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Fast solution of elliptic partial differential equations using linear combinations of plane waves
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Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed
based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients
are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax = b,
where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in
order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based
on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative
methods (such as Gauss-Seidel) consuming O(N log N ) memory and executing an iteration in O(N log2 N )
time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and
multigrid methods can also be implemented. These procedures are tested on Poisson’s equation expressed in
adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid
preconditioner with Gauss-Seidel relaxation steps.
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I. INTRODUCTION

The evaluation of the Coulomb potential (v) generated
from a given electronic density (ρ) is a necessary step in
any quantum mechanical calculation on atoms, molecules,
or solids. This evaluation can be accomplished via Poisson’s
equation,

∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2
= −4πρ. (1)

For periodic systems [1], v is usually expressed as a linear
combination of plane waves,

v(r) =
∑

k

cke
ik·r, (2)

where k is a wave vector and r = (x,y,z). Plane waves
are delocalized over the whole system, which make them
unsuitable for describing the sharp oscillations experienced
by Coulomb potentials in the neighborhood of chemical
bonds and nuclei. One solution to this problem is the use
of pseudopotentials [1]. Another approach is to express the
plane waves not as functions of Cartesians coordinates but as
functions of a new coordinate system u = u(r),

eik·u. (3)

The new coordinates are called adaptive coordinates [2,3]
because the map u = u(r) can be adapted to the system under
study. Adaptive coordinates have been employed in a number
of solid-state or quantum chemical applications [2–21]. For
example, they have been used [12] for pseudopotential-free
all-electron calculations on diamond.

Despite the obvious appeal of these adaptive coordinates,
they have a downside that complicates their use: the math-
ematical description of the problem becomes more complex
with the new coordinates. For example, the neat expression of
Poisson’s equation in Cartesian coordinates given in Eq. (1)
is transformed into a full-blown elliptic partial differential
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equation (PDE) when adaptive coordinates are used. Let us
remind the reader that an elliptic linear second-order PDE
takes the following general form [22]:

n∑
i,j=1

aij (r)
∂2f

∂xi∂xj

+
n∑

i=1

bi(r)
∂f

∂xi

+ c(r)f = g(r), (4)

where f is the solution, r = (x1, · · · ,xn) are the coordinates
of the problem, and aij = aji (to be elliptic, the quadratic form∑

aij ξiξj has to be positive-definite at every point r).
In practice (that is, when analytic solutions are not avail-

able), efficient numerical procedures for solving elliptic PDEs
are necessary. The PDE to be solved is cast (or discretized
[23]) into a system of linear equations,

Ax = b, (5)

where the square matrix A and the column vector b are
obtained from the PDE, while x is related to its solution f

(for example, x may represent the interpolation of f on some
grid). The most popular ways of discretizing a PDE are the
finite difference method and the finite element method (see, for
example, Ref. [23]).

The success of both the finite difference and the finite
element methods is a consequence of the fact that the resulting
matrix A is sparse, that is, most of its elements are zero.
The sparseness of A makes possible the solving of Eq. (5) by
means of fast iterative methods, such as, to name a few, the
successive over-relaxation (SOR) method, multigrid methods,
or the conjugate gradient method (see Ref. [23] for a complete
description).

A different approach, mentioned above regarding Eq. (2),
is to use the method of Ritz [24] and express the solution of the
PDE as an expansion of plane waves. When using Cartesian
coordinates, the A matrix corresponding to Poisson’s equation
is diagonal and therefore the solution of Eq. (5) is trivial [1].
However, if we use adaptive coordinates instead of Cartesians,
the resulting A matrix not only is not diagonal, it is not even
sparse, as most of its elements are different from zero.

For these dense A matrices, the standard implementation of
most iterative methods is very inefficient, both in computing
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time and memory requirements. It is possible, however, when
solving Poisson’s equation in adaptive coordinates, to compute
very efficiently the product of A by some approximate solution
x̃ by means of the fast Fourier transform [25] (FFT), and
this allows a fast solution of this problem [3] by means of
the conjugate gradient method. For other iterative methods,
such as SOR or multigrid, it is not obvious how we can
take advantage of the FFT to implement fast versions of the
respective algorithms.

This is the goal of the present work: to carry out efficient
implementations of a variety of iterative methods by means
of the FFT. The implementations will be tested on Poisson’s
equation in adaptive coordinates [21], but could be applied to
any multidimensional elliptic PDE.

II. DISCRETIZATION OF PDEs

In this work we propose to solve a PDE by the method of
Ritz [24] and express the solution as a linear combination of
plane waves. In this section we explain how the PDE can be
discretized, that is, replaced by a system of linear equations.

A. Calculus of variations

The solutions of PDEs can be obtained by means of the
calculus of variations [24]. If our PDE is the Euler-Lagrange
equation of some functional J [ξ ] depending on a trial function
ξ , then the solution f will be the function ξ that minimizes J

(more generally, the function ξ for which J [ξ ] is stationary).
For example, it is easy to prove [26] that Poisson’s equation in
Cartesian coordinates, Eq. (1), is the Euler-Lagrange equation
corresponding to the functional

J [ξ ] = 1

8π

∫
|∇ξ |2 dx −

∫
ρξ dx. (6)

B. Expansions of cas functions

In the present work, we intended to express the solution of
a PDE as a linear combination of plane waves. Considering,
however, that the solution of PDEs such as Poisson’s equation
are real functions, while plane waves are complex functions,
we prefer to use cas functions [27],

cas x = cos x + sin x (7)

(“cas” stands for “cosine and sine”), which are the real
counterparts of complex exponentials,

eix = cos x + i sin x. (8)

For a multidimensional problem with n dimensions, we
define the following basis functions,

χk(x) = 1

(
√

2π )n
cas(k1x1) · · · cas(knxn), (9)

where x = (x1, · · · xn), the integer components of the wave
vector k ≡ (k1, · · · ,kn) are restricted as follows,

−Nj

2
� kj <

Nj

2
, (10)

and Nj gives the size of the basis along the j th dimension, so
that the total number of basis functions will be N1 × · · · × Nn.

With these basis functions we can express the trial function ξ

as

ξ (x) =
∑

k

ckχk(x). (11)

C. Fast Hartley transform

The FFT is an essential tool for handling plane-wave
expansions. As cas functions can be considered “real” complex
exponentials, it is not surprising that a similar tool exists
for expansions of cas functions: the fast Hartley transform
[27] (FHT). We will explain briefly its foundations, restricting
ourselves to the one-dimensional case for simplicity.

Let f be the following expansion:

f (x) =
N/2−1∑

k=−N/2

ck cas kx, (12)

where N is an even integer greater than 2. Let the set {fj } be
the values that f takes at the abscissas of the trapezoidal rule,

fj = f (2πj/N ), j = 0, . . . ,N − 1 (13)

(we assume that the argument of f is restricted to be in the
interval [0,2π ]).

It is easy to prove that there is a one-to-one relation between
the set of coefficients {ck} and the set of values {fj }, that is,
there is only a possible set of values {fj } for each set of
coefficients {ck}, and vice versa. A procedure for computing
the set {ck} from {fj } is called a direct Hartley transform.
Conversely, a procedure for obtaining the set {fj } from {ck} is
called an inverse Hartley transform.

A naive implementation of the Hartley transform would
have an O(N2) cost. For example, imagine that we compute
a given fj = f (2πj/N ) by direct application of Eq. (12).
As the cost of computing each fj will be proportional to N ,
and there are N values in the set {fj }, the total cost will be
proportional to N2. Fortunately, there is a much more efficient
way of computing the Hartley transform, the FHT.

The FHT is based upon the following equation:

f (x) = cos(Nx/4)fe(x) + sin(Nx/4)fo(−x), (14)

where both fe and fo are themselves expansions of cas
functions, but of length N/2, and are obtained, respectively,
from the even and odd values of the set {fj },

fe

(
2πj

N/2

)
= (−1)j f2j , (15)

fo

(
− 2πj

N/2
− 2π

N

)
= (−1)j f2j+1. (16)

The proof of Eq. (14) is not difficult. Considering the definition
of cas functions given in Eq. (7), it is easy to arrive at the
following relations,

2 cas α cos β = cas(α + β) + cas(α − β), (17)

2 cas(−α) sin β = cas(α + β) − cas(α − β), (18)

and, from these relations, it is simple to conclude that the
right-hand side of Eq. (14) is a cas expansion of length N .
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Furthermore, from the relations

cos

(
N{2π [2j ]/N}

4

)
= cos(πj ) = (−1)j , (19)

sin

(
N{2π [2j ]/N}

4

)
= sin(πj ) = 0, (20)

cos

(
N{2π [2j + 1]/N}

4

)
= cos(πj + π/2) = 0, (21)

sin

(
N{2π [2j + 1]/N}

4

)
= sin(πj + π/2) = (−1)j , (22)

we can see that the set values {fj } computed from both sides
of Eq. (14) are equal.

It is trivial to prove, considering again Eqs. (17) and
(18), that the functions fe and fo can be obtained from the
coefficients of f ,

fe(x) =
N/4−1∑

k=−N/4

(ck+N/4 + ck−N/4) cas(kx), (23)

fo(x) =
N/4−1∑

k=−N/4

(ck+N/4 − ck−N/4) cas(kx). (24)

Now it is easy to see how Eq. (14) can be used to implement
a faster Hartley transform. Imagine that we want to compute
the set of values {fj } from the set of coefficients {ck}. Instead
of computing the whole {fj } set from f , we can compute the
even half of {fj } from fe in Eq. (23), and the odd half from
fo in Eq. (24). As the length of both fe and fo is half that of
f , the cost for each half would be (N/2)2 = N2/4, which will
give a total cost of 2N2/4 = N2/2. If we apply this procedure
recursively to fe and fo, we will end up with a total cost
proportional to N log N .

In order to apply this algorithm recursively, N must be a
power of 2. However, as there are FFT algorithms for N not a
power of 2, one could adapt them to the FHT, and thus obtain
a (hopefully) more efficient and flexible algorithm than the
one presented above. For the moment, though, we will restrict
ourselves to the simpler power of 2 case.

D. Discretization of PDEs for cas functions

Let us explain how to discretize Poisson’s equation in
Cartesian coordinates when the trial function ξ is expressed as
in Eq. (11).

We begin by defining a square matrix A and a column
matrix b with respective elements

(A)lm = 1

4π

∫ (
∂χl

∂x

∂χm

∂x
+ ∂χl

∂y

∂χm

∂y
+ ∂χl

∂z

∂χm

∂z

)
dx

(25)
and

(b)l =
∫

ρχl dx. (26)

Next, we replace the expression of ξ given in Eq. (11) into
Eq. (6), and arrive at the following equivalence:

J [ξ ] = 1

2

∑
l

∑
m

cl(A)lmcm −
∑

l

(b)lcl. (27)

Finally, to minimize J [ξ ], we equate its partial derivatives with
respect to each cl to zero and obtain the following system of
linear equations: ∑

m

(A)lmcm = (b)l. (28)

In this way, we have cast the problem of solving Poisson’s
equation into the problem of solving a system of linear
equations.

For Poisson’s equation in Cartesian coordinates, the solving
of this system of linear equation is trivial because the matrix A
is diagonal. For other PDEs, or for this same Poisson’s equation
but in coordinates other than Cartesians, the solution is not so
simple because A, in general, will be a dense matrix. For
example, if we use adaptive coordinates instead of Cartesians,
the matrix elements of A take the following form:

(A)lm = 2
∫ ⎡

⎣ 3∑
j=1

3∑
k=1

Qjk

∂χl

∂xj

∂χm

∂xk

+
3∑

j=1

Qj

(
∂χl

∂xj

χm + χl
∂χm

∂xj

)
+ Qχlχm

⎤
⎦ dx,

(29)

where x ≡ (x1, x2, x3) represent the adaptive coordinates, and
where Q, Qj , and Qjk are functions whose precise expression
can be found in Ref. [21].

E. Evaluation of the matrix elements

We will discuss now the evaluation of the matrix elements
of A. For the sake of agility, we will use Dirac’s notation, so
that Eq. (29) can be rewritten as

(A)lm = 2
3∑

j=1

3∑
k=1

〈
∂χl

∂xj

∣∣∣∣ Qjk

∣∣∣∣ ∂χm

∂xk

〉

+ 2
3∑

j=1

(〈
∂χl

∂xj

∣∣∣∣Qj | χm〉 + 〈χl| Qj

∣∣∣∣ ∂χm

∂xj

〉)

+ 2〈χl | Q | χm〉. (30)

The functions Q, Qj , and Qjk can be expanded by means
of the χk basis functions, in a similar way as was done in
Eq. (11) for the trial solution ξ . For example, for Q, we will
have

Q(x) =
∑

k

qkχk(x). (31)

At first sight, it may seem that in order to yield exact
results for (A)lm, these expansions have to be of infinite length.
However, as the derivative of a cas function is another cas
function, and the product of two cas functions is a short linear
combination of cas functions (recall that cas functions are
nothing more than “real” complex exponentials), it turns out
that an expansion twice as long (along each dimension) as that
of ξ suffices to get exact results.

We will use the notation Q̄, Q̄j , and Q̄jk to refer to these
truncated counterparts of Q, Qj , and Qjk , and, as the truncated
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expansions also yield exact results, we will have

(A)lm = 2
3∑

j=1

3∑
k=1

〈
∂χl

∂xj

∣∣∣∣ Q̄jk

∣∣∣∣ ∂χm

∂xk

〉

+ 2
3∑

j=1

(〈
∂χl

∂xj

∣∣∣∣ Q̄j | χm〉 +
〈
χl | Q̄j | ∂χm

∂xj

〉 )

+ 2〈χl | Q̄ | χm〉. (32)

The integrals in this expression can be computed accurately
and efficiently by numerical integration combined with the
FHT (see Ref. [16] for the details).

It is possible to transforms some of the integrals in Eq. (32)
by means of integration by parts. For example, it is easy to see
that〈

∂χl

∂xj

∣∣∣∣ Q̄j |χm〉 = −〈χl| ∂Q̄j

∂xj

| χm〉 − 〈χl| Q̄j

∣∣∣∣ ∂χm

∂xj

〉
. (33)

In a similar manner, it is possible to rewrite Eq. (32) as

(A)lm = 〈χl | O| χm〉 +
3∑

j=1

〈χl | Oj

∣∣∣∣ ∂χm

∂xj

〉

+
3∑

j=1

j∑
k=1

〈χl | Ojk

∣∣∣∣ ∂2χm

∂xj ∂xk

〉
, (34)

where the explicit form of O, Oj , and Ojk can be easily worked
out from Q̄, Q̄j , and Q̄jk and their derivatives.

F. Partial differential operators

Let f and g be any two functions expressed as linear
combinations analogous to the one used for ξ in Eq. (11).
Equation (34) suggests the introduction of a partial differential
operator Ô that acts on f to produce g,

g = Ôf. (35)

The effect of Ô over any f can be obtained as follows.
(1) The following temporary function g0 is computed:

g0 = Of +
3∑

j=1

Oj

∂f

∂xj

+
3∑

j=1

j∑
k=1

Ojk

∂2f

∂xj∂xk

. (36)

Note that the derivatives of f , as well as O, Oj , and Ojk , are
all linear combinations of cas functions, and therefore g0 can
be efficiently evaluated via convolution and FHT with a cost
of O(N log N ), N being the number of cas functions used.

(2) This g0 is a linear combination of cas functions, though
longer than required in Eq. (11). Therefore, g0 should be
truncated to produce the desired result g.

According to this definition, it is obvious that the matrix
elements of A can be expressed with the help of Ô as

(A)lm = 〈χl|Ô|χm〉 . (37)

As a consequence, the system of linear equations given in
Eq. (28) can be rewritten as

Ôf = g, (38)

where f is the solution and g is related to column matrix b as
follows:

g(x) =
∑

k

(b)k χk(x). (39)

G. Bisection of operators

We have seen in Eq. (14) that a cas expansion can be split
into even and odd halves. We will extend this idea to the
partial differential operators introduced above. For simplicity,
we will restrict ourselves to the one-dimensional case, where
a differential operator has the following expression:

Ô(x) = O0(x) + O1(x)
d

dx
+ O2(x)

d2

dx2
. (40)

Let us have two cas expansions f and g, both of length N

with N even and higher than 2. According to Eq. (14), we can
split f and g as follows:

f (x) = cos(Nx/4)fe(x) + sin(Nx/4)fo(−x), (41)

g(x) = cos(Nx/4)ge(x) + sin(Nx/4)go(−x). (42)

It is straightforward, though tedious, to bisect the operator Ô

into even and odd components,

〈f |Ô|g〉 = 〈fe(x)|Ôee|ge(x)〉 + 〈fe(x)|Ôeo|go(−x)〉
+〈fo(x)|Ôoo|go(x)〉 + 〈fo(x)|Ôoe|ge(−x)〉, (43)

with Ôee, Ôeo, Ôoo, and Ôoe defined as follows:

Ôee =
[
Occ

0 (x) − N

4
Ocs

1 (x) − N2

16
Occ

2 (x)

]

+
[
Occ

1 (x) − N

2
Ocs

2 (x)

]
d

dx
+ Occ

2 (x)
d2

dx2
, (44)

Ôeo =
[
Ocs

0 (x) + N

4
Occ

1 (x) − N2

16
Ocs

2 (x)

]

+
[
Ocs

1 (x) + N

2
Occ

2 (x)

]
d

dx
+ Ocs

2 (x)
d2

dx2
, (45)

Ôoo =
[
Oss

0 (x) + N

4
Osc

1 (x) − N2

16
Oss

2 (x)

]

−
[
Oss

1 (x) + N

2
Osc

2 (x)

]
d

dx
+ Oss

2 (x)
d2

dx2
, (46)

Ôoe =
[
Osc

0 (x) − N

4
Oss

1 (x) − N2

16
Osc

2 (x)

]

−
[
Osc

1 (x) − N

2
Oss

2 (x)

]
d

dx
+ Osc

2 (x)
d2

dx2
, (47)

and where

Occ
i (x) = cos2(Nx/4)Oi(x), (48)

Oss
i (x) = sin2(Nx/4)Oi(−x), (49)

Ocs
i (x) = cos(Nx/4) sin(Nx/4)Oi(x), (50)

Osc
i (x) = − sin(Nx/4) cos(Nx/4)Oi(−x). (51)
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Note that the lengths of the cas expansions in Ôee, Ôeo, Ôoo,
and Ôoe, after truncation, are half the length of those in Ô.

It is straightforward to arrive at the following relation:

〈f |g〉 = 1
2 〈fe|ge〉 + 1

2 〈fo|go〉 , (52)

and from this last expression and Eq. (43) we can easily arrive
at

Ôeefe(x) + Ôeofo(−x) = 1
2ge(x), (53)

Ôoefe(−x) + Ôoofo(x) = 1
2go(x). (54)

Comparing these two equations with Eq. (38), we see that now
we have two half-equations, one for fe and the other for fo.
Note that these equations are coupled, as both fe and fo appear
in both sides of them. We will explain next how to solve these
equations by means of iterative methods.

III. ITERATIVE METHODS

After the discretization of a PDE (see Sec. II D), we are left
with a system of linear equations to solve

Ax = b. (55)

The matrix A is dense, so that an explicit computation and
storage of its elements is not feasible for large systems, thus
making very expensive, or even impossible, the use of direct
methods for large problems. Suppose, for example, that we
try to solve our system via a Cholesky decomposition [28].
If N is the number of cas functions used, then the cost of
this decomposition will be O(N3) in CPU time and O(N2) in
memory, which will become quickly out of the question as N

grows.
In this section, we will discuss better alternatives, based on

iterative methods, that do not require the explicit computation
and storage of matrix A.

A. Stationary iterative methods

Stationary (also known as relaxation or basic) iterative
methods [23,29] include procedures for solving systems of
linear equation such as Jacobi, Gauss-Seidel (GS), successive
over-relaxation (SOR), or symmetric SOR (SSOR) methods.

These methods work by decomposing the matrix A into
three components: diagonal (D), strictly lower triangular (L,
with the elements of A below the diagonal), and strictly upper
diagonal (U, with the elements of A above the diagonal),

A = D + L + U. (56)

With the help of these matrices, the system of linear equations
Ax = b is rearranged, for example, as

(D + L)x = b − Ux, (57)

and then the solution is obtained iteratively: a sequence of
approximate solutions x(0), . . . ,x(m) is generated so that x(m+1)

is computed from x(m) according to the relation

(D + L)x(m+1) = b − Ux(m). (58)

As D + L is a lower diagonal matrix, this system is trivially
solved.

The procedure just explained is known as the Gauss-Seidel
method. The sequence of solutions x(m) is guaranteed [29] to
converge to the true solution if A is a symmetric positive-
definite matrix.

If implemented as explained above, the GS method is only
practical if A is a sparse matrix. For dense matrices, the cost
of solving Eq. (58) will be O(N3) in CPU time and O(N2) in
memory, and therefore, as many iterations have to be carried
out, the overall performance would be much worse than that
of a direct approach.

Nevertheless, we propose an alternative implementation of
the GS method for the problem at hand, implementation that
does not require the storage of the matrices L and U in memory,
and that allows an efficient solution of Eq. (58) via the FHT.
We give the details next.

Recall that we are trying to solve a PDE that has been
rewritten as Ôf = g in Eq. (38), where f is the solution. We
begin by casting Eqs. (53) and (54) in matrix form,

[
Ôee ÔeoM̂

ÔoeM̂ Ôoo

][
fe

fo

]
= 1

2

[
ge

go

]
, (59)

where the effect of M̂ over any cas expansion h is the
following:

M̂h(x) = h(−x). (60)

Next, inspired by the decomposition of A in Eq. (56), we
apply a similar one to the matrix in Eq. (59):

[
Ôee ÔeoM̂

ÔoeM̂ Ôoo

]
=

D︷ ︸︸ ︷[
Ôee 0
0 Ôoo

]
+

L︷ ︸︸ ︷[
0 0

ÔoeM̂ 0

]

+

U︷ ︸︸ ︷[
0 ÔeoM̂

0 0

]
. (61)

Finally, from these D, L, and U matrices, the GS iterations
in Eq. (58) can be written as a system of two equations, one
for the even part fe, and the other for the odd part fo:

Ôeef
(m+1)
e (x) = 1

2ge(x) − Ôeof
(m)
o (−x), (62)

Ôoof
(m+1)
o (x) = 1

2go(x) − Ôoef
(m+1)
e (−x). (63)

Equations (62) and (63) (with similar equations for other
stationary methods such as SOR or SSOR) constitute the
cornerstone of the present work. We will explain in detail
their importance:

(1) The equation Ôf = g is solved iteratively, with a se-
quence of approximate solutions f (0), . . . f (m) that converges
to the exact solution f . The functions f (m)

e and f (m)
o represent,

according to Eq. (14), the even and odd halves of f (m).
(2) The original equation Ôf = g has N unknowns, while

Eqs. (62) and (63) have N/2 unknowns each, and therefore
are easier to solve. Instead of solving these two equations
by a direct method, we can proceed recursively by applying
successive bisections, so that at the next level of bisection we
will have four equations of N/4 unknowns each, then eight
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FIG. 1. Memory requirement (in Gigabytes, GB) for the Cholesky
decomposition and the stationary iterative methods when using
double-precision arithmetic. N is the total number of 3D cas functions
(or unknowns). For the stationary iterative methods, a 8 × 8 × 8 grid
is used for the bottom level.

equations of N/8 unknowns, and so on. At the bottom level,
when we consider that no more bisections are advisable, we can
solve the equations by a direct method (we will use Cholesky
decomposition), because, at this bottom level, the number of
unknowns for each equation is small enough to make direct
methods practical.

(3) Ôeo and Ôoe should be stored for all levels but the
bottom one, with memory requirements of the order of
O(N log N ). The operators Ôee and Ôoo do not have to be
stored because they are not directly used but recursively
forwarded to the next level and then bisected. Finally, at
the bottom level, we do have to store all the Cholesky
decompositions, which needs an amount of memory of the
order of O(N ). Overall, the memory requirements of stationary
methods implemented as proposed here will be of the order of
O(N log N ). We compare in Fig. 1 the memory requirements
of a stationary iterative method such as the GS method and the
corresponding requirements for a Cholesky decomposition.
We see that, even if the matrix A is not sparse, the memory
needs of our implementation of the GS method are much
smaller than those of a Cholesky decomposition. Note that
Ôeo and Ôoe are precomputed and stored at the beginning
of the calculation, and then are used for all the subsequent
iterations of the GS method.

(4) The CPU time required for each iteration of our GS
method is dominated by the evaluation of Ôeof

(m)
o (−x) and

Ôoef
(m+1)
e (−x). This evaluation can be efficiently done via

FHT and convolution and has a cost of O(N log N ) for each
recursion level. As the number of levels is proportional to
log N , we will have a total cost of O(N log2 N ), which is
much better than the O(N2) cost of a GS iteration for dense
matrices.

The procedure just explained can be trivially generalized
for other stationary iterative methods. We will consider briefly
the SOR and SSOR methods.

For the SOR method, Eq. (58) should be replaced by the
following counterpart:

(D + ωL)x(m+1) = ωb − [ωU + (ω − 1)D]x(m), (64)

where ω is the relaxation factor. The SOR method is guaran-
teed [29] to converge if A is symmetric and positive-definite
and ω has a value between 0 and 2 (note that for ω = 1 SOR
reverts to the GS method). With our definition of matrices D,
L, and U in Eq. (61), we get

Ôee

[
1

ω
f (m+1)

e (x) + ω − 1

ω
f (m)

e (x)

]

= 1

2
ge(x) − Ôeof

(m)
o (−x), (65)

Ôoo

[
1

ω
f (m+1)

o (x) + ω − 1

ω
f (m)

o (x)

]

= 1

2
go(x) − Ôoef

(m+1)
e (−x), (66)

which suggest the following strategy:
(1) Solve

Ôeef̃
(m+1)
e (x) = 1

2ge(x) − Ôeof
(m)
o (−x), (67)

for f̃ (m+1)
e (x) with

f̃ (m+1)
e (x) = 1

ω
f (m+1)

e (x) + ω − 1

ω
f (m)

e (x). (68)

(2) Compute f (m+1)
e (x) as follows:

f (m+1)
e (x) = ωf̃ (m+1)

e (x) − (ω − 1)f (m)
e (x). (69)

This should be done only at the bottom level, to avoid
multiplying by ω or ω − 1 more than once.

(3) These steps should be repeated in a similar way for
Eq. (66).

For the SSOR method, we have

(D + ωL)x(m+1/2) = ωb − [ωU + (ω − 1)D]x(m), (70)

(D + ωU)x(m+1) = ωb − [ωL + (ω − 1)D]x(m+1/2), (71)

which is equivalent to a SOR forward step followed by a
SOR backward step. For ω = 1, the SSOR method is just the
symmetric Gauss-Seidel (SGS) method.

B. Krylov subspace methods

Krylov subspace methods [23] are a different kind of
iterative methods for solving a system of linear equations.
Given the system Ax = b and a vector r0, Krylov methods
work by generating the sequence r0, Ar0, A2r0, . . ., and then
approximating the solution x as a linear combination of these
vectors. The Krylov subspace is the subspace spanned by the
vectors in the sequence,

Km(A,r0) = span{r0,Ar0,A2r0, . . . ,Am−1r0}, (72)

which means that the approximated solution belongs to
Km(A,r0). The vector r0 is defined as r0 = b − Ax0, where
x0 is some initial guess to the solution.

As we have explained in Sec. II F, the PDE that we are trying
to solve is rewritten in operator form as Ôf = g, so that given
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an initial guess f0 to the solution f , we have to generate the
sequence r0 = g − Ôf0, Ôr0, Ô(Ôr0), . . . in order to build
up the Krylov subspace. This task reduces itself to applying
the operator Ô to the previous vector in the sequence, and
can be efficiently accomplished via FHT and convolution (see
Sec. II F).

The conjugate gradient (CG) method [23] is one of the most
popular Krylov methods. It can be used when the matrix A is
symmetric and positive-definite, as is the case for Poisson’s
equation. The corresponding algorithm is neat and simple and
has an important advantage: there is no need to store the whole
sequence of vectors that span the Krylov subspace, it suffices
to store a total of four vectors.

The efficiency of Krylov methods can be improved by
using preconditioning, which replaces the original system
of linear equations to be solved by another one with the
same solution but (hopefully) easier to solve. Given a suitable
preconditioning matrix or preconditioner M we can transform
the system Ax = b into an alternative system,

(AM−1)y = b, (73)

solve it for y, and then obtain x from y,

x = M−1y. (74)

This particular scheme is called right preconditioning.
Once a preconditioner has been selected, the Krylov

subspace for the preconditioned system is the following:

Km(AM−1,r0) = span{r0,AM−1r0,(AM−1)2

× r0, . . . ,(AM−1)m−1r0}. (75)

There are many choices [23] for the preconditioner M. One
possibility, which is particularly simple for the present work,
is to use the stationary iterative methods studied above as
preconditioners. We will discuss its implementation next.

Consider the GS iteration in Eq. (58) and the following
choice for the preconditioner:

M = D + L. (76)

Then the GS iteration can be written as

Mx(m+1) = b − Uxm, (77)

or, alternatively, as

x(m+1) = M−1b − M−1Uxm. (78)

It is easy to generate the Krylov subspace for this choice of
preconditioner:

(1) First, note that it is not necessary to store the whole
M matrix in memory. According to Eq. (75), it suffices that,
given a vector v, we are able to compute M−1v.

(2) In order to obtain M−1v, we could use the same
computer code that implements a GS iteration: in Eq. (78),
we just make xm equal to zero and set b to v. Then the result
x(m+1) returned by the program will be equal to M−1v.

For SOR, SSOR, or any other stationary iterative method,
the procedure is analogous, we just have to use the computer
code that implements the respective iteration.

The conjugate gradient (CG) method mentioned above can
be extended to deal with preconditioners in what is called the

preconditioned conjugate gradient (PCG) method [23]. How-
ever, as the CG does not converge for nonsymmetric problems,
it turns out that both the matrix A and the preconditioner M
have to be symmetric for the PCG method to converge. This
precludes the use of GS or SOR preconditioners, as they are not
symmetric. The SSOR and SGS preconditioners are symmetric
and therefore allowed for PCG.

If one is interested in nonsymmetric preconditioners,
one alternative to PCG could be the generalized minimal
residual (GMRES) method [23], which is a robust Krylov
subspace method that also works for nonsymmetric problems.
A downside of the GMRES method is that the whole sequence
of vectors spanning the Krylov subspace has to be kept in
memory, which could be prohibitive if a large number of
iterations is needed (note that there are variants [23] of the
GMRES method that try to remedy this problem, such as the
restarted GMRES method).

C. Multigrid methods

Multigrid methods [30] are among the most powerful
methods available for solving PDEs. Let us first explain what
we mean by a grid in the present context.

Recall from Sec. II C that a cas expansion f of length N can
be expressed as the set of coefficients {ck} of the cas functions,
or as the set of values {fj } that f takes at the abscissas of a
N -point trapezoidal rule. We will refer to this set of N abscissas
as a grid of N points. For a 3D problem, we will extend this
definition and speak, for instance, of a N × N × N grid.

A multigrid method uses more than a grid to solve a
problem. For example, it can use a fine grid N × N × N ,
and a coarse grid N/2 × N/2 × N/2, or even coarser grids
N/4 × N/4 × N/4, . . .

A crucial ingredient of multigrid methods is what is called
intergrid transfer. Suppose that we have a function f N repre-
sented in a fine grid and we need also its representation f N/2

in a coarse grid. The process of obtaining f N/2 from f N (fine
to coarse) is called restriction, while the opposite operation
from f N/2 to f N (coarse to fine) is called interpolation or
prolongation.

Both restriction and interpolation are very easy to carry out
in our current representation of functions as expansions of cas
functions. Let the fine-grid function f N be

f N (x) =
N/2−1∑

k=−N/2

ck cas kx (79)

(for simplicity, we will assume 1D grids). Then the restriction
operation is just removing half the terms (those with higher
|k|) from the previous summation,

f N/2(x) =
N/4−1∑

k=−N/4

ck cas kx. (80)

The interpolation operation from f N/2 to f N is also trivial:
we copy all the coefficients in f N/2 to f N , and then set the
remaining coefficients of f N to zero.

In this work we have rewritten the equation to be solved in
operator form, Ôf = g, and therefore we need the operator
Ô represented in all the grids that we are going to use
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(ÔN , ÔN/2, . . .). These representations are easy to obtain via
the restriction operation described above: we set ÔN = Ô, and
then we get ÔN/2 by restriction of ÔN , ÔN/4 by restriction of
ÔN/2, and so on.

The multigrid algorithm is recursive in nature. We will give
a short description of the steps required to perform a single
iteration or cycle.

(1) On the current N × · · · × N grid, do ν1 relaxation
steps on ÔNf N = gN with a given initial guess f N (a
“relaxation step” is a single iteration of an stationary iterative
method such as the GS method).

(2) If we are on the coarsest grid, go to step 7.
(3) Compute gN/2 by restriction of the residual gN −

ÔNf N .
(4) Set f N/2 to zero.
(5) Recursion. Go to step 1, but setting N to N/2. The

recursion will produce an updated result for f N/2.
(6) After the recursion, correct f N by adding to it the

interpolation of f N/2 to the grid N × · · · × N .
(7) Do ν2 relaxation steps on ÔNf N = gN with initial

guest f N .
The algorithm just described constitutes what is called a

V-cycle. A related cycle, the W-cycle, is obtained if step 5 is
repeated twice. In this work, we will restrict ourselves to the
V-cycle, as the W-cycle does not produce better results.

Finally, we will point out that multigrid methods can
be accelerated by using them as preconditioners of Krylov
subspace methods. A V-cycle will be symmetric if the
relaxation steps are performed by a symmetric stationary
iteration such as SSOR or SGS and ν1 = ν2. In such a case,
we can use this V-cycle as a preconditioner for the PCG.
For nonsymmetric V-cycles (when ν1 �= ν2 or the stationary
iteration is not symmetric), we should use the GMRES method
instead.

IV. BENCHMARKING

In this section we will offer some benchmarking of
the methods described above. The results are presented in
Table I and Fig. 2. In both cases, the model problem studied
is Poisson’s equation rewritten in adaptive coordinates, as
explained in detail in Ref. [21], and applied to the promolecule
density (spherical atomic densities centered at the nuclei of
the molecule) of the H+

3 molecule in its equilibrium geometry
[31]. The methods have also been applied to a nonplanar,
methane-like molecule (4 hydrogen atoms located at the
vertices of a tetrahedron, plus another hydrogen atom at its
center), but the results, being very similar to those obtained
with the H+

3 molecule, are not reported here.
We will use the residual norm as a measure of the error of

the solutions obtained by the different methods. If, in operator
form, the equation to be solved is Ôf = g, and ξ is an
approximated solution, then the residual norm ε is defined
as

ε =
√

〈Ôξ − g|Ôξ − g〉. (81)

We show in Fig. 2 the error (residual norm) as a function of
the number of iterations for the GS method, the SOR method
(with the value of the relaxation parameter optimized to

TABLE I. CPU time (in seconds) required to solve the model
problem by different methods. In all cases, the error (residual norm)
is smaller than 10−9. Two 3D grids of cas functions are used: 16 ×
16 × 16 and 32 × 32 × 32, with a 8 × 8 × 8 grid for the bottom level.
The Cholesky entry marked by an asterisk is not directly computed
but, due to the huge amount of memory that would be required,
estimated by extrapolation. The multigrid preconditioner (MG) uses
two grids (8 × 8 × 8 and 16 × 16 × 16) for the 16 × 16 × 16 column
and three grids (8 × 8 × 8, 16 × 16 × 16, and 32 × 32 × 32) for the
32 × 32 × 32 column.

16 × 16 × 16 32 × 32 × 32

Cholesky 47.8 11115.4∗

CG 63.9 4626.0
PCG-SGS 56.3 3399.4
GMRES-GS 36.8 1949.3
PCG-MG[SGS, ν1 = ν2 = 1] 29.2 1661.6
GMRES-MG[GS, ν1 = 1, ν2 = 0] 19.7 997.6
GMRES-MG[GS, ν1 = ν2 = 1] 20.2 1059.7

ω = 1.89), and the preconditioned conjugate gradient method
with a symmetric Gauss-Seidel preconditioner (PCG-SGS).
We conclude the following:

(1) Although the GS method is guaranteed [29] to converge
to the true solution for symmetric positive-definite matrices,
we see that the convergence is so slow as to make the method
useless for the present problem. Also, the slight increase in
the error at the beginning of the iteration is a consequence of
the use, as an estimate of the error, the residual norm instead
of the error norm,

√〈ξ − f |ξ − f 〉, which, although will
decrease monotonically [29], is not as easy to calculate as the
residual norm because we do not know the exact solution f

beforehand.
(2) The error of the SOR and PCG-SGS methods decreases

steadily as the number of iteration increases, so that, if we
keep ourselves within machine accuracy, a given target
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FIG. 2. Error (residual norm) as a function of the number of
iterations for the GS method, the SOR method (with ω = 1.89), and
the PCG-SGS method. A 3D grid of cas functions of size 16 × 16 ×
16 is used in all cases, with a 8 × 8 × 8 grid for the bottom level.
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accuracy could be reached provided that enough iterations are
carried out.

(3) Regarding the number of iterations, the PCG-SGS
method clearly outperforms the other two methods. However,
as the SGS preconditioner requires two half-iterations for
each iteration, one may wonder how this would affect the
corresponding CPU time. We have found that, on average,
each complete PCG-SGS iteration takes about 72% more time
than a GS or SOR iteration. Therefore, even accounting for
these two half-iterations, the PCG-SGS method is by far the
best method of the three.

The CPU time needed to solve the model problem for
different methods is shown in Table I. In this table, “Cholesky”
refers to the direct solution of the problem via Cholesky
decomposition, “CG” is the conjugate gradient method with no
preconditioner, while “PCG-*” and “GMRES-*” denote the
preconditioned CG or the preconditioned GMRES methods
with a given preconditioner “*,” where “*” may stand for
GS, SGS, or multigrid (MG). For this last preconditioner,
we indicate in square brackets which stationary iteration is
used for the relaxation step (SG or SGS), and the number
of relaxation steps carried out before (ν1) and after (ν2) the
multigrid recursion. We present some conclusions on this
table:

(1) The cost of Cholesky scales as O(N3), which is
worse than the scaling of the other methods, and causes this
method to perform poorly for large grids. The stationary
iterative methods have a O(N log2 N ) cost per iteration,
but one should keep in mind that the number of itera-
tions required to reach a given precision increases as N

increases.
(2) As expected, the conjugate gradient method with no

preconditioner (CG) is worse than the other Krylov subspace
methods with preconditioner (PCG-* and GMRES-*).

(3) The cost of GMRES-GS is lower than that of PCG-
SGS, so that we can conclude that the GS precondi-
tioner is better than the SGS one (note that GS is not
a symmetric preconditioner and therefore cannot be used
with PCG). We would like to point out that although we
have tested the SSOR preconditioner with different values
of the relaxation parameter ω, it turns out that the op-
timum value is ω = 1, which makes SSOR equivalent to
SGS.

(4) Regarding multigrid methods accelerated via PCG
or GMRES, we conclude, as in the previous point, that
GS relaxation performs better than SGS relaxation. The
fastest methods are GMRES-MG[GS, ν1 = 1, ν2 = 0] and
GMRES-MG[GS, ν1 = ν2 = 1]. We caution, however, that
GMRES has to store in memory the whole sequence of vectors
spanning the Krylov subspace (one vector per iteration), so
that, if not enough memory is available, we should use the
PCG-MG[SGS, ν1 = ν2 = 1] method instead. Note also that
GMRES-MG[GS, ν1 = 1, ν2 = 0] requires more iterations
than GMRES-MG[GS, ν1 = ν2 = 1] (for example, for the
32 × 32 × 32 grid, the first method needs 417 iterations,
while the second only needs 265 iterations), so that, as the
cost in CPU of both methods is similar, it is better to use
GMRES-MG[GS, ν1 = ν2 = 1] when memory is scarce.

V. CONCLUSIONS

In this work, we have proposed a new method for solving
arbitrary elliptic partial differential equations. We outline its
main features and give some conclusions:

(1) The approach is based upon the method of Ritz, a
variational method for solving PDEs. The solution is written
as a linear combination of plane waves, so that the coefficients
of the plane waves are found by variational minimization.

(2) This variational minimization results in the original
PDE to be solved replaced by a system of lineal equations
Ax = b.

(3) Although the matrix A is not sparse, it is possible
to implement some stationary iterative methods for solving
Ax = b (such as Gauss-Seidel or SOR) in a fast and efficient
way. This is done recursively, by using the ideas behind
the FFT, and results in algorithms consuming O(N log N )
memory and executing one iteration in O(N log2 N ) time, N

being the number of plane waves used.
(4) These stationary iterative methods can be accelerated

via Krylov subspace methods (such as conjugate gradient or
GMRES) or multigrid methods.

(5) The best results are obtained by the GMRES method
using a multigrid preconditioner with Gauss-Seidel relaxation
steps.
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JOSÉ M. PÉREZ-JORDÁ PHYSICAL REVIEW E 93, 023304 (2016)

[22] K. Ito, ed., Encyclopedic Dictionary of Mathematics (MIT Press,
Cambridge, Massachusetts, 2000), 2nd ed.

[23] Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM
Press, Philadelphia, 2003), 2nd ed.

[24] S. J. Farlow, Partial Differential Equations for Scientists and
Engineers (Dover, New York, 1993).

[25] J. W. Cooley and J. W. Tukey, Math. Comput. 19, 297
(1965).

[26] L. C. Evans, Partial Differential Equations (American Mathe-
matical Society, Providence, 2010), 2nd ed.

[27] R. N. Bracewell, The Hartley Transform (Clarendon Press,
Oxford, 1986).

[28] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in FORTRAN (Cambridge University Press,
Cambridge, 1992), 2nd ed.

[29] R. S. Varga, Matrix Iterative Analysis (Springer, Berlin, 2000),
2nd ed.

[30] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid
Tutorial (SIAM, Philadelphia, 2000), 2nd ed.

[31] F. Jensen, Theor. Chem. Acc. 104, 484 (2000).

023304-10

http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.1007/s002140000174
http://dx.doi.org/10.1007/s002140000174
http://dx.doi.org/10.1007/s002140000174
http://dx.doi.org/10.1007/s002140000174



