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Effects of viscosity and acoustic streaming on the interparticle radiation force
between rigid spheres in a standing wave
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The total acoustic radiation force acting on interacting spheres in a viscous fluid consists of the primary and
secondary forces. The primary force pushes rigid spheres to the pressure node due to the incident standing wave.
The secondary force is the interparticle force caused by the interaction between spheres in the standing wave. In
this study, an algorithm based on the multipole series expansion and Stokeslet method is proposed for calculating
the primary and secondary radiation forces acting on a pair of spheres in a viscous fluid. It is concluded that the
acoustical interaction between a pair of spheres is considerably stronger in a viscous fluid compared to the inviscid
case due to the streaming effects in the viscous fluid. For spheres located far from each other, the interaction
becomes considerably weak; thus, the spheres move mainly due to the primary radiation force.
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I. INTRODUCTION

Manipulation of particles in microchannels using ultra-
sound waves, commonly known as acoustophoresis, has
attracted a lot of attention in the past decade. Generally,
in the sound field, particles start moving under the primary
acoustic radiation force towards either the pressure node or
antinode depending on their acoustic contrast factor. When
particles stay long enough in the sound field, especially when
the fluid is stationary, agglomeration occurs, mainly due to the
interaction among the particles, i.e., repulsion or attraction.
Hence, taking the secondary (interparticle) radiation force
into account will result in future enhancements of the par-
ticle manipulation. Nevertheless, experimental measurement
techniques and methods for theoretical calculations of the
secondary force are difficult and not well established as
compared to the primary force.

In the literature, the acoustical interaction between particles
has been studied extensively for inviscid fluid [1–12]. Early
studies discussed the calculation of the Bjerknes force, which
is fundamentally equivalent to the acoustic interparticle force,
based on the idea of rescattering of the scattered waves
from each particle [1–7,9,11,12]. It is noted that only an
approximate solution is given by the rescattering approach
since the rescattering of the waves, which occurs infinitely, is
truncated to a finite number of times during the calculation
[8,10]. Most of the formulations derived by this approach are
accurate up to the second order [1–7,9,11–17].

The other approach to obtain scattered waves from par-
ticles is to solve the scattering problem for all the particles
simultaneously [8,10]. Generally, this approach requires a
numerical computation since the system of equations derived
from the boundary conditions is fully coupled, especially
when the particles are close to each other. After obtaining
the scattered waves, one can calculate the interparticle force
by integrating the corresponding stresses on the surface of
each particle. This approach is more accurate compared to
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the rescattering approach since it guarantees the boundary
conditions imposed on all the particles simultaneously. More
details of this approach can be found in Refs. [8,10].

The addition of fluid viscosity to the acoustic interaction
has two implications. First, the viscous loss affects the
scattered pressure waves and also generates shear waves
[18–20]. Second, the acoustic streaming is triggered by the
viscosity and it causes additional viscous tractions on the
surface of the particles [21,22]. By solving the acoustic
streaming equations for the case of multiple particles, one
can calculate the additional drag on each particle induced by
the presence of other particles. For the case of particles in an
infinite domain, the Rayleigh streaming and its counterpart,
Schlichting streaming, are generated around each individual
particle by the scattered waves. It has been shown that the
effect of Eckart streaming is small and negligible for the case
of a plane standing wave [22]. It is also noted that the streaming
from the particles should be considered in a coupled manner,
similar to the calculation of the scattered waves, to avoid any
loss in the accuracy of the results.

In the context of pulsating bubble dynamics, the acoustical
interaction force has been studied both theoretically and
experimentally. However, theoretical studies are limited to
simple cases for the calculation of the secondary force on
small bubbles in the Rayleigh limit (ka � 1). Only radial
and translational velocities of the bubble surface which are
equivalent to monopole and dipole shape oscillations were
considered. The latest study by Doinikov [2] included the
first-order effects of the viscosity and the acoustic streaming
solution for the case of pulsating bubbles which are far
apart from each other so as to neglect higher-order spherical
harmonics. More details on the secondary Bjerknes force
acting on pulsating bubbles can be found in Refs. [1–7].

Here, we propose a numerical algorithm for calculation of
the primary and total radiation force acting on rigid spheres
with the inclusion of the viscosity and acoustic streaming
effects. The primary objective is to study and quantify the
impact of viscosity on the acoustical interaction between
rigid spheres in a sound field. First, the primary radiation
force is estimated by the far-field series solution, proposed by
Balachandar et al. [19]. Then, in order to include the viscosity
and acoustic streaming, the total radiation force is calculated
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by using the multipole series expansion and Stokeslet method.
Ultimately, the secondary (interparticle) radiation force is
approximated as the difference between the total and primary
radiation forces. This numerical algorithm has no restriction
on the size of the spheres because of the use of higher-order
multipole terms. It is applicable to all separation distances and
only breaks down when the spherical particles are in contact
with each other. Although the methodology is demonstrated
for rigid spheres, it is easily extended to compressible spheres
by including the pressure field in the spheres.

II. METHODOLOGY

The acoustical interaction problem is usually formulated for
a pair of spheres [2,8–10], as shown in Fig. 1. A local spherical
coordinate is attached to each sphere. For stationary viscous
fluid, the primary and secondary radiation forces, along with
the viscous drag, are exerted on each sphere in the sound field.
For a plane standing wave, it has been shown that the drag force
generated from the acoustic streaming induced by the incident
wave is negligible [21,22]. Hence, the total force is the sum of
the primary and secondary (interparticle) radiation forces.

According to the perturbation theory, the fluid velocity v,
pressure p, and density ρ with accuracy up to the second order
are expressed as

v =v1 + v2,

p =p0 + p1 + p2, (1)

ρ =ρ0 + ρ1 + ρ2,

(a)

(b)

FIG. 1. (a) A pair of spherical particles in an axisymmetric
configuration with their local spherical coordinate systems. (b) The
distance between the particles is denoted by d and their positions with
respect to the pressure nodal line are denoted by L1 and L2.

where the indices 0, 1, and 2 show the zeroth-, first-, and
second-order variables, respectively. The fluid is assumed to be
stationary; thus, the zero-order velocity is zero. The first-order
time-harmonic velocity, pressure, and density, governed by the
the acoustic wave equation in a viscous fluid, are written in
terms of scalar and vector potentials as follows [19,22]:

v1 =∇φ + ∇ × �,

p1 =iρ0ωφ, (2)

ρ1 =i
ω

c2
ρ0φ,

where c is the speed of sound in the host fluid, ω is the angular
frequency, i is the complex variable, and φ and � are the
first-order scalar and vector potentials, respectively. For a pair
of spheres, the scalar and vector potentials are obtained as

φ =φi + φ(1)
s + φ(2)

s , � = �(1)
s + �(2)

s , (3)

where φi is the scalar potential of the incident wave, and φ
(j )
s

and �
(j )
s are the scalar and vector potentials of the scattered

wave from the j th sphere (j = 1 or 2), respectively. The scalar
potential of the incident wave φi can be expanded using a
multipole series as [23,24]

φi = e−iωt

∞∑
n=0

Anjn(kcr)Pn(ν), (4)

where kc is the compression wave number, jn(kcr) is the
spherical Bessel function of order n, Pn(ν) is the Legendre
polynomial of order n and ν = cos (θ ), An is the multipole
coefficient, and r and θ are the global spherical coordinates
located at the pressure node. The compression wave number
is given as [19,25]

kc = k

[
1 − ik

ρ0c

(
ξ + 4

3
μ

)]−1/2

, (5)

where k = 2π/λ is the nominal wave number and λ is the
wavelength of the acoustic wave in the fluid medium, and
ξ and μ are the bulk and dynamic viscosity of the host
fluid, respectively. For a plane standing wave, the multipole
coefficients of the incident wave series expansion are given as

A(1)
n =�0

2
in(2n + 1)[eikL1 + (−1)neikL1 ],

(6)

A(2)
n =�0

2
in(2n + 1)[eikL2 + (−1)neikL2 ],

where A(1)
n and A(2)

n are the coefficients of the series expanded
about the local spherical coordinates attached to sphere 1 and
sphere 2, respectively; �0 is the amplitude of the incident wave
and L1 and L2 are the positions of sphere 1 and 2, respectively,
measured from the pressure node, as shown in Fig. 1. For the
j th sphere, the multipole series expansions of the scalar and
vector potentials of the scattered wave are expressed as [19,22]

φ(j )
s = e−iωt

∞∑
n=0

B(j )
n hn(kcrj )Pn(νj ),

(7)

�(j )
s = u(j )

ϕ e−iωt

∞∑
n=0

C(j )
n hn

(
ksrj

)dPn(νj )

dθj

,
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where ks is the shear wave number, νj is equal to cos (θj ), rj

and θj are the local spherical coordinates with respect to the
j th sphere, hn(•) is the Hankel function of the first kind and
order n, u(j )

ϕ is the local unit vector in the azimuthal angle
direction, and B

(j )
n and C

(j )
n are the multipole coefficients of

the scalar and vector potentials of the scattered wave from
the j th sphere, respectively. The shear wave number is ks =
(1 + i)/δ, where δ = √

2μ/(ρ0ω) is the viscous penetration
depth [22,25]. To obtain the multipole coefficients B

(j )
n and

C
(j )
n , the first-order boundary conditions are imposed by the

weighted residue technique as follows:∫
S(j )

Pn(νj )
(
v1 · u(j )

r

)
dS = 0,

(8)∫
S(j )

dPn(νj )

dθj

(
v1 · u(j )

θ

)
dS = 0,

where dS = 2πaj sin θjdθj and aj is the radius of the j th
sphere, and u(j )

r and u(j )
θ are the radial and tangential basis

vectors of the local spherical coordinate attached to the
j th sphere, as shown in Fig. 1. The Legendre polynomials
and their first derivatives are chosen to be the weights
because of their orthogonal property. For a pair of spheres,
the final set of equations, after assembling the matrices, is
written as

[
K(11) K(12)

K(21) K(22)

]⎧⎪⎪⎨
⎪⎪⎩

B(1)

C(1)

B(2)

C(2)

⎫⎪⎪⎬
⎪⎪⎭ =

[
S(1)

S(2)

]{
A(1)

A(2)

}
, (9)

where A(j ) are the multipole coefficients of the incident wave
obtained by substituting the position of the j th sphere, Lj ,
into Eq. (6). For numerical calculations, only the terms up to
order M are included in the multipole series expansions. The
size of the square submatrix K and subvector S is 2M + 1.
The size of subvector B is M + 1 whereas C is the subvector
of size M since the vector potential has no monopole term.
For two spheres, the elements of the submatrices K and S are
expressed as follows:

K(11) : K(l+1)(q+1) = −
∫

S1

Pl(ν1)
d

dr1
[hq(kcr1)Pq(ν1)]dS1,

K(l+1)(q+M+1) = −
∫

S1

Pl(ν1)

r1 sin θ1

d

dθ1

[
sin θ1hq(ksr1)

dPq(ν1)

dθ1

]
dS1, q �= 0,

K(l+M+1)(q+1) = −
∫

S1

dPl(ν1)

dθ1

1

r1

d

dθ1
[hq(kcr1)Pq(ν1)]dS1, n �= 0,

K(l+M+1)(q+M+1) =
∫

S1

dPl(ν1)

dθ1

1

r1

d

dr1

[
r1hq(ksr1)

dPq(ν1)

dθ1

]
dS1, n,q �= 0; (10)

K(12) : K(l+1)(q+1) = −
∫

S1

Pl(ν1)
d

dr1
[hq(kcr2)Pq(ν2)]dS1,

K(l+1)(q+M+1) = −
∫

S1

Pl(ν1)

r1 sin θ1

d

dθ1

[
sin θ1hq(ksr2)

dPq(ν2)

dθ2

]
dS1, q �= 0,

K(l+M+1)(q+1) = −
∫

S1

dPl(ν1)

dθ1

1

r1

d

dθ1
[hq(kcr2)Pq(ν2)]dS1, n �= 0,

K(l+M+1)(q+M+1) =
∫

S1

dPl(ν1)

dθ1

1

r1

d

dr1

[
r1hq(ksr2)

dPq(ν2)

dθ2

]
dS1, n,q �= 0; (11)

K(21) : K(l+1)(q+1) = −
∫

S2

Pl(ν2)
d

dr2
[hq(kcr1)Pq(ν1)]dS2,

K(l+1)(q+M+1) = −
∫

S2

Pl(ν2)

r2 sin θ2

d

dθ2

[
sin θ2hq(ksr1)

dPq(ν1)

dθ1

]
dS2, q �= 0,

K(l+M+1)(q+1) = −
∫

S2

dPl(ν2)

dθ2

1

r2

d

dθ2
[hq(kcr1)Pq(ν1)]dS2, n �= 0,

K(l+M+1)(q+M+1) =
∫

S2

dPl(ν2)

dθ2

1

r2

d

dr2

[
r2hq(ksr1)

dPq(ν1)

dθ1

]
dS2, n,q �= 0; (12)

K(22) : K(l+1)(q+1) = −
∫

S2

Pl(ν2)
d

dr2
[hq(kcr2)Pq(ν2)]dS2,

K(l+1)(q+M+1) = −
∫

S2

Pl(ν2)

r2 sin θ2

d

dθ2

[
sin θ2hq(ksr2)

dPq(ν2)

dθ2

]
dS2, q �= 0,

K(l+M+1)(q+1) = −
∫

S2

dPl(ν2)

dθ2

1

r2

d

dθ2
[hq(kcr2)Pq(ν2)]dS2, n �= 0,

K(l+M+1)(q+M+1) =
∫

S2

dPl(ν2)

dθ2

1

r2

d

dr2

[
r2hq(ksr2)

dPq(ν2)

dθ2

]
dS2, n,q �= 0; (13)

023307-3



SEPEHRIRAHNAMA, CHAU, AND LIM PHYSICAL REVIEW E 93, 023307 (2016)

S(1) : S(l+1)(q+1) =
∫

S1

Pl(ν1)
d

dr1
[jq(kcr1)Pq(ν1)]dS1,

S(l+M+1)(q+1) =
∫

S1

dPl(ν1)

dθ1

1

r1

d

dθ1
[jq(kcr1)Pq(ν1)]dS1, n �= 0;

S(2) : S(l+1)(q+1) =
∫

S2

Pl(ν2)
d

dr2
[jq(kcr2)Pq(ν2)]dS2,

S(l+M+1)(q+1) =
∫

S2

dPl(ν2)

dθ2

1

r2

d

dθ2
[jq(kcr2)Pq(ν2)]dS2, n �= 0, (14)

where l,q = 0,1, . . . ,M , unless otherwise stated. This system
of equations is solved for the multipole coefficients of the
scattered waves, Bn and Cn, of both spheres simultaneously. It
is noted that the computation cost depends on the size of the
square K matrix, which is 2 × (2M + 1) for two spheres.

A. Primary radiation force

Calculation of the primary radiation force only depends on
the incident wave and the scattered wave from each individual
sphere. A series solution for the primary force has been
proposed by Hasegawa and Yosioka for an ideal fluid by
integrating the second-order tractions over the surface of a
spherical particle [26]. That series solution is written as

Fp = 4ρ0π |�0|2 sin(2kL)Yst ,
(15)

Yst =
∞∑

n=0

(−1)n+1[Im
(
Sn

) + 2(n + 1)

×{Re(Sn+1)Im(Sn) − [1 + Re(Sn)]Im(Sn+1)}],
where Re(•) and Im(•) are the real and imaginary parts of a
complex number, respectively; Sn = Bn/An and Bn and An

are the multipole coefficients of the scalar velocity potential
of the incident and scattered waves, respectively. By using
the far-field approach, it was shown later that the same series
solution can be used for the case of a viscous fluid, except that
the multipole coefficients Bn were obtained from the viscous
boundary condition [19]. That series solution for the viscous
case is hereafter referred to as the far-field series solution. For
the j th sphere, the primary force, calculated from the far-field
series solution, is expressed as

F (j )
p = 4ρ0π |�0|2 sin(2kLj )Y (j )

st ,
(16)

Y
(j )
st =

∞∑
n=0

(−1)n+1[Im
(
S(j )

n

) + 2(n + 1)
{
Re

(
S

(j )
n+1

)
Im

(
S(j )

n

)
− [

1 + Re
(
S(j )

n

)]
Im

(
S

(j )
n+1

)}]
,

where S
(j )
n = B

(j )
n /A

(j )
n with B

(j )
n obtained from Eq. (9)

including the effect of the viscosity as well as the presence
of the other sphere.

B. Total force

For calculating the total force acting on the spheres in a
viscous fluid, we need to include the streaming of the fluid
around the spheres driven by the acoustically induced body

force. In this section, the numerical algorithm proposed in
Ref. [20] is extended to the case of two spheres. As mentioned
before, we assume that the fluid is stationary and its zero-order
mean velocity is zero. In addition, it has been shown that the
streaming flow induced by a plane standing wave is negligible
[21,22]. Hence, the viscous drag due to the main flow and
the incident streaming are neglected in this derivation. The
total force, induced by the scattered waves, acting on the j th
sphere is [21]

F(j ) =
∫

Sj

〈
μ

[∇v(s)
2 + (∇v(s)

2

)T ] +
(

ξ − 2

3
μ

)

×∇ · v(s)
2 I − p

(s)
2 I

〉
· ndS −

∫
Sj

ρ0〈v1 ⊗ v1〉(s) · ndS,

(17)

where n is the unit vector normal to the surface of the
sphere and pointing outwards, I is the identity tensor, and v(s)

2

and p
(s)
2 are the second-order velocity and pressure induced

by the scattered waves from all the spheres, respectively.
The Reynolds stress in the second integral of Eq. (17) is
expressed as

ρ0〈v1 ⊗ v1〉(s) = ρ0
〈
v1 ⊗ v1 − v(i)

1 ⊗ v(i)
1

〉
, (18)

where v(i)
1 = ∇φi . The second-order variables are governed by

the acoustic streaming equations, which are expressed as

ρ0∇ · 〈
v(s)

2

〉 = mv,
(19)

−∇〈
p

(s)
2

〉 + μ∇2
〈
v(s)

2

〉 + (μB + μ)∇∇ · 〈
v(s)

2

〉 = fv,

where

mv = −(∇ · 〈ρ1v1〉 − ∇ · 〈
ρ

(i)
1 v(i)

1

〉)
,

(20)
fv = ρ0

(〈v1 · ∇v1 + v1∇ · v1〉 − 〈
v(i)

1 · ∇v(i)
1 + v(i)

1 ∇ · v(i)
1

〉)
,

and ρ
(i)
1 = iρ0k

2φ
(i)
1 . The second-order variables are split into

the complementary and particular solutions as follows:〈
v(s)

2

〉 = 〈
v(s)

2c

〉 + 〈
v(s)

2p

〉
,

(21)〈
p

(s)
2

〉 = 〈
p

(s)
2c

〉 + 〈
p

(s)
2p

〉
.

Since the scalar source term mv can be neglected, the particular
solutions of the second-order velocity and pressure can be
calculated by the Stokeslet method [20,27]. For numerical
implementation, a finite computational domain is required.
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This domain is discretized by tetrahedral elements. Each
element contains one Stokeslet source located at its centroid.
For N number of elements, the particular solutions of the
second-order variables are written as

〈
v(s)

2p

〉∣∣
x̂o

=
N∑

n=1

�n

8πμ

(
I
r̂n

+ (x̂n − x̂o) ⊗ (x̂n − x̂o)

r̂3
n

)
fv|x̂n

,

(22)

∇〈
p

(s)
2p

〉∣∣
x̂o

=
N∑

n=1

�n

4πr̂3
n

(x̂n − x̂o) · fv|x̂n
,

where r̂n = |x̂n − x̂o|, x̂n is the position vector of the centroid
of the nth element, x̂o is the position vector of the observation
point, at which the variables are calculated, fv|x̂n

is the vector
source term evaluated at the element centroid, and �n is the
element volume.

The complementary solutions of the second-order velocity
and pressure are related to the second-order velocity potentials
as follows: 〈

v(s)
2c

〉 = ∇φ + ∇ × �,
(23)〈

p
(s)
2c

〉 = μ∇2∇ × �.

For two spheres, those potentials are written as

φ = φ
(1) + φ

(2)
,

(24)
� = �

(1) + �
(2)

.

Since both second-order potentials are governed by harmonic
equations derived from the streaming equation [20,22], they
can be calculated using a multipole series expansion. For the

j th sphere, the second-order potentials are written as

φ
(j ) =

∞∑
n=0

Bn

(
aj

rj

)n+1

Pn(νj ),

(25)

�
(j ) = u(j )

ϕ

∞∑
n=1

Cn

(4n − 2)

(
aj

rj

)n−1
dPn(νj )

dθj

,

where aj is the radius of the j th sphere, and Bn and Cn are
the multipole coefficients of the second-order potentials. To
obtain these multipole coefficients, the nonslip second-order
viscous boundary conditions are imposed by the weighted
residue technique as follows:∫

S(j )
Pn(νj )

(〈
v(s)

2

〉 · u(j )
r

)
dS = 0,

(26)∫
S(j )

dPn(νj )

dθj

(〈
v(s)

2

〉 · u(j )
θ

)
dS = 0.

The weights are again chosen due to orthogonality. For a pair
of spheres, the set of equations obtained from the boundary
conditions are written as

[
K

(11)
K

(12)

K
(21)

K
(22)

]⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B
(1)

C
(1)

B
(2)

C
(2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= −
{

S(1)

S
(2)

}
. (27)

It is noted that the truncation order of the multipole series
expansion of the second-order potentials denoted by M is
independent from that for the first-order potentials. The size of
both the square submatrix K and subvector S is 2M + 1. The
elements of the K and S are expressed as follows:

K
(11)

: K (l+1)(q+1) =
∫

S1

Pl(ν1)
d

dr1

[(
a1

r1

)q+1

Pq(ν1)

]
dS1,

K (l+1)(q+M+1) =
∫

S1

Pl(ν1)

r1 sin θ1

d

dθ1

[
sin θ1

(4q − 2)

(
a1

r1

)q−1
dPq(ν1)

dθ1

]
dS1, q �= 0,

K (l+M+1)(q+1) =
∫

S1

dPl(ν1)

dθ1

1

r1

d

dθ1

[(
a1

r1

)q+1

Pq(ν1)

]
dS1, n �= 0,

K (l+M+1)(q+M+1) = −
∫

S1

dPl(ν1)

dθ1

1

r1

d

dr1

[
r1

(4q − 2)

(
a1

r1

)q−1
dPq(ν1)

dθ1

]
dS1, n,q �= 0; (28)

K
(12)

: K (l+1)(q+1) =
∫

S1

Pl(ν1)
d

dr1

[(
a2

r2

)q+1

Pq(ν2)

]
dS1,

K (l+1)(q+M+1) =
∫

S1

Pl(ν1)

r1 sin θ1

d

dθ1

[
sin θ1

(4q − 2)

(
a2

r2

)q−1
dPq(ν2)

dθ2

]
dS1, q �= 0,

K (l+M+1)(q+1) =
∫

S1

dPl(ν1)

dθ1

1

r1

d

dθ1

[(
a2

r2

)q+1

Pq(ν2)

]
dS1, n �= 0,

K (l+M+1)(q+M+1) = −
∫

S1

dPl(ν1)

dθ1

1

r1

d

dr1

[
r1

(4q − 2)

(
a2

r2

)q−1
dPq(ν2)

dθ2

]
dS1, n,q �= 0; (29)

K
(21)

: K (l+1)(q+1) =
∫

S2

Pl(ν2)
d

dr2

[(
a1

r1

)q+1

Pq(ν1)

]
dS2,

K (l+1)(q+M+1) =
∫

S2

Pl(ν2)

r2 sin θ2

d

dθ2

[
sin θ2

(4q − 2)

(
a1

r1

)q−1
dPq(ν1)

dθ1

]
dS2, q �= 0,
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K (l+M+1)(q+1) =
∫

S2

dPl(ν2)

dθ2

1

r2

d

dθ2

[(
a1

r1

)q+1

Pq(ν1)

]
dS2, n �= 0,

K (l+M+1)(q+M+1) = −
∫

S2

dPl(ν2)

dθ2

1

r2

d

dr2

[
r2

(4q − 2)

(
a1

r1

)q−1
dPq(ν1)

dθ1

]
dS2, n,q �= 0; (30)

K
(22)

: K (l+1)(q+1) =
∫

S2

Pl(ν2)
d

dr2

[(
a2

r2

)q+1

Pq(ν2)

]
dS2,

K (l+1)(q+M+1) =
∫

S2

Pl(ν2)

r2 sin θ2

d

dθ2

[
sin θ2

(4q − 2)

(
a2

r2

)q−1
dPq(ν2)

dθ2

]
dS2, q �= 0,

K (l+M+1)(q+1) =
∫

S2

dPl(ν2)

dθ2

1

r2

d

dθ2

[(
a2

r2

)q+1

Pq(ν2)

]
dS2, n �= 0,

K (l+M+1)(q+M+1) = −
∫

S2

dPl(ν2)

dθ2

1

r2

d

dr2

[
r2

(4q − 2)

(
a2

r2

)q−1
dPq(ν2)

dθ2

]
dS2, n,q �= 0; (31)

S
(1)

: S(l+1)(1) =
∫

S1

Pl(ν1)
(〈

v(s)
2p

〉 · u(1)
r

)
dS1,

S(l+M+1)(1) =
∫

S1

dPl(ν1)

dθ1

(〈
v(s)

2p

〉 · u(1)
θ

)
dS1, n �= 0; (32)

S
(2)

: S(l+1)(1) =
∫

S2

Pl(ν2)
(〈

v(s)
2p

〉 · u(2)
r

)
dS2,

(33)

S(l+M+1)(1) =
∫

S2

dPl(ν2)

dθ2

(〈
v(s)

2p

〉 · u(2)
θ

)
dS2, n �= 0,

where l,q = 0,1, . . . ,M , unless otherwise stated. Similar to
the set of equations derived for the first-order variables,
the computation cost depends on the size of the K matrix,
which is 2 × (2M + 1) for two spheres. After solving for the
multipole coefficients Bn and Cn, the complementary solutions
of the second-order variables are obtained. The total force
can be obtained from Eq. (17) for each individual sphere by
combining the complementary solution from the multipole
expansion and the particular solution from the Stokeslet
method.

C. Special case of ideal fluid

For the special case of an ideal fluid, the acoustic velocity is
obtained only from the gradient of the scalar potential φ. Since
viscosity is absent, there is slippage of the fluid tangential to
the particle surface; only a nonpenetrating boundary condition
on the normal component of the velocity to the particle
surface is enforced. There is no need to solve for the acoustic
streaming, and the second-order stresses are the sum of the
radiation pressure and the Reynolds stresses [24,28]. The
current formulation can also be used for the case of an ideal
fluid by ignoring the first-order vector potential � and the
acoustic streaming. The total force is calculated directly from
the scattered wave potentials which were obtained by imposing
the boundary conditions simultaneously [8,10]. It has been
shown that the interparticle force can be derived separately
from the force integral by accounting for cross-scattering
terms [9,10].

To verify the current methodology, the results obtained for
the case of ideal fluid are compared with those reported in

Refs. [8,9]. A pair of 5-μm spheres (ka = 0.03 � 1) were
considered with their centerline perpendicular to the wave
direction as shown in Fig. 2(b). In Fig. 2(a), the vertical axis
shows the normalized interaction force acting on sphere 1.
It is noted that sphere 2 experiences a force with the same
magnitude but in the opposite direction. The results are shown
for various surface-to-surface distances. It can be seen that
the current method gives accurate results for the interaction
force, with the data overlapping with those obtained from
Doinikov’s method. This is expected since both methods are
developed based on solving a fully coupled system of equations
for multipole coefficients of the scattered waves. On the other
hand, there is a gap between our results and those obtained
from Silva and Bruus’ formulation. This difference is due
to the monopole-dipole approximation used for the scattered
wave and the truncation in the rescattering approach used in
their formulation.

III. RESULTS

In this section, we study the case of two identical rigid
spheres located along the wave direction (axisymmetric
configuration) and equally spaced from the pressure node, as
shown in Fig. 3. A local spherical coordinate system is attached
to each of them. The global coordinate system is located at
the pressure node. The standing wave is in the z direction.
The surface-to-surface distance between the two spheres is
denoted by d. The size of the spheres is denoted by a. Due
to the symmetrical configuration, the radiation forces acting
on the spheres are equal and act in opposite directions. For
numerical calculations, the water in STP condition (standard
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(a)

(b)

FIG. 2. (a) The normalized interparticle force between a pair of
identical spheres of 5 μm size. (b) The spheres are positioned on the
nodal plane (P.N.) of the incident wave which propagates in the z

direction. The interaction force is normalized by 1
2 ρ0�0, where �0 is

the amplitude of the incident velocity potential.

temperature and pressure) is considered as the host fluid. The
frequency of the standing wave is 1.5 MHz and its wavelength
is 1 mm. The pressure amplitude is set at 1 bar. For these
parameters, the viscous penetration depth δ is 0.4 μm.

FIG. 3. Configuration of a pair of identical spheres equally spaced
from the pressure node and positioned along the incident wave
direction (the axisymmetric configuration).

FIG. 4. Convergence test of the multipole series expansion of
the second-order potentials for various surface-to-surface distances
between a pair of 1-μm spheres.

A. Convergence test

Since the proposed numerical algorithm involves a series
expansion, a convergence test is required for both the first- and
second-order variables. The multipole series expansion of the
first-order variables has been shown to be convergent and the
number of terms included in the series calculation depends on
the size of the sphere [20]. We hereby study the convergence
of the second-order potentials for a pair of spheres. For this
purpose, a truncation index is introduced as

ε =
∣∣F (M + 1) − F (M)

∣∣∣∣F (M + 1)
∣∣ × 100%, (34)

where F (M) is the total radiation force obtained from the first
M terms included in the series expansion of the second-order
potentials. In fact, ε shows the change of the total force by
adding successive terms in the series calculation.

The truncation index ε calculated for various distances
between a pair of 1-μm spheres is shown in Fig. 4. The desired
accuracy of the series calculation is set to ε = 0.1%, shown as a
horizontal line. For this set of results, the first eight terms were
included in the first-order series computation (M = 8). When
d/a = 0, the fluctuation of the truncation index implies that the
results are not convergent. Therefore, the proposed numerical
algorithm cannot be applied to the case of two spheres in
contact with each other. For other values of d/a, convergence
is achieved as the truncation index decreases monotonically,
which means that adding more terms has a decreasing effect
on the accuracy of the series calculation. Depending on the
desired accuracy, the number of terms can be determined
for different surface-to-surface distances. For example, for
d/a = 3, five terms are required in the series calculation to
achieve ε < 0.1%. By increasing the distance between the
spheres, the number of terms required in the series becomes
smaller due to the weaker interaction between them.

B. Primary radiation force

As described in Sec. II A, the primary radiation force has
been calculated using the far-field series expansion for the two
cases of a single sphere and a pair of spheres, as shown in
Fig. 5(a). In Fig. 5(b), markers show the results for a pair
of identical spheres of three different sizes for a wide range
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(a)

(b)

(c) (d)

FIG. 5. In (a), two cases of single and double spheres in a standing wave are schematically shown. (b) shows the primary radiation force
acting on sphere 1 for the two cases of one and two spheres. (c) shows the percentage difference between the two cases considering the case of
two spheres as the reference. (d) shows the percentage difference for small values of d/δ.

of surface-to-surface distances d. Besides, the lines show the
corresponding results for the case of a single sphere with the
same distance from the pressure node. The differences between
the primary forces calculated for the single- and double-sphere
cases are very small and not visible for all sizes. It implies that
the presence of the additional sphere in the fluid domain has
insignificant effects on the primary radiation force acting on the
target sphere. The relative difference between the two cases
of one and two spheres has been calculated by considering
the force for the double-sphere case (Fp) as the reference
value. In Fig. 5(c), F ∗

p is the force acting on the single sphere.
It is shown that the presence of the second sphere changes
the primary radiation force by less than 1%. As d increases,
the influence of the second sphere decreases; thus, it can be
neglected. For larger spheres, the change in the primary force
is larger; however, it is still less than 1% for 10-μm spheres.

It can be concluded that, for the case of two spheres, one can
estimate the primary radiation force acting on each sphere by
neglecting the presence of the other one.

C. Total radiation force

In Fig. 6(a), the magnitude of the total radiation force
obtained from the multipole-Stokeslet method has been plotted
in the logarithmic scale for three different sizes. It can be
seen that the total radiation force increases as the spheres
become larger. Discontinuities appear in the graphs where
the total radiation force is zero, since it cannot be shown on
the logarithmic scale. Each discontinuity hence represents a
change in the direction of the total force, i.e., from repulsion
to attraction. It is noted that the location of the zero total force
is shifted away from the pressure node for larger spheres.
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(a)

(b)

FIG. 6. (a) The magnitude of the total radiation force calculated
by the proposed numerical scheme and (b) shown schematically for
the case of two spheres.

Figure 6(b) shows the change in the total force schematically.
If the centers of the two spheres fall in the region between
the pressure node and the location of the zero total force, they
tend to move away from each other (repulsion) under the total
radiation force. If they are placed out of that region, they tend
to move towards each other (attraction). In the vicinity of the
pressure node d/δ � 1, the repulsive total radiation forces are
very large and have the same magnitude for all three sizes of
the spheres.

In Fig. 7, the total radiation force has been calculated for
a pair of spheres in both ideal [10] and viscous fluids. As
mentioned before, the discontinuities in the graphs are where
the total radiation force becomes zero and its direction is

FIG. 7. Total radiation force calculated for both cases of ideal and
viscous fluids.

reversed (from repulsion to attraction). For small distances
between the spheres, the repulsion forces calculated for the
case of viscous and ideal fluid cases are of several orders of
magnitude lower than the viscous cases. It is concluded that the
effect of viscosity on the total radiation force is much greater
when the spheres are located close to each other. For all three
sizes of the spheres, the locations of the zero force for the
viscous fluid are at further distances compared to the case of
an ideal fluid. This is due to the stronger interaction between
the two spheres in the viscous fluid. For large distances,
the difference between the results obtained for the ideal and
viscous cases tends to zero for the 5- and 10-μm spheres. For
the 1-μm spheres placed far away from each other, the visible
gap between the viscous and inviscid results implies that the
viscosity and streaming have a larger effect on smaller spheres.

D. Interparticle radiation force

Figure 8(a) shows the total and primary radiation forces
over a wide range of d for three sizes of spheres. For a
small value of d, the two spheres would be in the vicinity
of the pressure node where the primary force is close to
zero. However, the total force is observed to be several
orders of magnitude larger than the primary force. It can be
inferred that the interparticle force between the two spheres
is dominant when the spheres are close to each other. For
large distances between the two spheres, the total radiation
force converges to the primary force for all three sizes of the

(a)

(b)

FIG. 8. (a) Comparing the total force against the primary force
and (b) the schematic illustration of the total, primary, and interparti-
cle forces.
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spheres. This is expected since the interaction between the
two spheres becomes considerably weak for large distances d.
When the total radiation force becomes zero, the primary and
the secondary (interparticle) forces balance each other. The
interparticle radiation force is hereby estimated by subtracting
the primary force from the total radiation force, i.e.,

Fs = Ftot − Fp. (35)

It is noted that the estimated interparticle forces are repulsive
in nature for the two spheres, regardless of the distance
between them. The total, primary, and interparticle forces are
schematically illustrated in Fig. 8(b).

In Fig. 9, the interaction between the two spheres has been
approximated from Eq. (35). Two additional lines have been
plotted to illustrate the effects of viscosity and streaming. The
line with circle markers shows the interaction between the two
spheres in an ideal fluid, calculated by the method proposed
in Ref. [10]. It is assumed that the ideal fluid has the same
density and compressibility as the viscous fluid. The line with
square markers shows the results obtained for a pair of spheres
in a viscous fluid without including the streaming effect. For
this case, the second-order stresses are calculated from the
time-averaged radiation pressure,

〈δp〉 = ρ0

2
〈|v1|2〉 − 1

2ρ0c
2
0

〈p1〉, (36)

which is valid for an ideal fluid. This means that the viscosity
has been accounted for in the solution of the first-order
variables only. The results shown by the solid line include
the viscosity and streaming effects, as calculated by Eq. (35).
These are the best estimations of the interaction between the
two spheres in a viscous fluid.

For the 1-μm sphere, the clearly visible gap between the
circle and square markers implies that the viscosity of the fluid
increases considerably the interparticle forces between the two
spheres for various d. However, the forces become much larger
(about four orders of magnitude) by including the streaming
effect, as shown by the solid line in Fig. 9(a). That gap becomes
smaller for larger spheres, as shown in Figs. 9(b) and 9(c). It
can be inferred that including the viscosity in the solution of
the first-order variables has a more significant effect on the
interaction between small spheres. It is also observed that the
inclusion of the streaming effects increases the interparticle
forces by two to three orders of magnitude even for the larger
spheres. It implies that the interaction between the spheres is
dominated by the acoustic streaming induced by their scattered
waves, regardless of their size.

The interparticle forces acting on a pair of 5-μm spheres
estimated for three different viscosity values are shown in
Fig. 10. The forces are calculated for 0.2 < d/a < 10, where
the interaction between the spheres is strong. The interparticle
force does not change drastically with the viscosity, as
shown in Fig. 10(a). The force calculated for μ∗ = 8.89 ×
10−4 [kg/(s mm)] (SI units) is considered as a reference value
and denoted by F (μ∗). In Fig. 10(b), the results normalized
by F (μ∗) have been plotted to better show the differences
between the four sets of results. For d/a > 0.4, it is observed
that the interparticle force becomes weaker by approximately
5%, 10%, and 15% for viscosity values of μ∗/2, μ∗/5, and
μ∗/500, respectively. For d/a = 0.2, the interaction between

(a)

(b)

(c)

FIG. 9. Investigating the viscosity and acoustic streaming effects
on the interparticle forces acting on a pair of identical spheres of (a)
1 μm, (b) 5 μm, and (c) 10 μm radius.

the spheres reduces further by 15%–20% for the four viscosity
values. It is inferred that, for the viscous case, the increase in
the interparticle force is due to the induced streaming around
the spheres, even for a fluid with a very low viscosity.
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(a)

(b)

FIG. 10. (a) The interparticle forces for different viscosity values
and (b) the relative difference between them.

IV. DISCUSSION

In this section, a simple order-of-magnitude analysis is
performed on the second-order parameters and results. The
acoustic velocity v1 near the surface of each sphere reaches

a maximum value due to the boundary effect. This maximum
acoustic velocity for a 5-μm sphere in a 1.5 MHz standing
wave with a pressure amplitude of 1 bar in water is of the
order of 10−3 m/s. Thus, the order of magnitude of ρ0v

2
1 for

the case of water would be 10−3 Pa. Considering the surface
area of the 5-μm sphere, the force should be of the order of
10−12 N. This simple order-of-magnitude analysis gives a good
estimate for the force that is consistent with the results shown
in Fig. 9 for a pair of 5-μm spheres when they far apart from
each other.

The above analysis is not valid when the spheres are close
to each other due to the additional hydrodynamic interaction
generated from the acoustic streaming around them. The
results presented so far illustrate that the hydrodynamic
interaction is significantly larger than the acoustical interaction
obtained from the first-order variables. This means that, in
laboratory-on-a-chip and acoustofluidics applications with
viscous fluids, acoustic streaming has a significant effect
on the acoustic interaction among particles clustered near
each other.

V. CONCLUSION

A multipole-Stokeslet algorithm has been proposed to
estimate the interparticle force from the solutions of the total
and primary radiation forces. The numerical scheme is not
restricted by the number of spheres and their sizes; however,
the solution is not convergent for the spheres in contact
with each other. To investigate the viscosity and streaming
effects, the interparticle forces were calculated for a pair of
identical spheres located along the wave direction (axisym-
metric configuration) in a viscous fluid. It was found that
acoustic streaming contributes significantly to the interaction
between the spheres, as the interaction force increases by
three orders of magnitude compared to that from the inviscid
theory [10].
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