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Abrupt growth of large aggregates by correlated coalescences in turbulent flow
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Smoluchowski’s coagulation kinetics is here shown to fail when the coalescing species are dilute and transported
by a turbulent flow. The intermittent Lagrangian motion involves correlated violent events that lead to an
unexpected rapid occurrence of the largest particles. This new phenomena is here quantified in terms of the
anomalous scaling of turbulent three-point motion, leading to significant corrections in macroscopic processes
that are critically sensitive to the early-stage emergence of large embryonic aggregates, as in planet formation or
rain precipitation.
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The formation of planets in circumstellar disks [1,2] as well
as the initiation of rain in warm clouds [3,4] involve the coa-
lescence of small dilute bodies suspended in a highly turbulent
flow. It is crucial, in both cases, to determine the speed at which
the largest objects are formed. Massive planetary embryos or
big raindrops decouple from the underlying flow and accrete
smaller particles more efficiently [5–7]. They are, very likely,
the precursors for a runaway growth and possibly trigger
the full coagulation process. Turbulent fluctuations might be
essential in the formation of such large objects [8,9] but their
precise role is still far from being fully understood. Significant
progress has been made in understanding the enhancement of
kinetic collision kernels due to turbulence. It is important to
recall two key mechanisms present in the particle dynamics:
preferential concentration [10], giving rise to high densities,
and the sling effect [11] or caustic formation [12], responsible
for large velocity differences; both mechanisms enhance the
rate at which particles approach each other [13,14]. Precise
quantitative models accounting for these two effects require
appreciating the influence of turbulence [15,16]. However,
their origin is not directly related to turbulent fluctuations but
rather comes from the inertia of the suspended particles and
the resulting detachment of their trajectories from the flow.
Their impact on collision rates can then be studied in simple
random flow [17–19].

In this Rapid Communication we show that, by its own,
turbulent transport speeds up the growth of large objects.
In the Lagrangian evolution of fluid elements, scaling and
geometry are tied up by nontrivial memory effects. These
interdependencies lead to intermittent multiscaling properties
of advected passive scalar fields [20,21]. In the context of
growth by coagulation, as shown in this work, they are
responsible for a power-law tail in the distribution of times
between successive collisions, yielding intricate correlations
in the sequence of coalescences experienced by individual
particles. Turbulent transport is thus the limiting factor for
the coagulation kinetics, in analogy with diffusion-limited
cluster-cluster aggregation or ballistic agglomeration (see [22]
for a review). Because of this turbulent effect, we find that
the number of large objects grows as a power law at short
times, with an exponent much smaller than the one obtained
from kinetic population-balance approaches. The value of
this exponent is expressed in terms of the anomalous scaling

exponent ζ3 associated to the third-order correlations of an
advected passive scalar.

To simplify the presentation, we focus on an initially
monodisperse suspension consisting of n1 monomers 1©
with mass m1. The extension to polydisperse situations is
straightforward. These particles evolve in a turbulent flow and
might coalesce, summing up their masses, when they collide.
This dynamics leads, after some time, to the formation of
a broad spectrum of particle sizes. We denote by i© those
constituted of i monomers and thus with a mass i × m1. Our
goal is to determine how fast the number ni(t) of particles

i© grows with time for i > 1. Simple population-balance
considerations lead to

ṅi(t) = 1

2

i−1∑
j=1

Qi−j,j (t) −
∞∑

j=1

Qi,j (t), (1)

where the dot denotes time derivative. Qi,j (t)dt is the number
of coalescences i© + j© occurring between times t and t + dt .
The first term in the right-hand side, the source, accounts
for the rate at which particles i© are created. The second,
the sink, handles the coalescences of such particles with all
others. When ni(0) = 0 (for i > 1), the global coalescence
rate Qi,j can be written in terms of the individual particle rate
by summing over all the creations of i©’s

Qi,j (t) =
∫ t

0
λi,j (t − s|s) nj (t) ṅi(s)ds. (2)

λi,j (τ |s) is the rate at which a particle i©, created at time s,
coalesce with a j© at time s + τ . For statistically steady particle
dynamics, this quantity is independent of the creation time s

and λi,j (τ |s) = λi,j (τ ). Also, this rate relates to the probability
distribution pi,j (τ ) of the time to next collision, which is given
by

pi,j (τ ) = λi,j (τ )e− ∫ τ

0 λi,j (τ ′)dτ ′
. (3)

This is the distribution of waiting time associated to the
nonhomogeneous Poisson process with rate λi,j (τ ).

At sufficiently long times τ , the coalescence rate λi,j (τ ) is
expected to approach a finite limit λ∞

i,j . Successive collisions
of a single particle then appear to be uncorrelated. They define
a memoryless process and pi,j (τ ) tends to the exponential
distribution with rate parameter λ∞

i,j . The population-balance
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system (1)-(2) then reduces to

ṅi = 1

2

i−1∑
j=1

λ∞
i−j,j ni−j nj −

∞∑
j=1

λ∞
i,j ni nj . (4)

This is the celebrated Smoluchowski coagulation equation
[23]. The stationary rates λ∞

i,j are usually referred to as
the collection or coalescence kernels. The work cited above
on particle inertia was actually devoted to estimating their
dependence upon particle sizes and the turbulent fluctuations
of the carrier flow. The kinetic model (4) leads to predictions
concerning the short-time increase of the ni’s. At the early
stages of particle growth, the number n1 of monomers remains
almost constant and creations are dominant in the population
balance. We thus get ṅ2 � λ∞

1,1n
2
1/2, so that n2(t) � n2

1λ
∞
1,1 t/2.

For the next size, we have ṅ3 � λ∞
1,2n1n2 and thus n3(t) �

n3
1λ

∞
1,1λ

∞
1,2t

2/4. We obtain recursively

ni(t) � ni
1(t/ti)

i−1, (5)

where the times ti are averages of the times 1/λ∞
j,k associated

to the different combinations of coalescences j© + k© that
are necessary to form a particle i©. The consistency of the
assumptions can be checked a posteriori: The creation terms
in (4) are always ∝ t i−2 and thus prevail at short times over the
dominant destruction term ∝ t i−1.

The main assumption leading to Smoluchowski kinetics (4)
is a convergence of the coalescence rate to its limiting value
λ∞

i,j much faster than the evolution of ni . This is ensured for
instance when the particles are very dense. For explaining the
formation of large particles in a dilute suspension, these time
scales are in general not sufficiently separated. The sudden
appearance of sizable aggregates requires a brisk sequence of
coalescences that are very likely to be correlated to each other.
When, in addition, the coalescing species are transported by a
turbulent flow, such correlations speed up the growth of large
particles.

A statistically steady turbulent flow involves interactions
between eddies of various sizes, ranging from the integral
scale L, where kinetic energy is injected at a rate ε, down
to the dissipative scale η = ν3/4/ε1/4 below which viscous
damping dominates (ν denotes the kinematic viscosity of the
fluid). The degree of turbulence grows with the extension of
this spatial span and is measured by the Reynolds number
Re = (L/η)4/3. The intermediate scales between η and L

define the inertial range through which energy cascades with
a rate ε. Dimensional arguments suggest that the velocity
increments between two points separated by a distance r in the
inertial range behave as ur ∼ (εr)1/3. Such a phenomenology,
referred to as Kolmogorov 1941, is often enough for capturing
the most significant effects of turbulent fluctuations; in
reality the scaling properties display slight deviations, due
to intermittency, from this dimensional prediction [24,25].

The breakdown of scale invariance is much more striking
for mixing statistics, owing to the fact that turbulence mingles
together fluid elements in a robust manner. This pops up with
the presence of quasidiscontinuities in the Lagrangian map
where materials originating from distinct regions of the flow
are violently brought together [see Fig. 1 (left)]. The emer-
gence of such fronts is due to the inertial-range roughness of

time τ

R

R

r

r
i

j

k

i
j

k

FIG. 1. Left: Distance traveled by fluid elements in a three-
dimensional turbulent flow during one large-eddy turnover time. Long
(white) and short (purple) distances, represented here as a function
of the final position in a two-dimensional slice, define an intricate
landscape with fronts where particles coming from far apart meet
together. Right: Sketch of the event leading to correlated successive
collisions. At the initial time (top), two particles i and k are located at
a collision distance r � η, while a third one j is at distance r ′ � η far
from them. A time τ later (bottom) j has approached i at a distance
R′ � η while k, having collided or not, has escaped to R � η.

the velocity field and the associated nonuniqueness of fluid ele-
ment trajectories. Two initially separate tracers x1(t) and x2(t)
that closely approach each other become indistinguishable
and separate afterwards following Richardson’s superdiffusion
|x1(t) − x2(t)|2 ∼ εt3. Still, when interested in more than two
fluid elements, this explosive behavior is constrained by the
underlying presence of statistical conservation laws induced
by the spatial correlations of the velocity field [20,21,26].
There exists specific functions of the shape and size of a cloud
of n tracers that on average do not vary with time. Such zero
modes are known to yield anomalous scaling in the statistics
of an advected passive scalar θ . Its structure functions behave
in the inertial range as 〈(θ (x + r) − θ (x))n〉 ∼ |r|n/3−δn where
the discrepancies δn of the exponents from their dimensional
prediction relate to the anomalous scaling of the transition
probability of the distances between n tracers. As we will
now see, the behavior of the three-point motion is in fact of
relevance to coalescences.

In dilute suspensions, a coalescence results from two
successive processes. First, the turbulent flow needs to bring
two initially separate particles at a sufficiently close distance
�η. Second, these close particles need to actually merge,
and this involves various microphysical mechanisms (particle
inertia, hydrodynamical interactions, surface effects). This
leads us to write the coalescence rate as a product of two
contributions:

λi,j (τ ) ≈ λturb
i,j (τ ) × λmicro

i,j . (6)

The contribution from turbulent transport can be written

λturb
i,j (τ ) ≈

∫
uηp3(R,η,τ |η,r ′,0)(r ′2/L3)dr ′dR (7)

involving the transition probability p3 of the three-point
motion. More specifically, two successive collisions occur
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if three particles [see Fig. 1 (right)], initially separated by
distances r = η and an arbitrary r ′, come in a time τ to
distances R, arbitrary, and R′ = η. The relation (7) is obtained
by integrating over all possible initial distances r ′ of the
particle j© from the particle i©, with a weight ∝r ′2 given
by a uniform three-dimensional spatial distribution. The three
tracers i©, j©, and k© undergo in a time τ an evolution
from a degenerate triangle with r � r ′ to another degenerate
triangle with, this time, R � R′. In turbulence, the probability
transition between such configurations can be written as

p3(R,R′,τ |r,r ′,0) ≈
( η

r ′
)2
(

L

r ′

)δ3 1

ετ 3



(
r ′2

ετ 3
,
R2

ετ 3

)
,

where δ3 is the anomalous part of the scaling exponent
associated to the third-order statistics of an advected passive
scalar; its value is universal (independent of the injection
mechanism) and ≈0.18, as reported from several experimental
and numerical studies [27]. In the expression above the first
factor comes from integration over angles and can be seen as
a small solid-angle contribution. The second factor originates
from intermittency and gives a dependence upon the integral
scale L. Physically, it means that when δ3 > 0, the closer is
the third particle, the more likely it is to approach one of the
other two. The last terms involve a dimensionless function 


that imposes Richardson’s scaling for backward and forward
pair evolution. This specific form of the three-point transition
probability leads to

λturb
i,j (τ ) ∝ ν7/4

ε1/4L3−δ3

∫



(
r ′2

ετ 3
,
R2

ετ 3

)
dr ′ dR

r ′δ3ετ 3

∝ (1/τL)(τ/τL)−(3/2)δ3 , (8)

where τL = ε−1/3L2/3 is the large-eddy turnover time (see
Supplemental Material, Sec. B [28]). Turbulent transport thus
leads to a power-law dependence in time of the coalescence
rate. The associated distribution pi,j (τ ) of waiting time
between successive collisions of a given particle is thus given
by the Weibull distribution with shape parameter 1 − (3/2)δ3.
Plugging this behavior in the global coalescence rate (2) and
by using the population-balance equations (1), one obtains a
short-time behavior of the number of particles i© that reads

ni(t) � ni
1(t/t̃i)

[1−(3/2)δ3](i−2)+1. (9)

Here the characteristic times t̃i are ∝ iτL, with a proportionality
constant that involves the various microphysical rates λmicro

j,k

of the coalescences leading to i©. For δ3 > 0 the algebraic
exponent appearing in (9) is smaller than that obtained
in (5) from Smoluchowski’s kinetics. The intermittency of
turbulence mixing is thus enhancing the short-time growth
by coalescence. In addition, the larger the aggregate size
considered, the stronger this enhancement. Indeed, when i is
large and t � iτL, the formation of a particle i© requires a large
number of correlated coalescences separated by inertial-range
times and the population dynamics is dominated by (9).

In order to corroborate our theoretical predictions on the
enhancement of coalescences by turbulent mixing, we have
performed direct numerical simulations for the evolution of a
dilute population suspended in a turbulent flow. We start from
one billion inertial point particles whose dynamics is given by

t/τL

0.5 1 2 4 8

n
i(

t)
/n

1(
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10-4

10-2

100

FIG. 2. Time evolution of the number ni(t) of particles [normal-
ized by the initial number of monomers n1(0)]; the mass i increases
from 1 to 15 from top to bottom. The dots are the results of direct
numerical simulations and the dashed lines show for i � 2 behaviors
∝ t0.73(i−2)+1 deduced from (9) for δ3 = 0.18.

a viscous Stokes drag:

ẍn = − 1

τn

[ẋn − u(xn,t)], (10)

where u designates the fluid velocity field. It is obtained numer-
ically by a pseudospectral integration of the incompressible
Navier-Stokes equation using 20483 grid points. A large-scale
forcing is applied in order to maintain the flow in a developed
turbulent state with Re ≈ 50 000.

The particles follow the flow with a time lag given by their
individual response times τn. Each particle has a virtual radius
an(t) and τn ∝ a2

n. We start from a monodisperse suspension
with monomers having initially all the same radius ai(0) =
a0 ≈ η/10. When two particles approach at a distance equal
to the sum of their radii (detected using a billiard algorithm),
they merge, conserving mass and momentum. Particles inertia
is measured by their Stokes numbers Stn = τnε

1/2/ν1/2, which
is initially small Stn(0) ≈ 0.1. Inertia effects can thus be
clearly neglected when interested in inertial-range length or
time scales. The suspension is dilute: their volume fraction
is approximately 5 × 10−5, which represents in our flow one
particle for each cube of volume 10η3 and is consistent with,
for example, typical settings in a warm cloud of our atmosphere
(see Supplemental Material, Sec. A [28]).

Figure 2 shows on log-log scales the time evolution of the
number ni(t) of particles made from the merger of i monomers
[that is, with radius a(t) = i1/3a0] for i = 1,2, . . . 15. Data
(dots) are approximated very well by ni(t) ∝ t0.73(i−2)+1

(dashed lines), corresponding to the predicted power laws (9)
with δ3 = 0.18. Such a behavior persists for times larger than
the large-eddy turnover time. The result of our simulation
confirms the accuracy and the relevance of the predictions
made earlier in this Rapid Communication. Large aggregates
are appearing faster than predicted from kinetic models.

To confirm that this enhanced growth is indeed resulting
from correlated successive collisions, we have measured the
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FIG. 3. Probability density function of the time between suc-
cessive coalescences of a particle i with a monomer of mass 1.
The power-law tail has, as we predict theoretically, an exponent
≈−0.27 ≈ −(3/2)δ3.

probability density pi,1(τ ) of the time lag τ between the
creation of a particle i© and its next collision with a 1©.
Results are shown in Fig. 3 for i = 2,3,4,5. The distributions
clearly display for τ in the inertial range a power-law decay,
followed by a (stretched) exponential cutoff at τ � τL. The
measured value of the algebraic exponent is consistent with
the predicted value −(3/2)δ3 ≈ −0.27. This confirms that
the intercollision time distribution follows (3) with a time-
dependent coalescence rate λi.j (τ ) ∝ τ−(3/2)δ3 .

In conclusion, let us stress again that intermittency of
turbulent mixing is responsible for an enhanced growth of
dilute coalescing aggregates. The anomalous scaling proper-
ties, which are involved here, stem from the flow roughness
in the turbulent inertial range and are expected to be also
at play in the two-dimensional inverse cascade and in any
random scale-invariant flows. Here, only third-order statistics
are relevant since successive binary collisions involve the
evolution of triplets of tracers that form degenerate triangles.
Higher-order statistics enter other configurations (when, for
instance, two particles are simultaneously formed and then
merge) but they give subleading contributions. Finally, it
is worth mentioning that the effect unveiled here might be
accounted for by modifying kinetic models. When coarse-
graining the population dynamics on sufficiently large time
scales, correlated successive collisions will then appear as
simultaneous multiple collisions.
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