster 20A.
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eigenstate thermalization. We should stress, however, that
clusters with the same number of sites but different geometries
can display differences in the energy-eigenstate expectation
values. Figure 10 shows the energy-eigenstate expectation
values of S for the clusters 20A and 20B (see Fig. 1) within

PHYSICAL REVIEW E 93, 032104 (2016)

the ferromagnetic 2D-TFIM. One can see that the eigenstate
to eigenstate fluctuations of the expectation values is larger in
cluster 20B than in 20A, i.e., the former suffers from stronger
finite size effects. Because of this, in the main text we showed
results only for cluster 20A.
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