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Glasslike behavior of a hard-disk fluid confined to a narrow channel
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Disks moving in a narrow channel have many features in common with the glassy behavior of hard spheres
in three dimensions. In this paper we study the caging behavior of the disks that sets in at characteristic packing
fraction φd . Four-point overlap functions similar to those studied when investigating dynamical heterogeneities
have been determined from event-driven molecular dynamics simulations and the time-dependent dynamical
length scale has been extracted from them. The dynamical length scale increases with time and, on the equilibration
time scale, it is proportional to the static length scale associated with the zigzag ordering in the system, which
grows rapidly above φd . The structural features responsible for the onset of caging and the glassy behavior are
easy to identify as they show up in the structure factor, which we have determined exactly from the transfer-matrix
approach.
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I. INTRODUCTION

It has been frequently observed that disks moving in
a narrow channel can provide useful insights into glassy
behavior [1–7]. In a recent paper [6] two of us studied the
static and dynamic properties of N disks of diameter σ , which
move in a narrow channel consisting of two impenetrable
walls (lines) spaced by a distance Hd such that 1 < Hd/σ <

1 + √
3/2 (see Fig. 1).

With channels of this width only nearest-neighbor disks can
interact with one another and neighboring disks cannot pass
each other so that their ordering is preserved: 0 � x1 < x2 <

· · · < xN � L, where xi is the position of the center of disk i,
measured along the channel, and L is the total length available
to the disk centers. The coordinate yi of the ith disk is measured
from the center of the channel and can vary between ±h/2,
where h = Hd − σ . The packing fraction φ in our system of
disks is defined as

φ = Nπσ 2

4HdL
. (1)

Our disks move ballistically, colliding elastically with each
other and the channel walls. It is useful for many purposes
to regard the disks as being contained within a system of
average length L by pistons at the ends of the channel that
exert a force f to counteract the momentum transferred by the
disks colliding with them. For any finite value of this force,
large fluctuations in the x coordinates of the disks cause the
time-averaged density of disks to be independent of x, so the
system is never crystalline. The static equilibrium properties
of this simple system can be determined exactly by use of the
transfer matrix [6,8–11], but the chief purpose of this paper is to
discuss the dynamics. The dynamical properties of our system
must be determined from simulations and to this end we have
used event-driven molecular dynamics to handle the collisions
of the disks with each other and with the channel walls. We find
interesting similarities and also some instructive differences
with the dynamics of three-dimensional glass-forming liquids.

It was found some time ago that in the system of disks in a
channel there is a packing fraction φd ≈ 0.48 above which the
dynamics are activated [1]. Similarly, for hard spheres in three
dimensions, the relaxation time grows rapidly above a packing

fraction of ≈ 0.58. For a review of this and other features of
hard-sphere systems see Ref. [12]. We have also observed that
for φ > φd ≈ 0.48 zigzag ordering of the disks starts to grow
rapidly [6]; that is, the onset of the slow dynamics is connected
with the growth of this particular kind of order. There is a
long tradition of associating glassy behavior with geometrical
features associated with the arrangements of particles around
a given particle (see, e.g., [13–17]) and our work on disks in
a narrow channel is entirely consistent with these ideas. In
our earlier work [6,7] a length scale ξ associated with zigzag
order was determined from the decay with s of the correlation
function

〈yiyi+s〉 ∼ (−1)s exp(−s/ξ ). (2)

It is a measure of the number of disks over which the zigzag
order, a form of bond-orientational order, persists; it is of the
same order as the separation of defects in the zigzag order,
where the defects are of the kind illustrated in the top and
bottom panels of Fig. 2.

In three-dimensional systems the ordering associated with
glassy behavior is complicated [17]. Furthermore, the ordering
associated with glassy behavior is not apparent in changes to
the structure factor as it is cooled through the glass transition.
In Sec. II we calculate the structure factor of our system,
defined as

S(kx,ky) = 1

N

∑
i,j

〈exp[ikx(xi − xj ) + iky(yi − yj )]〉, (3)

at packing fractions close to φd by use of the transfer-matrix
formalism and so it is exact to numerical accuracy. It is found
to change rapidly near φd . This marked difference with the
behavior in three dimensions where the structure factor hardly
alters near the glass transition indicates that glass behavior in
three dimensions must, as suggested in Refs. [13–17], involve
higher-order correlations that have little impact on the structure
factor, unlike the simple zigzag orientational order of the
narrow-channel system.

In Sec. III we study the onset of the slow dynamics that
sets in around φd . In three dimensions the slow dynamics are
normally attributed to the onset of caging behavior where a
particle is trapped by its neighbors and this behavior is believed
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FIG. 1. Illustration of the disk-channel system as in Ref. [6]. The
shaded disks represent a defect in the developing zigzag order.

to be captured by the mode-coupling approach. The particle
can escape its cage on the α-relaxation time τα . To determine
whether or not caging occurs in our system we have studied
the mean-square displacements

�2(t) =
〈

1

N

N∑
i=1

|yi(t) − yi(0)|2
〉
, (4)

where the average is over different initial states. We find that
there is caging of particles in our system, i.e., there is (at
large enough packing fractions) a plateau in �2(t) before its
long-time limit is reached. We find that in our system there are

FIG. 2. Transition state for motion of a defect. In the top and
bottom diagrams, the two blue-shaded disks are a defect in the zigzag
arrangement of disks. The defect can move when one disk crosses
the channel by squeezing between its neighbors: The system passes
through the transition state shown in the middle diagram to reach
the defect state shown in the bottom diagram. In the top diagram
the defect involves disks 3 and 4; in the bottom diagram the defect
involves disks 4 and 5, when the disks are numbered from the left.
The net motion of the defect is to the right and �b is the extra length
needed to allow this motion.

two distinct long timescales, which we call τ and τD following
Ref. [6]; we can obtain both of them from the behavior of
�2(t). The smaller of these time scales τ is the typical time
scale for a disk to cross from one side of the system to the other
by the process shown in Fig. 2. It marks the time at which the
particle starts to escape from its cage or the end of the plateau
in �2(t): In three-dimensional systems this would be called the
α-relaxation time τα . At packing fractions above φd , escape
from a cage can be regarded as a displacement of a defect in
the zigzag ordering of the disks as is also illustrated in Fig. 2.
We are able to determine from the simulation the diffusion
constant for the movement of such defects. Its dependence
on packing fraction is consistent with the general picture of a
crossover from fragile glass behavior at low packing fractions
to strong glass behavior at high packing fraction, which was
investigated previously in Refs. [2,4].

The second long timescale τD is essentially the longest
timescale in the system. In equilibrium defects are thermally
nucleated in pairs and the defects produced then diffuse and
annihilate with each other. It is this process of diffusion
with creation and annihilation that takes place on the time
scale τD . There is a simple relation between τ and τD:
τD ∼ τξ 2 [6]. Note that ξ is the typical distance between
defects in equilibrium, so ξ 2/D is the time it would take for a
defect to move a distance ξ : This gives a diffusion coefficient
D for the defects that varies as 1/τ [6]. The long timescale
τD is determined from the time at which �2(t) approaches its
equilibrium limit.

A characteristic of glassy dynamics is the appearance of
a plateau in the decay of certain time-dependent correlation
functions. This plateau eventually decays to zero after the
time τα , the α-relaxation time. The time to reach the plateau
is the β-relaxation time τβ . Correlation functions with this
feature have not previously been studied in our narrow-channel
system. The existence of a plateau in �2(t) implies that there
will be such a plateau in the decay of

R(t) = 1

N

∑
i

〈yi(0)yi(t)〉; (5)

at long times R(t) approaches zero. As noted above, our results
support a model in which the diffusion of defects leads to
equilibrium. In models of this kind, R(t) is expected to decay
with a stretched exponential form exp(−[t/τD]1/2), where τD

is the equilibration time of the system [18].
We have also studied a correlation function related to

the χ4(t) that has been much studied in three dimen-
sions [15,19,20]. In three dimensions χ4(t) rises to a peak at
the α-relaxation time and then decays to zero as the particles
escape their cages. Our χ4(t) increases to a constant plateau
value as t increases and stays at this value as t → ∞. In
this regard the narrow-channel system behaves more like
a spin glass than a structural glass [21]. We have also
extracted a dynamical correlation length ξ4(t) from a four-point
correlation function. In our system as t → τD , ξ4 grows
towards the static correlation length ξ , which measures the
extent of zigzag, i.e., structural, order.

In Sec. II we show how the structure factor can be
determined exactly from the transfer-matrix procedure and
we demonstrate that it changes rapidly for densities close to
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φd . Our dynamical studies are in Sec. III. We conclude with a
discussion in Sec. IV.

II. STRUCTURE FACTOR

The structure factor is well known from the part it plays
in the scattering of electromagnetic radiation by liquids [22].
It is the Fourier transform of the density-density correlation
function and so provides information on the relative positions
of scatterers within the system. Like a liquid, our system
of disks in a channel has no long-range order (along the
channel) for finite values of the longitudinal force f ; however,
unlike in the bulk of a liquid, the short-range order is strongly
affected by the presence of confining walls, leading to the
zigzag correlations discussed in Sec. I. In this section we
show that the structure factor can be calculated essentially
exactly for disks in a narrow channel. Our numerical results
for the case h = √

3σ/2 show a rapid change in the short-range
order for βf σ in the range 6.5–8, which corresponds to
packing fractions φ in the range 0.45–0.50. This range of
packing fractions correlates closely with the onset of activated
dynamics, as we discuss later in Sec. III.

In the limit N → ∞, the definition of the structure factor (3)
may be rewritten in the form

S(kx,ky) =
∞∑

n=−∞
Sn = 1 + 2 Re

∞∑
n=1

Sn, (6)

where

Sn = 〈ei(kx [xn−x0]+ky [yn−y0])〉. (7)

At kx = 0, S(kx,ky) has a δ-function singularity and the sum
on the right-hand side of (6) diverges. As we now show, for
kx 	= 0 the sum can be evaluated relatively simply by solving
a pair of integral equations. One of these equations is known
from the transfer-matrix formalism introduced by Barker [8]
and applied by Kofke and Post [9] to the problem of hard disks
in a channel. We follow the latter authors in using an ensemble
in which the longitudinal force f is constant and we refer the
reader to their paper [9] for details.

Let ψn(y) be the eigenfunctions of Kofke and Post’s integral
equation

λnψn(y1) =
∫ h/2

−h/2
e−βf σ1,0ψn(y0) dy0, (8)

where y0 and y1 are the y coordinates of a neighboring
pair of disks and σ1,0 = [σ 2 − (y1 − y0)2]1/2 is the distance
of closest approach of their centers, measured along the
x axis. Approximations to the eigenfunctions ψn and the
eigenvalues λn can be found by discretizing Eq. (8), which
converts it to a real-symmetric matrix eigenvalue problem.
The eigenfunctions (taken to be real) can be normalized so
that ∫

[ψn(y1)]2dy1 = 1. (9)

In this and subsequent equations, the limits of the y integration
are −h/2 and h/2, the same as in Eq. (8).

Equilibrium expectation values, such as those needed for
the quantities Sn defined in (7), can be expressed as integrals

involving the eigenfunction ψ1, which corresponds to the
largest eigenvalue λ1. We illustrate this for the calculation
of S1 below.

Here S1 is the expectation value of exp(ikx[x1 − x0] +
iky[y1 − y0]), which is a function of y0, y1, and the gap s

between disks 0 and 1, defined by

s + σ1,0 ≡ x1 − x0. (10)

From the results of Ref. [9], the probability distribution for the
variables y0, y1, and s is proportional to

ψ1(y1)e−βf [s+σ1,0]ψ1(y0).

Accordingly, S1 is given by

S1 = 〈eikx (s+σ1,0)+iky (y1−y0)〉

=
∫

ψ1(y1)
∫∫ ∞

0 e(ikx−βf )(s+σ1,0)+iky (y1−y0)ψ1(y0)dsdy0dy1∫
ψ1(y1)

∫ ∫ ∞
0 e−βf (s+σ1,0)ψ1(y0)dsdy0dy1

.

(11)

After completing the integrals with respect to s and using the
eigenvalue equation (8) and the normalization condition (9) to
simplify the denominator, we obtain

S1 =
∫

ψ1(y1)

{
βf

λ1(βf − ikx)

×
∫

e(ikx−βf )σ1,0+iky (y1−y0)ψ1(y0)dy0

}
dy1

≡
∫

ψ1Ŝψ1dy1, (12)

in which the bracketed expression in the first line defines the
action of the integral operator Ŝ on ψ1. More generally, for
n � 1 one can write

Sn =
∫

ψ1Ŝ
nψ1dy1, (13)

so the sum in Eq. (6) becomes

∞∑
n=1

Sn =
∞∑

n=1

∫
ψ1Ŝ

nψ1dy1 =
∫

ψ1Ŝφ dy1, (14)

where φ is the solution of

φ = ψ1 + Ŝφ, (15)

which is a Fredholm equation of the second kind. Given the
function ψ1 found by solving the discretized equation (8), the
calculation of φ requires only the solution of the set of linear
equations obtained by discretizing Eq. (15). Finally, in terms
of ψ1(y1) and φ(y1), the structure factor is given by

S(kx,ky) = 1 + 2 Re
∫

ψ1Ŝφ dy1, (16)

which depends on kx and ky via φ and the operator Ŝ.
As indicated above, Eqs. (8) and (15) can be solved by

discretization. For all but the smallest values of βf σ , the
function ψ1 is concentrated near the walls and it is sampled
at smaller intervals in those regions, to keep the dimension of
the matrices relatively small. To implement this nonuniform
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FIG. 3. Structure factor S(kx,ky = 0) as a function of βf σ and
kxσ for the narrow-channel system with h = √

3σ/2. The position
of the first peak in S (near kxσ = 6 for βf σ = 4) changes rapidly
for βf σ in the range 6.5–8, following the change in periodicity that
accompanies the growth of zigzag order. Adjacent contours are spaced
by 0.1 in log10 S and contour lines with S = 1 are marked in red.

sampling we make the change of variable

u(y) = sinh(αβfy)

sinh(αβf h/2)
, (17)

where α = 1
2h/

√
σ 2 − h2 and the values of u are taken to

be uniformly spaced in the interval [−1,1]. The symmetry
of the transfer matrix is preserved by solving Eq. (8) for the
function [dy/du]1/2ψ1, rather than ψ1. Matrices of dimension
100 × 100 are sufficient to reproduce the results presented in
this section.

Numerical results are shown in Figs. 3–7. In Fig. 3, the
structure factor is plotted as a function of βf σ and kx for
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FIG. 4. Structure factor S(kx,ky = π/h) as a function of βFσ

and kxσ for the narrow-channel system with h = √
3σ/2. A peak

near kxσ = 4 grows rapidly for βf σ > 4, consistent with the growth
of zigzag correlations. Contour lines are described in the caption to
Fig. 3.

k
x
 σ

k y σ

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

FIG. 5. Structure factor S(kx,ky) for βf σ = 5 for the narrow-
channel system with h = √

3σ/2. Contour lines are described in the
caption to Fig. 3.

the case ky = 0. For ky = 0, the structure factor is sensitive
only to correlations in the y-averaged density. Zigzag order is
growing rapidly for βf σ in the range 6.5–8 and this can be seen
in Fig. 3 as a rapid change in the nature of the first maximum
with respect to kx . For very small values of f , the oscillations
in S(kx,ky = 0) are small and (much as for a low-density gas of
hard rods) their presence is due to the discontinuity of the pair
distribution function g(r) at r = σ . However, as f increases, a
new peak emerges and rapidly becomes dominant. Its position
reflects the changing spatial periodicity in the x direction: For
βf σ → ∞, the peak approaches kx = 4π/σ , which can be
understood as 2π/(σ/2), where σ/2 is the spatial period of the
y-averaged density in this limit.

Figure 4 shows the evolution of the structure factor for the
case ky = π/h, where the value of ky has been chosen to better
illustrate the growth of zigzag order. Note that when βf σ is
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FIG. 6. Structure factor S(kx,ky) for βf σ = 7.5 for the narrow-
channel system with h = √

3σ/2. Contour lines are described in the
caption to Fig. 3.
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FIG. 7. Structure factor S(kx,ky) for βf σ = 10 for the narrow-
channel system with h = √

3σ/2. Contour lines are described in the
caption to Fig. 3.

large, nearest-neighbor disks are separated by �x ≈ σ/2 along
the channel and by �y ≈ ±h in the transverse direction. For
ky = π/h, the nearest neighbors will scatter in phase when
kx�x ≈ π , i.e., for kx ≈ 2π/σ . This scattering results in a
peak in the structure factor that is clearly visible in Fig. 4. The
peak first appears near kxσ = 4 for βf σ ≈ 4. It strengthens
as βf σ increases and it eventually approaches kxσ = 2π .

Figures 5–7 show the structure factor for three values of the
force for which S(kx,ky) is changing most rapidly: βf σ = 5,
7.5, and 10. The maxima in S grow and become narrower (in
the kx direction) as f increases and the zigzag correlations
strengthen. For very large f , the widths of the peaks decrease
as (βf σ )−2. We note that this f dependence of the peak width
is the same as is found for a one-dimensional gas of hard rods,
whose structure factor was derived analytically by Zernike and
Prins [23].

III. TIME-DEPENDENT BEHAVIOR

In order to study time-dependent effects we have used
event-driven molecular dynamics based upon the code referred
to in Ref. [24]; the speed of the program was improved
by using the fact that in our narrow-channel system only
nearest-neighbor disks can collide. The initial state from
which the system evolves was created by means of the
Lubachevsky-Stillinger algorithm [25], starting from a random
configuration of small disks. Their diameters were slowly
increased to the desired value during the course of a simulation,
which preceded the long runs used to study dynamics in the
equilibrated system.

The force f along the channel was computed by using a
virial formula. Suppose that at the instant of collision between
two disks, the x separation of their centers is �x(c) > 0, where
c labels the collision. The x component of the momentum
transferred from the disk at smaller x to the disk at larger x

is a positive quantity �px(c) > 0. With the values of �x(c)
and �px(c) determined by simulation, the average longitudinal

FIG. 8. Equation of state βf σ versus φ for the narrow-channel
system with h = √

3σ/2. The solid line shows the equation of state
calculated from the transfer-matrix results of Ref. [6], while the
data points were obtained from long-time simulations of N = 10 000
disks.

force can be found from

f L = N

β
+ 1

τsim

∑
c

�x(c)�px(c), (18)

where the sum includes all disk-disk collisions c that occur
during the simulation time τsim.

All of our simulations were performed with N = 10 000,
h = √

3/2, and β = σ = m = 1, where m is the mass of a disk.
To check their accuracy we calculated the equation of state
and compared it with the results of the exact transfer-matrix
calculation [6], as shown in Fig. 8.

The agreement is excellent up to φ = 0.65. There is a
discrepancy at φ = 0.70 (but too small to be visible in
the figure) as at this packing fraction the time scale for
equilibration τD is becoming comparable to our simulation
time.

A. Time scales

To see the emergence of caging behavior it is convenient to
study

�̃2(t) = 1

N

N∑
i=1

1

〈|yi(t) − yi(0)|−2〉 , (19)

where the angular brackets indicate an average over runs
with different initial states. Though it appears unnatural
at first sight, this quantity was introduced in Ref. [26] to
minimize the contribution of rattlers. The ability of rattlers to
move a distance of O(σ ) tends to dominate the mean-square
displacements at short times t . We have a similar problem
here in that a few disks that border gaps are able to cross from
one side of the channel without hindrance. In Fig. 9 one can
see the emergence of a plateau as φ increases from 0.45 to
0.50, which suggests that caging of the disks is setting in as
the zigzag order develops around φd . It was in Ref. [1] that
φd ≈ 0.48 was first identified as the onset point for activated
dynamics.
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FIG. 9. Time dependence of the mean-square displacements (in
units of σ 2) of 10 000 disks defined via Eq. (19), a quantity that was
introduced in Ref. [26] to minimize the contribution from the most
mobile disks. The results for the various packing fractions φ that were
studied are averaged over 20 independent equilibrated trajectories.
Time is in units of (βmσ 2)1/2.

It is easier to understand the behavior of the unmodified
mean-square displacement �2(t) as defined in Eq. (4). How-
ever, Fig. 10 shows that for this quantity the plateau is only
clearly visible at values of φ above 0.60, which is well into the
density regime where the dynamics are activated [1,6].

Some of the features on display in Fig. 10 include the
following.

(i) There is a final long-time limit: In the limit t → ∞,
�2(t) reaches a finite value. (In three dimensions in the same
limit, the mean-square displacement of a particle increases
without limit linearly with t .) From its definition, �2 =

FIG. 10. Time dependence of the mean-square displacements (in
units of σ 2) for trajectories of 10 000 disks at varying packing
fractions φ. Time is in units of (βmσ 2)1/2. The dashed lines fit the
central regions where the gradient is approximately 0.5, indicating a
process of relaxation that is dominated by the diffusion of defects, as
suggested in [6] as a mechanism for the α relaxation. For φ � 0.60
a plateau is seen to form between the small-t ballistic and large-t
diffusive regimes. The plateau corresponds to disks becoming trapped
in cages formed by their neighboring disks, which require cooperative
motion to break. At very long times �2(t) tends to a constant value
2〈y2

i 〉.

〈y2
i (t) + y2

i (0) − 2yi(t)yi(0)〉; the last term in angular brackets
gives 2R(t), which tends to zero in the long-time limit, so �2

tends to 2〈y2
i 〉, a quantity that is close to 2(h/2)2 in the limit

of large f when the disks are mostly pushed to the sides of the
channel.

(ii) For small t , �2(t) increases as t2; i.e., the motion is
ballistic. This regime is larger at smaller values of φ, for which
the gaps between disks are larger.

(iii) A shoulder begins to form around φ ∼ 0.60 and
develops into a clearly visible plateau for φ � 0.65. This is
a clear analog of the caging effect seen in three dimensions.
It sets in at higher packing fractions than φd ≈ 0.48, the
packing fraction at which the growing zigzag order results
in the dynamics becoming activated.

(iv) Beyond the glassy plateau for φ � 0.60 and above the
ballistic regime for φ � 0.60, there is a time scale τ beyond
which a power-law dependence on t sets in, �2(t) ∝ t1/2. This
dependence on t is due to the slow diffusion of defects in the
zigzag arrangement of disks.

We can explain some of these features in greater detail.
While activated dynamics may set in around a packing fraction
φ ≈ 0.48, some disks still find at this density that they can
easily cross the channel, and it is not until a packing fraction
of 0.60 that the numbers of these “rattling” disks become
negligible. The plateau represents a clear caging effect and it
lasts for a time τ , the time it typically takes for a disk to cross
from one side of the channel to the other by the transition
state mechanism depicted in Fig. 2. Once the zigzag order
sets in, the motion of the defects as in Fig. 2 dominates the
behavior of most of the disks. However, at packing fractions
around 0.48 there are still some disks that can travel from
one side of the channel to the other with little hindrance from
their neighbors. (A similar observation was made in Ref. [4].)
Their contribution to �̃2(t), defined in Eq. (19), is small, which
enables one to see the emergence of the caging behavior in it
at lower packing fractions than for �2(t).

The time scale τ for a defect to move as shown in Fig. 2 was
studied numerically in Ref. [1] and explained using transition
state theory in Refs. [6,27]. At high packing fractions

τ ∼ τ0 exp(βf �b), (20)

where τ0 is of the order of a disk collision time. The argument
of the exponential in Eq. (20) can be understood from Fig. 2:
βf �b is the work done against the piston in creating the extra
length �b in the system, which allows the defect to move.
In Ref. [6] it was shown that this extra length was �b =√

4σ 2 − h2 − σ − √
σ − h2, which can also be understood

by inspection of Fig. 2. The plateau visible at larger packing
fractions in Fig. 10 will end on the time scale τ .

We now turn to the details of the diffusive behavior,
indicated by the dashed lines in Fig. 10. The mean-square
displacement �2(t) increases as 〈yi(t)yi(0)〉 goes to zero. The
crossing of disks from one side to the other of the channel
is what drives this correlation function to zero. Figure 2
shows that this happens where there are defects in the zigzag
arrangement of the disks. Let θ be the concentration of
defects so that the number of defects is Nθ . This number
is readily determined in numerical work using the procedure
given in Ref. [3]. Figure 11 shows θ as a function of packing
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FIG. 11. Variation of the defect density θ with packing fraction φ.
The points give the observed defect densities in our simulations and
the dashed line is the approximate theoretical relation predicted in
Ref. [6]. The approximate relation is expected to improve in the limit
of φ → φmax, which is seen here in the increased agreement between
simulation and analytic values as φ increases, with the exception of
the result for φ = 0.7 where we found 4 times more defects than
expected. This discrepancy is most likely due to poor equilibration as
the trajectory was simulated for a time period much shorter than its
relaxation time. Relaxation times τD are shown in Fig. 12.

fraction φ obtained from the simulations and compared with
the analytical approach of Ref. [6], which becomes exact at
large packing fractions.

As time increases the number of disks flipped by the
diffusion of the defects will be of order Nθ

√
Dt , where D

is the diffusion coefficient of a defect. It was argued in Ref. [6]
that at large f , DτD ∼ 1/θ2. Then

τD ∼ τ0 exp(βf �c), (21)

where �c = √
4σ 2 − h2 + σ − 3

√
σ 2 − h2. The physical sig-

nificance of the time scale τD is that it is the time scale on
which diffusing defects meet and annihilate [6]. It appears to
be the longest timescale in the system: the time scale for full
equilibration. Note that in the diffusive region

�2(t) ∼ h2
√

t/τD. (22)

By extending the dashed lines in Fig. 10 to the points where
they meet the analytic final values of �2(t) we can estimate
values for τD . Values of τD/τ0 are plotted in Fig. 12. The
collision time scale τ0 was estimated from the mean collision
rate per disk determined from our simulations, i.e.,

1

τ0
= nc

Nτsim
, (23)

where nc is the total number of collisions that occurred
during the simulation time τsim. The agreement with the
prediction (21) is satisfactory for the results shown in Fig. 12.

We have also used the results shown in Fig. 10 to obtain the
diffusion coefficient for defects. At high density, the diffusion
coefficient should be related to τ by Dτ0 ∼ τ0/τ and so might
be expected to provide confirmation of Eq. (20). To find D,
we make use of (22) in the form

�2(t) ∼ h2θ
√

Dt. (24)

FIG. 12. Rapid increase in the τD-relaxation times with longitu-
dinal force f , obtained by assigning a linear fit to the diffusive region
of the mean-square displacements (see Fig. 10) and extrapolating
to find the time where it meets the analytic final values of �2(t).
The dashed line fits the exponential trend predicted by Eq. (21)
that is ln τD/τ0 ∼ βf �c and becomes an increasingly better fit as
f becomes large, i.e., in the limit φ → φmax. The circled data point,
corresponding to φ = 0.7, deviates from this trend: As noted in the
caption to Fig. 11, the system failed to reach equilibrium for this
value of φ.

Extrapolation of the dashed lines in Fig. 10 back to t = 1 gives,
via (24), an estimate of θ

√
D. This in turn provides D when

we make use of the values of θ found from our simulations.
Results for Dτ0 obtained in this way are plotted in Fig. 13.
The results show a significant departure from Eq. (20), but
there are several reasons why we might expect our procedure
to give poor results for the densities of interest here. First we
note that for the smaller values of the packing fraction the lines
of slope 0.5 in Fig. 10 are not very convincing fits to the data:
The linear portions of the curves are very short. Second, the
mean spacing of defects given by 1/θ is not large (see Fig. 11)
for φ in the range 0.4–0.6: Interactions between defects may
well modify the diffusion coefficient significantly, leading to a

FIG. 13. Variation of diffusion constant D ∝ 1/τ with longitudi-
nal force f using the y intercept of linear fits to the diffusive regions
shown in Fig. 10. The dashed line fits the exponential trend predicted
by Eq. (20), ln τ/τ0 ∼ βf �b.
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θ -dependent factor in the relation D ∼ 1/τ . Finally, as shown
in Ref. [6], θ itself is not a simple exponential function of βf σ

at these moderate values of φ, but instead can be calculated
quite accurately (see Fig. 11) from a law of mass action. Thus,
even if τ has the activated form (20), it is not certain that this
can be ascertained from our calculation of D at the moderate
densities accessible via our simulation.

Fortunately, it is not necessary to rely on an estimate of
the diffusion coefficient to verify the activated behavior of τ .
Bowles and Saika-Voivod [1] have made a direct determination
of the channel-crossing time from their molecular dynamics
simulation. As shown in Ref. [6], their results are in satisfac-
tory agreement with Eq. (20).

Finally, we comment very briefly on the time-dependent
correlation function R(t) = 〈yi(t)yi(0)〉, mentioned in Sec. I:
R(t) decays to zero because of the diffusion of the defects in
the regular zigzag arrangement of disks in the channel. Such a
diffusive mechanism has been much studied [18] and leads to
a stretched exponential decay R(t) ∼ exp(−√

t/τD). We have
not attempted a direct verification of this behavior of R(t), as
it is expected only for very large times t � τD .

B. Overlap correlations

We turn now to a study of overlap correlations, which
correlate the configuration of the system at time t with a
configuration drawn from the equilibrium ensemble at time
t = 0. Studies of such correlations reveal the existence of
dynamical heterogeneities in three-dimensional glass-forming
liquids. It is therefore of interest to see whether the system
of disks in a channel shows similar behavior. In particular we
will make use of the (self-) overlap function

Q(t) = 1

N

∑
i

w[yi(t),yi(0)], (25)

where w[yi(t),yi(0)] = 1
2 {sgn[yi(t)] sgn[yi(0)] + 1} is unity if

disk i is on the same side of the channel at times 0 and t and zero
otherwise; in the terminology of Ref. [20], this quantity is the
mobility of disk i. Similar overlap functions have been studied
in three dimensions: In that case, the overlap w[ri ,rj ] has been
taken to be 1 if |ri − rj | � 0.3σ and zero otherwise [14,15,19].
A significant difference between this latter definition and our
own is that our overlap function does not depend on the x

coordinates of disks. This modification eliminates an effect,
specific to our one-dimensional problem, of large fluctuations
(∼N1/2) in the x coordinates of disks. These fluctuations can
cause the overlap between two configurations to be small even
in cases where the configurations would be identical, when
described in terms of defects in the zigzag arrangement of
disks.

A quantity much studied for three-dimensional systems is
the four-point susceptibility χ4(t), which is defined in terms
of the variance of Q(t) via

χ4(t)/N = 〈Q(t)2〉 − 〈Q(t)〉2. (26)

This has been calculated for our one-dimensional system
and is shown in Fig. 14. In three dimensions it reaches a
maximum on the time scale τα and subsequently decreases
towards zero, but for our system there is no decay back to
zero. This difference between dimensions d = 3 and d = 1

FIG. 14. Four-point susceptibility χ4(t), as defined by Eq. (26),
as a function of time t for various packing fractions φ. It approaches
its largest values at a time corresponding to τD .

was discussed previously in Ref. [28] and can be understood
qualitatively as follows. In three dimensions the self-overlap
w[ri(t),ri(0)] becomes small and is likely to remain small
once a sphere has escaped from its cage; it follows that the
fluctuations in Q(t) will also be small for times that are long
enough for most of the spheres to have escaped from their
cages. This argument does not apply to our system of disks in
a channel because a disk can cross the channel any number of
times, so w[yi(t),yi(0)] is a fluctuating quantity of order unity.
For any value of t , the y coordinates of disks are correlated
over a range ξ and are approximately independent over larger
distances. From this we expect the contributions to Q(t) from
independent regions of size ξ to be fluctuating quantities of
order ξ/N for times t > τD . If the number of these regions is
mξ ∼ N/ξ , we expect

χ4/N = Var Q(t) ∼ mξ (ξ/N )2, (27)

which gives χ4 ∼ ξ for long times. This result can be refined
by using Eq. (2) to evaluate the right-hand side of (26); we
obtain

χ4(t) ≈ ξ/4 (28)

for t � τD and ξ � 1. The last estimate (28) is consistent with
the results shown in Fig. 14 for φ = 0.49 and 0.59, for which
ξ = 3.9 and 20.9, respectively.

We have also determined the dynamical length scale from
the four-point correlation function S̃4(κx,t) defined as

S̃4(κx,t) = 1

N
〈Q̃(κx,t)Q̃

∗(κx,t)〉, (29)

where

Q̃(κx,t) =
∑

j

e−iκxj yj (t)yj (0) (30)

and κx = 2πm/N , where m = 1,2, . . . ,N − 1. The κx depen-
dence of S̃4(κx,t) follows a roughly Lorentzian form, as found
in Refs. [15,19], i.e.,

S̃4(κx,t) ≈ A(t)

1 + κ2
x ξ 2

4 (t)
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FIG. 15. Plot of the dynamical length scale ξ4(τD) versus the
static length scale ξ of zigzag order. The gradient of the dashed line
is 0.5, corresponding to the predicted behavior, Eq. (32).

for κx 	= 0; the dynamical length scale ξ4(t) is obtained from
a fit to the simulation data.

We present results for ξ4(t) at two physically significant
values of t . At t = τD the system has reached equilibrium, so

S̃4(κx,τD) ≈ 1

N

∑
p,q

e−iκx (p−q)〈ypyq〉2. (31)

Then, by using Eq. (2), one finds the correlation length

ξ4(τD) ≈ ξ/2. (32)

Here ξ is the number of disks for which zigzag order persists.
This dimensionless quantity is calculated from the two largest
eigenvalues λ1 and λ2 of the integral equation (8), using the
expression

ξ = 1/ln(λ1/|λ2|), (33)

which follows from the spectral representation of correlation
functions, discussed for the case of the Ising model in Sec. 2.2
of Ref. [29] and applied to a system of hard disks in a channel
by Varga et al. [10]. The results shown in Fig. 15 are in good
agreement with the prediction (32).

If we choose for t a value less than the equilibration time
τD , then ξ4(t) will be less than ξ/2. On the time scale τ , the
time for which particles are caged, ξ4(τ ) is not proportional to
ξ and the results in Fig. 16 show it instead to be of order 1 and
approximately independent of φ for φ > φd . This behavior
of ξ4(τ ) is understandable, as on the time scale τ the active
regions are centered on the defects, which involve O(1) disks.

The above studies show that our system has dynamical
heterogeneities of the kind expected in the defect-mediated
scenario for glassy dynamics [28,30]. In the packing-fraction
regime where the dynamics are activated, most of the disks will
be largely frozen except those in the vicinity of a defect. The
spacing between defects is of order ξ , which can become very
large. The defects move about and will eventually annihilate
with each other. This happens on the time scale τD , which is
also the time scale on which new pairs of defects are typically
nucleated [6].

FIG. 16. Plot of the dynamical length scale ξ4(τ ) versus the
packing fraction φ.

IV. CONCLUSION

There are some notable similarities between the behavior
of our system of disks in a narrow channel and that found for
a fluid of hard spheres in three dimensions. In each of these
systems at higher densities the mean-square displacement of
particles has a plateau that persists up to the characteristic time
for the breaking of cages, τ or τα . Also, in both systems there is
a crossover from nonactivated dynamics to activated dynamics
as the density increases and caging sets in. In this latter respect,
the behavior of these systems is distinctly different from that
of a hard-sphere crystal with defects, where the particles are
always caged and the diffusion of defects will occur via an
activated process.

There are, of course, some important differences. In the
channel system, the growing bond-orientational order that
we associate with the caging of disks is clearly visible
in the structure factor and this is not the case for the
three-dimensional glass-forming liquids, where higher-order
correlation functions are required to reveal bond-orientational
order. The difference here is due to the channel walls, which
form part of the cages: Their direction is fixed and so constrains
the possible directions of the bonds between nearest-neighbor
disks. This can be seen from the top and bottom diagrams in
Fig. 2, where only three nearest-neighbor bond directions are
possible at φ → φmax.

Another difference appears in the behavior of the dynamical
susceptibility χ4(t), which, for the channel system, does not
tend to zero for t → ∞. We note, however, that this is the
expected behavior of χ4(t) in defect-mediated models of glassy
dynamics in one dimension [28].

We believe that our work strongly supports the common
idea [13–17] that glass behavior is a consequence of geometry
and the local arrangements around the molecules in the
supercooled liquid. Our system is sufficiently simple that we
can quantitatively relate its dynamical features to structural
features. The three-dimensional problem is much richer and
success along these lines is probably only just starting [17].

The caging effects in our system mimic those seen in
three dimensions. These are normally modeled by mode-
coupling theory [31] and are associated with a genuine
dynamical transition, within that approximation. Our system
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is effectively one dimensional and is unlikely to have a
genuine phase transition. We are skeptical that the features
that we see in the dynamics could be explained in any way
by mode-coupling arguments. They seem instead to be more
naturally explained by dynamical processes associated with
the developing structural order in the system. We suspect that
the same might be true of three-dimensional systems.

A noteworthy feature of the dynamics of our system of
disks is the existence of two long timescales τ and τD .
In three dimensions, only the analog of τ , which is the
cage-breaking time τα , is normally discussed. However, in
two dimensions a second, much longer, time scale has been
revealed in experimental studies of polydisperse colloidal

crystals, reported by Tanaka et al. [32,33]. In their systems
there is a growing length scale ξ for bond-orientational order
and their second long timescale τξ is associated with dynamical
correlations on that length scale. This is strikingly similar to
what we have found for the case of disks in a channel, where
the growing length scale is that of zigzag ordering, which is a
form of bond-orientational order. It might, of course, be that
the second long timescale is a feature of the dynamics only
for one- and two-dimensional systems. One would expect two
long timescales to exist in three dimensions if escaping the cage
could be associated with moving a defect; the longer timescale
would then be associated with the time that the system needs
to reach equilibrium via the motion of defects.
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[19] N. Lačević, F. W. Starr, T. B. Schrøder, and S. C. Glotzer, J.
Chem. Phys. 119, 7372 (2003).

[20] L. Berthier, Physics 4, 42 (2011).
[21] J.-P. Bouchaud and G. Biroli, Phys. Rev. B 72, 064204

(2005).
[22] J. Frenkel, Kinetic Theory of Liquids (Oxford University Press,

Oxford, 1946).
[23] F. Zernike and J. A. Prins, Z. Phys. 41, 184 (1927).
[24] M. Skoge, A. Donev, F. H. Stillinger, and S. Torquato, Phys.

Rev. E 74, 041127 (2006).
[25] B. D. Lubachevsky and F. H. Stillinger, J. Stat. Phys. 60, 561

(1990).
[26] A. Ikeda, L. Berthier, and G. Biroli, J. Chem. Phys. 138, 12A507

(2013).
[27] M. Barnett-Jones, P. A. Dickinson, M. J. Godfrey, T. Grundy,

and M. A. Moore, Phys. Rev. E 88, 052132 (2013).
[28] C. Toninelli, M. Wyart, L. Berthier, G. Biroli, and J.-P.

Bouchaud, Phys. Rev. E 71, 041505 (2005).
[29] R. J. Baxter, Exactly Solved Models in Statistical Mechanics

(Academic, New York, 1982).
[30] L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
[31] W. Götze and T. Voigtmann, Phys. Rev. E 67, 021502 (2003).
[32] H. Tanaka, T. Kawasaki, H. Shintani, and K. Watanabe, Nat.

Mater. 9, 324 (2010).
[33] H. Tanaka, Eur. Phys. J. E 35, 113 (2012).

032101-10

http://dx.doi.org/10.1103/PhysRevE.73.011503
http://dx.doi.org/10.1103/PhysRevE.73.011503
http://dx.doi.org/10.1103/PhysRevE.73.011503
http://dx.doi.org/10.1103/PhysRevE.73.011503
http://dx.doi.org/10.1103/PhysRevLett.109.225701
http://dx.doi.org/10.1103/PhysRevLett.109.225701
http://dx.doi.org/10.1103/PhysRevLett.109.225701
http://dx.doi.org/10.1103/PhysRevLett.109.225701
http://dx.doi.org/10.1103/PhysRevLett.110.145701
http://dx.doi.org/10.1103/PhysRevLett.110.145701
http://dx.doi.org/10.1103/PhysRevLett.110.145701
http://dx.doi.org/10.1103/PhysRevLett.110.145701
http://dx.doi.org/10.1103/PhysRevE.91.022301
http://dx.doi.org/10.1103/PhysRevE.91.022301
http://dx.doi.org/10.1103/PhysRevE.91.022301
http://dx.doi.org/10.1103/PhysRevE.91.022301
http://dx.doi.org/10.1103/PhysRevLett.102.235701
http://dx.doi.org/10.1103/PhysRevLett.102.235701
http://dx.doi.org/10.1103/PhysRevLett.102.235701
http://dx.doi.org/10.1103/PhysRevLett.102.235701
http://dx.doi.org/10.1103/PhysRevE.89.032111
http://dx.doi.org/10.1103/PhysRevE.89.032111
http://dx.doi.org/10.1103/PhysRevE.89.032111
http://dx.doi.org/10.1103/PhysRevE.89.032111
http://dx.doi.org/10.1103/PhysRevE.91.022120
http://dx.doi.org/10.1103/PhysRevE.91.022120
http://dx.doi.org/10.1103/PhysRevE.91.022120
http://dx.doi.org/10.1103/PhysRevE.91.022120
http://dx.doi.org/10.1071/PH620127
http://dx.doi.org/10.1071/PH620127
http://dx.doi.org/10.1071/PH620127
http://dx.doi.org/10.1071/PH620127
http://dx.doi.org/10.1063/1.464967
http://dx.doi.org/10.1063/1.464967
http://dx.doi.org/10.1063/1.464967
http://dx.doi.org/10.1063/1.464967
http://dx.doi.org/10.1088/1742-5468/2011/11/P11006
http://dx.doi.org/10.1088/1742-5468/2011/11/P11006
http://dx.doi.org/10.1088/1742-5468/2011/11/P11006
http://dx.doi.org/10.1063/1.4852181
http://dx.doi.org/10.1063/1.4852181
http://dx.doi.org/10.1063/1.4852181
http://dx.doi.org/10.1063/1.4852181
http://dx.doi.org/10.1103/RevModPhys.82.789
http://dx.doi.org/10.1103/RevModPhys.82.789
http://dx.doi.org/10.1103/RevModPhys.82.789
http://dx.doi.org/10.1103/RevModPhys.82.789
http://dx.doi.org/10.1039/c3fd00078h
http://dx.doi.org/10.1039/c3fd00078h
http://dx.doi.org/10.1039/c3fd00078h
http://dx.doi.org/10.1039/c3fd00078h
http://dx.doi.org/10.1016/j.physrep.2014.11.004
http://dx.doi.org/10.1016/j.physrep.2014.11.004
http://dx.doi.org/10.1016/j.physrep.2014.11.004
http://dx.doi.org/10.1016/j.physrep.2014.11.004
http://dx.doi.org/10.1016/j.jnoncrysol.2014.08.017
http://dx.doi.org/10.1016/j.jnoncrysol.2014.08.017
http://dx.doi.org/10.1016/j.jnoncrysol.2014.08.017
http://dx.doi.org/10.1016/j.jnoncrysol.2014.08.017
http://dx.doi.org/10.1088/0953-8984/17/50/R01
http://dx.doi.org/10.1088/0953-8984/17/50/R01
http://dx.doi.org/10.1088/0953-8984/17/50/R01
http://dx.doi.org/10.1088/0953-8984/17/50/R01
http://dx.doi.org/10.1103/PhysRevLett.114.108001
http://dx.doi.org/10.1103/PhysRevLett.114.108001
http://dx.doi.org/10.1103/PhysRevLett.114.108001
http://dx.doi.org/10.1103/PhysRevLett.114.108001
http://dx.doi.org/10.1088/0305-4470/17/8/012
http://dx.doi.org/10.1088/0305-4470/17/8/012
http://dx.doi.org/10.1088/0305-4470/17/8/012
http://dx.doi.org/10.1088/0305-4470/17/8/012
http://dx.doi.org/10.1063/1.1605094
http://dx.doi.org/10.1063/1.1605094
http://dx.doi.org/10.1063/1.1605094
http://dx.doi.org/10.1063/1.1605094
http://dx.doi.org/10.1103/Physics.4.42
http://dx.doi.org/10.1103/Physics.4.42
http://dx.doi.org/10.1103/Physics.4.42
http://dx.doi.org/10.1103/Physics.4.42
http://dx.doi.org/10.1103/PhysRevB.72.064204
http://dx.doi.org/10.1103/PhysRevB.72.064204
http://dx.doi.org/10.1103/PhysRevB.72.064204
http://dx.doi.org/10.1103/PhysRevB.72.064204
http://dx.doi.org/10.1007/BF01391926
http://dx.doi.org/10.1007/BF01391926
http://dx.doi.org/10.1007/BF01391926
http://dx.doi.org/10.1007/BF01391926
http://dx.doi.org/10.1103/PhysRevE.74.041127
http://dx.doi.org/10.1103/PhysRevE.74.041127
http://dx.doi.org/10.1103/PhysRevE.74.041127
http://dx.doi.org/10.1103/PhysRevE.74.041127
http://dx.doi.org/10.1007/BF01025983
http://dx.doi.org/10.1007/BF01025983
http://dx.doi.org/10.1007/BF01025983
http://dx.doi.org/10.1007/BF01025983
http://dx.doi.org/10.1063/1.4769251
http://dx.doi.org/10.1063/1.4769251
http://dx.doi.org/10.1063/1.4769251
http://dx.doi.org/10.1063/1.4769251
http://dx.doi.org/10.1103/PhysRevE.88.052132
http://dx.doi.org/10.1103/PhysRevE.88.052132
http://dx.doi.org/10.1103/PhysRevE.88.052132
http://dx.doi.org/10.1103/PhysRevE.88.052132
http://dx.doi.org/10.1103/PhysRevE.71.041505
http://dx.doi.org/10.1103/PhysRevE.71.041505
http://dx.doi.org/10.1103/PhysRevE.71.041505
http://dx.doi.org/10.1103/PhysRevE.71.041505
http://dx.doi.org/10.1103/RevModPhys.83.587
http://dx.doi.org/10.1103/RevModPhys.83.587
http://dx.doi.org/10.1103/RevModPhys.83.587
http://dx.doi.org/10.1103/RevModPhys.83.587
http://dx.doi.org/10.1103/PhysRevE.67.021502
http://dx.doi.org/10.1103/PhysRevE.67.021502
http://dx.doi.org/10.1103/PhysRevE.67.021502
http://dx.doi.org/10.1103/PhysRevE.67.021502
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1140/epje/i2012-12113-y
http://dx.doi.org/10.1140/epje/i2012-12113-y
http://dx.doi.org/10.1140/epje/i2012-12113-y
http://dx.doi.org/10.1140/epje/i2012-12113-y



