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In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic
equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann
model for numerical relativity and validate it with well-established tests, also known as “apples with apples.”
Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy,
and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability
of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for
parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using
lattice kinetic theory to solve gravitational problems.
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I. INTRODUCTION

General relativity was introduced by Albert Einstein in
1915 and became the first geometric theory of gravitation. It
includes ten nonlinear second-order differential equations and
due to their complexity, few analytical solutions are known.
Therefore, numerical methods have played an important role
in recent decades. Solving Einstein equations numerically is
often called “numerical relativity.”

With the 2005 breakthroughs in numerical relativity [1–3],
it is now possible to simulate compact binary coalescenses.
This includes binary black hole merger, binary neutron
star mergers, and neutron star-black hole mergers. Most of
the popular methods for solving these equations are based
in finite differencing [4] or pseudospectral techniques [5].
While there is a great effort to solve more complicated
phenomena, there is also much work done in solving technical
problems encountered during the numerical simulations. Such
problems, especially in highly curved spacetimes, are tackled
by mathematical corrections, such as conformal and isometric
mappings [6], or by numerical methods, such as exponentially
growing lattice spacings or adaptive mesh refinements [7].
Complicated geometries and singularities leading to highly
curved spacetimes are also handled by excision and moving
puncture methods. Additionally, improving the parallelization
efficiency of current methods still represents a challenge in
numerical relativity.

There are several mathematical formulations of Einstein
equations (see Ref. [8] for more details) that are useful for
numerical relativity simulations. These include the generalized
harmonic approach [1,5,9] and variations of the Arnowit-
Deser-Misner (ADM) 3+1 decomposition. The latter includes
the BSSNOK system [10–12] and the Z4 systems [13]. In this
work, we use the Z4 formulation of Einstein equations, since it
consists in first-order hyperbolic conservation equations for the
geometric variables [14,15], resembling fluid dynamics equa-
tions, and therefore, making suitable the use of fluid dynamics
solvers. This formalism is connected to the BSSNOK and Bona
Masso formalisms by an explicit symmetry breaking [16].
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In this paper, we propose for the first time a lattice
Boltzmann model to solve Einstein equations. Usually, the
lattice Boltzmann method allows us to solve the Navier-Stokes
equations (or any conservation law) to an accuracy that
depends on the Knudsen number (roughly defined as the
ratio of lattice spacing to system size) [17]. This method
has been successfully used to study many physical systems
using a fraction of computational time of other numerical
methods [18–23]. Here, we extend the wide applicability of
the lattice Boltzmann method to gravitation. Furthermore,
we investigate the performance of the model with the fol-
lowing well-established apples with apples tests reported in
Ref. [24,25].

A. Expansion of a flat universe

We simulate an expanding flat universe and compare the
results with the expected analytical solution. This example
uses an ideal fluid energy-momentum tensor and shows that it
is coupled correctly to the rest of the model variables.

B. Robust stability test

In this test all dynamical fields are initiated as flat space
with random noise to test the capability of the model to handle
errors.

C. Gauge wave

We test the ability of the scheme to propagate a gauge wave.
The gauge wave is achieved through a nonlinear coordinate
transformation, which does not change the physics at hand.

D. Linear wave

We validate the model propagating the amplitude and
phase of a gravitational wave, i.e., a spatial transverse wave
propagating in x direction and time.

E. Shifted gauge wave

While in the gauge wave test only the diagonal elements of
the metric were evolved, in this test a nondiagonal temporal
element is also evolved.
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F. Polarized Gowdy wave

A standing wave in an expanding universe is tested. It is
a complicated test that involves a stronger curvature than in
previous tests and a T3 topology.

G. Numerical diffusivity

We investigate the role of numerical diffusivity in our
simulation errors. While it is normally added artificially in
other methods through an elliptic equation [1,6], it is present
in the lattice Boltzmann model naturally.

H. Parallelization

We show that our lattice Boltzmann model is well suited
for parallel computing. The improvement in the computation
duration for a gauge-wave simulation is also shown.

Compared to common methods in numerical relativity, such
as finite differences, lattice Boltzmann methods have extra
properties that may lead to improvements or short comings,
which still need to be tested. Some of them can be listed
as follow: The numerical diffusivity in numerical relativity
is an extra term introduced in finite difference methods (see
Refs. [1,6]) to suppress high-frequency instabilities, while
it is naturally present in the lattice Boltzmann method. Our
model uses a lattice that offers more isotropy than center-finite
differences for calculating spatial derivatives, thus, providing
more accurate results when it comes to solving hyperbolic
equations; and finally, for simple cases, the lattice Boltzmann
method sets time steps equal to the lattice spacing, i.e., space
and time scale linearly. Therefore, the present work is just the
beginning of a new way of solving the Einstein equation and
opens up the door for further research in numerical relativity.

This paper first gives an introduction to numerical relativity
and the theory of the specific formulation of the Einstein
equations that we have chosen. The lattice Boltzmann method
is introduced in the next section. Afterwards, the validation
tests are described, and their results using our numerical
method are analyzed. In the last section, we summarize our
work and discuss possible outlooks.

II. THEORY

Einstein equations are ten coupled second-order nonlinear
differential equations that, in their most compact form, are
given by

Rαβ − 1
2gαβR = Tαβ, (1)

where Tαβ is the energy-momentum tensor, gαβ the four metric
and Rαβ the Ricci tensor defined as

Rαβ = ∂ρ�
ρ
αβ − ∂β�ρ

αρ + �
ρ
λρ�

λ
αβ − �

ρ
λβ�λ

αρ, (2)

with �
ρ
αβ the Christoffel symbols,

�
ρ
αβ = 1

2gρλ(∂αgβλ + ∂βgαλ − ∂λgαβ). (3)

We use Einstein summation convention throughout the paper
and the Greek letters indicate summation over four dimensions,
while the Latin letters indicate summation over the three spatial
components. Einstein equations, Eq. (1), in their expanded

forms possess very complex shapes and several formalisms
are used to ease their solutions.

A. 3+1 Arnowit Deser Misner formalism

The ADM formalism of Einstein equations was first
introduced through Hamiltonian framework of general rela-
tivity [26,27]. Here, we obtain the ADM formalism with a
slightly different construction, as described below. The 3 + 1
decomposition of Einstein equations lets us find a solution
for the four-metric in different hyperspaces, and is given as
follows:

ds2 = αdt2 − γij (dxi + βidt)(dxj + βjdt), (4)

where α and βi are describing the evolution of hyperspaces
in the four-dimensional space, and the hyperspaces (also
called slices) are associated with a certain three-metric γij .
The construction of these geometric objects is given by the
following scheme: we construct three-dimensional spaces
with the three-metric γij and find the normal vector to these
spaces, which in contravariant and covariant forms are equal
to (1/α,βi/α) and (α,0,0,0), respectively. At every time step
we need a variable that describes the evolution of γij , which is
given by the extrinsic curvature Kij , which is the projection of
the curvature to the normal vector onto the three spaces. Due
to the symmetry of γij (thus Kij ) we arrive to six differential
equations describing the evolution of the system. Note that
other four degrees of freedom are still left, as we are dealing
with ten differential equations. These degrees of freedom are
covered by the constraint equations, which are energy and
momentum conservation. Finally, the ADM equations and
constraints are given by the following equations:

(∂t − Lβ)γij = −2αKij , (5)

(∂t − Lβ)Kij

= −αi;j + α
[
R

(3)
ij − 2KimKm

j + tr(K)Kij − R
(4)
ij

]
, (6)

R(3) − tr(K2) + tr(K)2 − 2α2G00 = 0, (7)

K
j

i;j − ∂i[tr(K)] − αG0
i = 0, (8)

where Lβ corresponds to the Lie derivative along the vector β,
Gαβ the energy momentum tensor, and R

(4)
ij is the projection

of the four Ricci tensor on the three-dimensional space.
These equations correspond to one representation of the
Einstein equations. As we will see later, there can be other
formulations. Indeed, all physical solutions of the equations
match, even if the formulations may not have the same
mathematical structure. The physical solutions are known to be
the solutions belonging to the “constrained space.” However,
the mathematical differences may increase or decrease the
stability of numerical schemes. These two equations can be
evolved in two different ways. The first one is letting the system
evolve freely and monitor the constraints (“free evolution”),
and the second one is solving the constraint equations for each
time step for some of the variables and make sure that they are
fulfilled (“constrained evolution”). It must be pointed out that
the 3 + 1 decomposition does not lead to an evolution equation
for the slicing α and the shift βi . So we have four additional
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degrees of freedom, which we can exploit to improve stability
in different systems. Thus, we can formulate

(∂t − Lβ)α = −α2Q, (9)

(∂t − Lβ)βi = −αQi, (10)

where Q and Qi are gauge functions.

1. Z4 formulation

While there are many ways to solve Einstein equations
numerically, the following methods are the most popular
ones: BSSNOK (Baumgarte, Shapiro, Shibata, Nakamura,
Oohara, Kojima), generalized harmonics, and conformal Z4
formalisms [26]. While ADM tries to solve the equations
directly, BSSNOK makes use of conformal mappings and
increases the stability of the evolution as conformal vari-
ables are evolved. Both formalisms are solved mainly by
finite-difference methods. In this work, we will use a third
method known as Z4 formalism, which is an extension of
the Bona-Masso formalism [13–16,28,29]. It consists in a set
of first-order flux conservative hyperbolic equations that are
equivalent to Einstein equations. We have seen that Einstein
equations, within the ADM formalism, are first order in time
derivatives but second order in space derivatives. The Bona-
Masso formalism introduces the following space derivatives
to obtain first-order differential equations,

Ak = ∂k ln(α), Bi
k = ∂kβ

i, Dkij = ∂kγij /2, (11)

and the Z4 formulation introduces the following dynamical
variable Zα = (θ,Zi) to the Einstein equations,

Rαβ + ∇αZβ + ∇βZα − 1
2gαβR = Tαβ. (12)

Note that while in the ADM formalism, energy and momentum
conservation equations are solved separately, the evolution
equation for Zα allows us to implement those conservation
constraints by ensuring Zα = 0.

B. Z4 evolution equations

Considering the Einstein evolution system, the Z4 equations
are given by the following equations:

1. Slicing

∂tα = α(βrAr − αQ). (13)

2. Shift

∂tβ
i = (

βrB i
r − αQi

)
. (14)

3. Three metric

∂tγij = 2βrDrij − 2α(Kij − sij ), (15)

sij = Bij + Bji

2α
. (16)

4. Extrinsic curvature

∂tKij + ∂r

( − βrKij + αλr
ij

) = αSij , (17)

λk
ij = Dk

ij + 1
2δk

i

(
Aj + 2Vj − D r

jr

)
+ 1

2δk
j

(
Ai + 2Vi − D r

ir

)
, (18)

Sij = −2Kk
i Kkj + trKKij − 2θKij

+ 2

α

[
KirB

r
j + KjrB

r
i − Kij tr(B)

] + 2D r
ik Dk

rj

+ 2D r
jkD

k
ri − �k

ri�
r
kj − 2D r

rk

(
D k

ij + D k
ji

) + AkD
k
ij

− (
AjD

r
ri + AiD

r
rj

) + 1

2

(
AjD

r
ir + AiD

r
jr

)
+ (

D r
kr + Ak − 2Zk

)
�k

ij − (AiZj + AjZi) − 8π (Gij

− γij

2
[tr(G) − α2G00)]. (19)

5. Extensions to the model

∂tZk + ∂r

(−βrZk + α
{
δr
k[tr(K) − θ ] − Kr

k

})
= �k = α

{−8παG0
k − Ar

[
Kr

k − tr(K)δr
k + 2θ

]
−Kj

r �r
jk + Kr

k

(
D

j

rj − 2Zr

)} − Zktr(B) + ZrB
k

i ,

(20)

∂tθ + ∂r (−βrθ + αV r )

=  = −θ tr(B) + α

2

[−16πα3G00

− 2Ar

(
Dr

kk − Dkr
k − 2Zr

) + D rs
k �k

rs

−Dk
rr

(
D s

ks − 2Zk

) − Kk
r Kkr + tr(K)2 − 2θ tr(K)

]
.

(21)

6. First-order derivatives

Ak = ∂k ln(α), B
j

i = ∂iβ
j , Dkij = ∂kγij /2, (22)

where R
(4)
ij are the space components of the four-dimensional

Ricci tensor and Vi is the Bona Masso variable defined as
Vi = D r

ir − D r
ri − Zi . Although in the original formulation

of Bona-Masso equations, Ai , B
j

i , and Dijk are considered
independent variables with their own respective evolution
equations, we have evolved the slicing and the metric first
and then taken the derivatives. During the simulations we
observed that, if they are evolved independently, then the
derivative of the slicing (the metric) does not match with Ai

(Bj

i , Dijk), which leads to errors. Therefore, we will calculate
them directly through α, βi , and γij . It must be noted that the
variables (Ai , B

j

i , Dijk) obtained through differentiation are
kept in flux conservative form up to a precision determined by
the numerical diffusivity η. Thus, smaller values of numerical
diffusivity lead to an evolution for these quantities that is closer
to the flux conservative form, and for the special case of η = 0,
this form is recovered precisely. This can also be observed in
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our simulations where for smaller numerical diffusivities the
accuracy of our results gets better. Indeed, the model could be
improved including separate equations for the fields Ai , B

j

i ,
and Dijk to decrease as much as possible this inaccuracy, and
it will be a subject of future work.

C. Gauge choices

The 3 + 1 formulation does not define slice and lapse
evolution uniquely, which gives us a freedom to choose the
appropriate slicing and lapse depending on the system. The
simplest slicing would be the geodesic slicing, Q = 0, and
lapse, Qi = 0, where the time components of the four metric
stays constant throughout the simulation. However, in some
situations this slicing or lapse fails to support the stability of
the program, as the evolution of the metric is coupled to it.
For example, geodesic slicing yields the so-called geodesic
focusing problem, where the volume element goes to zero in
a finite time in the presence of massive objects, thus leading
to numerically unstable algorithms [7]. Other examples for
slicings are the maximal slicing tr(K) = 0, harmonic slicing
Q = tr(K) − 2θ , and “1 + log” slicing Q = tr(K)/α. The
maximal and 1 + log slicings are also known as singularity
avoiding slicings [26] because they collapse the time evolution
close to the singularity. The harmonic slicing corresponds to a
slicing where α fulfills the wave equation (∂2

t − ∂2
x )α = 0 [30].

In the following tests we only use the geodesic and harmonic
slicings and lapses.

The tests have periodic boundary conditions. We will avoid
tests that include other boundary conditions, e.g., “single
Schwarzschild black holes,” since they are very challenging
and will need further extensions to our work.

III. LATTICE BOLTZMANN MODEL

The lattice Boltzmann Method can be used to simulate
fluids or solve partial differential equations in the form of
conservation laws [31]. We start with the discrete Boltzmann
equation for the distribution functions, fλ,

fλ(x + vλδt,t + δt) − fλ(x,t) = −fλ(x,t) − f
eq
λ (x,t)

τ/δt
, (23)

where τ is the relaxation time, and λ denotes the discrete
velocities {vλ}λ∈N . Here, we use the Bhatnagar-Gross-Krook
(BGK) approximation [31], which is a small amplitude
approximation for the collision term of the Boltzmann equation
[right-hand side of Eq. (23)]. For an ideal gas, one can take
f eq as the Maxwell-Boltzmann (MB) distribution, expanded
in orthogonal polynomials, and recover the Navier-Stokes
equations [32]. The macroscopic fields are given by the
relations

ρ =
∑

λ

f λ, ρui =
∑

λ

vλif
λ, (24)

which, for the case of fluid dynamics, ρ and ρui are the
mass and momentum densities, respectively. The lattices
are described by their dimensionality (D) and amount of
discrete velocity vectors (Q). An n-dimensional lattice with
m velocities is denoted by DnQm. Here, we will use D2Q9
and D3Q19 for two and three dimensions, respectively. The

FIG. 1. D2Q9 lattice configuration vectors. The thickness of the
arrows represent the weights. The dark-red point in the middle denotes
the (0,0,0) vector.

D2Q9 lattice configuration is given by

(v0,v1,2,v3,4,v5,6,v7,8) =
(

0 ±1 0 ±1 ±1

0 0 ±1 ∓1 ±1

)
, (25)

where the weights are defined by w0 = 4
9 , w1,2,3,4 = 1

9 ,
w5,6,7,8 = 1

36 , and the lattice speed of sound is given by
vs = 1√

3
(see Fig. 1). On the other hand, the D3Q19 lattice

configuration is given by⎛
⎜⎝

0 ±1 0 0 ±1 ±1 ±1 ±1 0 0

0 0 ±1 0 ∓1 ±1 0 0 ±1 ±1

0 0 0 ±1 0 0 ∓1 ±1 ∓1 ±1

⎞
⎟⎠, (26)

with weights w0 = 1
3 , w1,2,3,4,5,6 = 1

18 , w�7 = 1
36 , and vs =

1√
3
. Both lattices are accurate up to second order, which means

that one can recover the moments of the distribution up to
second order [33].

The discrete Boltzmann equation with a source term
distribution Sλ(x,t) is given by [34]

fλ(x + vλδt,t + δt) − fλ(x,t)

= −fλ(x,t) − f
eq
λ (x,t)

τ/δt
+ δt Sλ(x,t). (27)

This equation describes the evolution of the distribution func-
tions. We calculate the equilibrium and source distributions
for each component of α, βi , γij , θ , Zi , and Kij , such that the
correct moments of the equilibrium distribution are satisfied,
and consequently, the right macroscopic differential equations
are recovered. Thus, one gets

αf
eq
λ = wλα, (28)

βf
i,eq
λ = wλβ

i, (29)

γ f
eq
ijλ = wλγij , (30)

Zf
eq
iλ = wλ

[
Zi

(
1 − vr

λ

{
βr + αδr

i [tr(K) − θ ] − Kr
i

}
v2

s vl

)]
,

(31)

θf
eq
λ = wλ

{
θ − vk

λ

[
θβk − α

(
D r

kr − D r
rk − Zk

)]
v2

s vl

}
, (32)
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Kf
eq
ijλ = wλ

[
Kij

(
1 − vk

λβ
k

v2
s vl

)
+ αvm

λ λm
ij

v2
s vl

]
, (33)

αSλ = wλα(βrAr − αQ)

(
2 − v2

λ

v2
s

)
, (34)

βSi
λ = wλ(βrB i

r − αQi)

(
2 − v2

λ

v2
s

)
, (35)

γ Sijλ = wλ[2βrDrij − 2α(Kij − sij )]

(
2 − v2

λ

v2
s

)
, (36)

ZSiλ = wλ�i

(
2 − v2

λ

v2
s

)
, (37)

θSλ = wλ

(
2 − v2

λ

v2
s

)
, (38)

KSijλ = wλαSij

(
2 − v2

λ

v2
s

)
, (39)

where the symbol ∗ at the left of the distribution and source
term, ∗f and ∗S, denotes the field to which f and S are
associated and vl ≡ δr/δt . The macroscopic variables of
concern are calculated by

ρ∗ =
∑

λ

∗f λ, (40)

where ρ∗ stands for (α, βi , γij , θ , Zi , Kij ). By performing
the Chapman-Enskog expansion [34,35], one can show that
the distributions and source terms recover the Z4 formulation
of Einstein equations to the first order in Knudsen num-
ber [34,35]. One last remark is that we could fix the second-
order moment of the equilibrium distributions to zero, but this
decreases the stability of the system for two reasons: first, the
equilibrium distribution can become easier negative, which
violates the H-theorem leading to an unstable evolution of the
system; and second, it suppresses the numerical diffusivity,
which decreases the stability of the system. However, we do
fix the second-order moment of the sources equal to zero, such
that any spurious effect vanishes.

It is worth to mention that the lattice Boltzmann algorithm
has been successfully used to study fluid dynamics as an
alternative to standard solvers, such as finite volume and finite
differences. Although each technique has its own advantages
depending on the complexity of the problem, it has been found
that by increasing the complexity of the underlying geometry,
to keep the same accuracy, the lattice Boltzmann algorithm can
perform more efficiently than finite-volume methods [36,37].
In fact, in terms of parallel computing, for simple geometries,
finite volumes is better, while for more complex ones, there is
a breaking point where lattice Boltzmann becomes faster [37].
Additionally, for time-independent problems it is expected
that finite-volume methods consume less computational time;
however, for time-dependent simulations lattice Boltzmann
methods were found to be more efficient for the case of
transport through disorder media [38]. Thus, although the
advantages of lattice Boltzmann against other numerical
methods are not clear for the case of numerical relativity, our
model presents promising features that need to be explored in
the future.

Finishing with the model description, now we will study
some well-established examples in order to validate and
characterize the method.

IV. TESTS AND RESULTS

In order to validate our model, we will perform the six
numerical tests described in the Introduction. Four tests are
on flat spacetime: Expansion of flat universe, robust stability,
gauge wave, and shifted gauge wave. Finally, the last two tests
correspond to curved spacetime in vacuum, namely, the linear
and polarized Gowdy wave tests for weak and strong curvature,
respectively. A discussion on the errors of the simulations is
presented in Sec. V.

A. Expansion of flat universe

In this case, the spatial part of the energy-momentum tensor,
Gij , considering an ideal fluid, is given by

G00 = ρ(t)c2, Gij = P (t)γij , (41)

where ρ(t) and P (t) are the density and pressure of the fluid,
respectively. By solving Einstein equations for this system one
obtains the Friedmann equations [39] (also knows as FLRW
metric), which are

ȧ2 + kc2

a2
= 9πGρ + �c2

3
, (42)

ä

a
= −4πG

3

(
ρ + 3P

c2

)
+ �c2

3
, (43)

where a is a quantity that determines the metric,

γij = a(t)2δij = t
2
3 δij , (44)

and

P (t) = 1

3t2
. (45)

For an ideal gas with equation of state P = ρ (assuming c2 =
8πG = 1). The simulation ran using a D3Q19 lattice with
δt = δr = 0.001, and a relaxation time τ/δt = 3 (all values
are given in numerical units). The results can be observed
in Figs. 2 and 3. We have used a lattice of 4 × 4 × 4 cells
due to the fact that the lattice size does not matter due to
isotropy and homogeneity of the problem, i.e., the expansion
is the same at every position. In Figs. 2 and 3, we observe
excellent agreement between the results of our simulation and
the theory, showing that the universe expands following the
Friedmann equations.

B. Robust stability analysis

In the robust stability analysis, the ability of the method to
handle errors is tested. The errors ε introduced into the dynam-
ical fields are in the range ε ∈ [−10−10/256,10−10/256), and
τ/δt is chosen to be 4.5, δr = δt = 0.00125. The evolution
of the second fundamental form for three different resolutions
and for three different δr/δt = vl ratios are given in Fig. 4.
As the second fundamental form should be zero, the deviation
from 0 can be interpreted as an error. We see that while for
vl = 1 the error increases exponentially, an increase in vl leads
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4

4.5

5

Time Step

γ xx

Simulation
Analytic

FIG. 2. Time evolution of a single component of the metric tensor
for an expanding universe. The metric starts from unity and evolves
according to the time dependence given in Eq. (44). The lattice size
and spacing are irrelevant factors due to isotropy and flatness.

to an improvement in stability. It must be underlined that in
the apples with apples tests, the equivalent of vl is set equal to
either 2 or 4.

C. Gauge wave

In this test, the metric tensor is given by

ds2 = gαβdxαdxβ = −Hdt2 + Hdx2 + dy2 + dz2, (46)

where H = H (x − t) = 1 − A sin ( 2π(x−t)
d

) with d the wave-
length of the gauge wave, which in our case is set to unity,
and its amplitude to A = 10−3. The extrinsic curvature can be
calculated by directly taking the time derivative of the three

0 1 2 3 4 5
x 10

4

−0.34

−0.32

−0.3
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−0.26
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−0.14

Time Step

K
xx

Simulation
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FIG. 3. Single component of the second fundamental form, Kxx ,
for an expanding universe. This fundamental form describes the time
derivative of the metric via K(t) = −ȧ(t)/2.
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v

l
 = 1.3

v
l
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FIG. 4. We present the evolution of Kxx . Analytically, Kxx is
expected to be zero, so its deviation from this value can be used as a
measure of the error.

metric and dividing by −2α,

Kxx = −πA

d

cos
( 2π(x−t)

d

)
√

H
, Kij = 0. (47)

It can be checked by Eq. (6) that the extrinsic curvature also
evolves with the time derivative of this expression. The time
evolution of α is given by

∂tα = −α2Q ⇒ Q = tr(K) − 2θ. (48)

Here, we have chosen the harmonic slicing because we want
α = √

H to propagate also as a wave and the harmonic
slicing provides a wave-like evolution to α, while keeping
the evolution of the quantity H consistent with the evolution
of the three metric. If the evolution of α and γ do not lead to
the same equations for H , then the respective time derivatives
of the extrinsic curvature do not match. The results, using
τ/δt = 4.5, are presented in Figs. 5, 6, and 7. We see again
that they are in good agreement within a relative error of 1%.
The simulations ran using a D2Q9 lattice configuration, where
we have redefined the spatial coordinate x → xr and keep x for
the positions in the lattice, being xr = −400δr + (x − 1/2)δr ,
and δt = δr = 0.00125.

D. Linear wave

In this test, we set the following metric tensor,

ds2 = gαβdxαdxβ

= −dt2 + dx2 + (1 + b)dy2 + (1 − b)dz2, (49)

where b = A sin ( 2π(x−t)
d

) and d is the system size as above.
The extrinsic curvature can be calculated directly by taking
the time derivative of the three metric and dividing by −2α,
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FIG. 5. The evolution of the xx component of the metric for the
propagation of a gauge wave is shown at three different times. Here,
t denotes the numerical time step. We see that the simulation deviates
slightly from the analytical values, but the shapes are preserved and
the maximum (minimum) of the waves are on the same track. “Ana”
stands for analytical solution and “Sim” for simulation.

with α = 1,

Kyy = πA

d
cos

(
2π (x − t)

d

)
, (50)

Kzz = −πA

d
cos

(
2π (x − t)

d

)
. (51)

In this case, we take geodesic slicing Q = 0, which would
impose into the system the analytical evolution of α. As the
perturbation is traceless, geodesic slicing and harmonic slicing

0 200 400 600 800
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−3

−2

−1

0

1

2

3

4x 10
−3

x (in num. units)

K
xx

Initial
t = 500 − Sim
t = 500 − Ana
t = 1000 − Sim
t = 1000 − Ana

FIG. 6. The evolution of the second fundamental form for the
propagation of a gauge wave is shown at three different times. We see
a similar behavior to that of the metric. “Ana” stands for analytical
solution and “Sim” for simulation.

0 200 400 600 800
−6

−4
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4

6x 10
−4
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α 
−

1
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t = 500 − Ana
t = 1000 − Sim
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FIG. 7. The evolution of α (t t component of the metric) for the
propagation of the gauge wave is shown at three different times. Here,
we observe again a similar behavior to that of the metric. “Ana” stands
for analytical solution and “Sim” for simulation.

are identical gauges. The amplitude is chosen as A = 10−5.
For this simulation, we use a D3Q19 lattice configuration,
τ/δt = 4.5, and the same values for x, t , and δt , δr , as before.
Note that the results are very similar to those for the gauge
wave, as expected (see Fig. 8).

E. Shifted gauge wave

For the shifted gauge wave, we have the following metric:

ds2 = −dt2 + dx2 + dy2 + dz2 + Hkαkβdxαdxβ, (52)

where kα = ∂α(t − x). It can be observed that this test involves
the x component of the shift in addition to the variables from
the earlier test for gauge wave. The solutions are given as the

0 200 400 600 800
−1.5

−1

−0.5

0

0.5

1

1.5x 10
−5

x (in num. units)

γ xx
−

1

Initial
t = 500 − Sim
t = 500 − Ana
t = 1000 − Sim
t = 1000 − Ana

FIG. 8. Evolution of the xx component of the metric for the
propagation of a linear wave at three different times t . Note that
the linear wave evolves similarly to the gauge wave.
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FIG. 9. The evolution of the x component of the shift for the
propagation of a shifted gauge wave is shown at three different times.
Here, t denotes the numerical time step. We see that the simulation
almost does not deviate from the analytical values. “Ana” stands for
analytical solution and “Sim” for simulation.

following:

α = 1√
1 + A sin

[ 2π(x−t)
d

] , (53)

βx = −A sin
[ 2π(x−t)

d

]
1 + A sin

[ 2π(x−t)
d

] , (54)

γxx = 1 + A sin

[
2π (x − t)

d

]
, (55)

Kxx = −πA
d

cos
[ 2π(x−t)

d

]
√

1 + A sin
[ 2π(x−t)

d

] . (56)

Here, we choose harmonic slicing and lapse, Qi = α(Ai +
Dir

r − 2D ir
r − 2Zi), for the evolution of the shifted gauge

wave, vl = 1.5 and τ/δt = 1. The results for βx is given in
Fig. 9. We observe better accuracy in the shifted gauge wave
test than for the gauge wave test.

F. Polarized Gowdy wave

The polarized Gowdy wave is a plane polarized gravi-
tational wave in an expanding toroidal universe. While the
previous tests involve very small curvature, the Gowdy wave
presents a highly curved case. It can be described by the
following metric:

ds2 = gαβdxαdxβ

= −t−
1
2 e

λ
2 (dt2 + dz2) + teP dx2 + te−P dy2, (57)

where λ and P are functions of z and t and periodic in z. The
solutions for P and λ are given by

P = J0(2πt) cos(2πz), (58)

0 100 200 300 400 500 600 700 800
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

x (in num. units)

γ xx

Initial
Ana. t = 100
δ r, t = 100
δ r /2, t = 100
Ana. t = 200
δ r , t = 200
δ r /2, t = 200

FIG. 10. The evolution of the xx component of the metric of a
Gowdy wave is shown at three different times t for two different
resolutions, δr = 0.00125 and δr/2. One can see that the simulation
improves with higher resolution.

where Jn is the nth Bessel function and

λ = −2πtJ0(2πt)J1(2πt) cos2(2πz) + 2π2t2[J 2
0 (2πt)

+ J 2
1 (2πt)] − 1

2

{
4π2

[
J 2

0 (2π ) + J 2
1 (2π )

]
− 2πJ0(2π )J0(2π )

}
. (59)

The results for the γxx are presented in Fig. 10. Here, τ/δt is 4.5
and dr = dt = 0.00125. While there is good agreement with
the analytical solutions in the first 100 time steps, for later times
we need to increase the resolution of the lattice to improve the
results. However, a small deviation in the wavelength still
remains.

V. ANALYSIS AND SIMULATION ERRORS

In this section, we analyze the errors of the performed
simulations of the previous section. The tests will be analyzed
in groups with the corresponding errors.

A. Errors in the validation tests

The gauge and linear waves show very similar behavior in
our simulations. The evolution of the gauge wave is expected
to have a finite lifetime that can be increased by improving the
spatial resolution. This numerical instability is due to emerging
singularities that are caused by the inaccuracy of the numerical
calculations. As mentioned in Ref. [24], such system with T3

topology must have a singularity in the future or in the past
and the effect of an instability must show itself at some time
during the simulation. Our simulation ran for almost 2 × 103

time steps till the relative error exceeds 10%. Compared to
the well-developed methods of ADM and BSSNOK with the
use of Cactus or other numerical solvers, which can handle
much more time steps, our model needs improvements. This
error introduced by the lattice Boltzmann model is due to the
fact that singularities possess large gradients in the geometric
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variables and they lead to negative equilibrium distribution
functions, and consequently, to numerical instabilities. Thus,
we can expect that by ensuring the H-theorem, i.e., introducing
an entropic lattice Boltzmann model [40,41], one can improve
drastically the model keeping its simplicity.

B. Relaxation time τ , numerical diffusivity η and δr/δ t = vl

Our lattice Boltzmann model has three parameters that
can be adjusted, namely the relaxation time τ , the numerical
diffusivity η, and the ratio of lattice distance to time steps vl .
While τ is a characteristic parameter of any lattice Boltzmann
scheme and determines the diffusivity, vl is an unusual addition
to this model, which can be used to adjust the stability and
accuracy of our simulations. The relaxation time τ is related
to the numerical diffusivity through

η =
(

τ − δt

2

)
v2

s v
2
l . (60)

For the above tests, τ/δt varies between 2.5 and 5.25, and
consequently, η takes values between 0.00083̄ and 0.002083̄.
We see that as the relaxation time increases, the stability of the
system also increases (see inset of Fig. 11), while the errors
become larger (see Fig. 11). For instance, we observe that
while τ/δt = 2.5 leads to numerical instabilities quicker than
τ/δt = 4.5, it also introduces a less mean relative error into the
system. Indeed, further tests show that there is an optimal value
of τ for which the error introduced by the model is less while
the stability is better. For instance, for the case of gravitational
waves, τ/δt = 4.5 is the optimal relaxation time.

Note that Eq. (60) states that by increasing the relaxation
time, the numerical diffusivity also increases for a fixed δt =
δx. However, one can also fix the numerical diffusivity while
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FIG. 11. Mean relative error of γxx for the propagation of
gravitational waves at the first 500 time steps. For higher relaxation
time the accuracy gets worse. However, it can be seen, in the inset, that
the lifetime of the simulation increases with increasing the relaxation
time (numerical diffusivity).
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FIG. 12. Main frame: relative error of the metric for the propaga-
tion of gauge waves at different time steps for different resolutions.
Here, we have kept constant the numerical diffusivity, η = 0.0016̄.
The errors strongly depend on the lattice spacing, and finer lattices
lead to longer simulation time. Inset: we see that with finer lattices
the relative error introduced at time step 400 δt decreases as a power
law showing convergency.

changing independently the relaxation time. Thus, in a second
test (see Fig. 12) we study the behavior of the error when
one increases the relaxation time and decreases the lattice
spacing, such that the numerical diffusivity remains constant.
We observe that the simulation lasts about 50% longer for
the same accuracy. Therefore, we conclude that the numerical
diffusivity tunes the accuracy, while the relaxation time the
stability of the model. Additionally, the inset of Fig. 12 shows
that the error decreases linearly with the lattice spacing (at
time t = 400δt), concluding that our model converges to the
analytical solution when lattice spacing is decreased.

As mentioned in the previous subsection, negative equilib-
rium distribution functions play an important role in terms of
numerical stability. This problem usually rises when the first
order moment of the distribution becomes large, and vl is a
parameter that one can freely choose to diminish its effects
[see Eqs. (31)–(33)]. On the other hand, the parameter vl also
fix the integration time step when the spatial resolution is kept
constant. The effect of vl is shown in the robust stability test
(Fig. 4), where one can see that by increasing vl , the error
production decreases strongly (smaller integration time step).
Also in other tests, it was also observed that by increasing vl

the system becomes more stable.

VI. PARALLELIZATION OF THE CODE

Our code has been parallelized with OpenMP and tested
with 1–24 cores. The results are given in the Fig. 13. The linear
decrease in total computational time with respect to number
of cores shows that our model is optimal for parallelization.
Other more sophisticated implementations as MPI and CUDA,
for GPUs, will be a subject of future works.
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FIG. 13. Computational time as a function of the number of CPU
cores. Here we observe that the computational time falls rapidly with
increasing the number of CPU cores and is fitted very well by an
inverse linear function.

VII. CONCLUSIONS

In summary, we have developed a lattice Boltzmann model
for solving Einstein equations, using the Z4 formalism. We
have validated our model with the well-established apples with

apples tests. The expansion of a flat universe was recovered
accurately and the wave tests showed good agreement with
the analytical solutions. The role of the relaxation time and
the numerical diffusivity was also studied finding that they
are crucial in determining the stability and accuracy of the
model. In particular, we have observed that the system gains
stability (accuracy) by increasing (decreasing) the relaxation
time, and therefore, an optimal value, which compromises
both, can be found. More precisely, the numerical diffusivity
tunes the accuracy while the relaxation time the stability of the
model.

In addition to the validation tests, the inverse linear
dependence of computational time with respect to the number
of CPU cores was demonstrated, which is a major strength of
lattice Boltzmann methods. It must be clearly underlined that
with further work on this model, e.g., entropic extensions,
the lattice Boltzmann method might offer new numerical
advantages to numerical relativity.
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J. Towns, Phys. Rev. D 52, 2059 (1995).
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