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Temperature relaxation in dense plasmas
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We present a model to calculate temperature-relaxation rates in dense plasmas. The electron-ion interaction
potential and the thermodynamic data of interest are provided by an average-atom model. This approach allows
the study of the temperature relaxation in a two-temperature electron-ion system.
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I. INTRODUCTION

In inertial confinement fusion (ICF), the ions of the
high-temperature plasma undergo fusion reactions to produce
α particles. These particles exchange their energy with the
electrons and the ions of the surrounding environment but at
different rates due to the mass difference between electrons
and ions. This causes a difference between electron and ion
temperatures that drives energy exchange between the two
subsystems in order to reach an equilibration temperature.
This electron-ion temperature relaxation is one of the key
processes that should be described with care in order to capture
the ignition phenomenon of a thermonuclear plasma [1–3].
This task is challenging due to the complex physical regimes
encountered in which quantum and correlation effects come to
play. These physical regimes span the warm dense matter or
high energy density physics regimes.

Since the seminal works of Landau [4] and Spitzer [5] on
classical and weakly coupled plasmas, various developments
can be found in the literature to study the temperature
relaxation in dense plasmas [6–32]. When people attempt to
calculate the temperature-relaxation rates, they usually assume
that the electrons and ions interact weakly. This allows that
each subsystem can be described by a temperature Te for the
electrons and Ti for the ions. In the parameter-free calculations,
mixtures are usually avoided.

In this paper, we propose to use the model of Daligault
and Dimonte [23] to calculate the electron-ion temperature-
relaxation rates in dense plasmas including self-consistently
the effects of screening and electron degeneracy but neglecting
correlations between electrons and ions. The average-atom
model SCAALP [33,34] is used to calculate the electron-ion
interaction potential and the average ionization. The original
model SCAALP has been modified to take into account
the fact that Te �= Ti . Comparisons with molecular dynamics
simulations are done to test the accuracy of the relaxation rates.
The paper is organized as follows. The model is presented in
a theoretical part. Then, numerical calculations are shown for
dense hydrogen and carbon plasmas. The role of ionization is
outlined as well as the thermodynamic state at equilibration.
The last part is the conclusion.

II. THEORY

A. SCAALP model

The SCAALP model [33,34] is based on a variational
approach to describe the thermodynamic and transport prop-
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erties of warm and hot dense matter in local thermodynamic
equilibrium. The electronic and ionic structures are determined
self-consistently using an average-atom approach based on the
finite-temperature density-functional theory and the Gibbs-
Bogolyubov inequality. In the SCAALP model, the plasma is
viewed as an effective medium of neutral pseudoatoms (NPAs)
interacting via an interatomic potential �eff (r). Electrons
of the NPA satisfy a Schrödinger equation with a central
symmetric potential Veff (r). These two effective potentials are
determined by the electronic structure and ionic distribution of
the plasma. Polarization, exchange, and correlation effects are
taken into account within both Veff (r) and �eff (r). We use
a finite-temperature exchange and correlation functional [35].
We can describe the ionic subsystem using either the hard-
sphere (HS) system or an effective one-component plasma
(OCP) [36]. In both cases, the effective parameter of the ionic
subsystem is derived from the Gibbs-Bogolyubov inequality.
The best electron density n(r) of the NPA is also found
using the Gibbs-Bogolyubov inequality, leading to a tractable
expression for Veff (r) from which n(r) is calculated [37]. The
chemical potential μ is determined such that∫ RWS

0
4πr2n(r)dr = Z, (1)

where Z is the nuclear charge of the element and RWS is
the Wigner-Seitz radius. RWS is related to the ion density Ni

through the equation 4πR3
WSNi/3 = 1. The average ionization

Z̄ is calculated [38] by the formula Z̄ = n(RWS)/Ni , from
which one can deduce the electron density Ne = Z̄Ni . The
free energy Ftot of the ion and electron system is minimized
with respect to the electron density and the effective parameter
of the ionic subsystem. By construction, the SCAALP model
is thermodynamically consistent. One can calculate equation
of state data from the free energy [39] as well as various
electron and ion transport coefficients and stopping power [34],
opacity [40], or x-ray Thomson scattering spectra [37,41]. This
model is strictly speaking limited to the case for which Te = Ti .
We have modified the SCAALP model to describe situations
in which the electron and ion temperatures are different. We
choose to describe the ionic environment with an OCP system
with a plasma coupling parameter such that

�ii = Z̄2e2

RWSkBTi

, (2)

where e is the elementary charge and kB is the Boltzmann
constant. There are still two loops to solve the SCAALP
equations, i.e., an external one on the �ii parameter that
describes the ionic structure and an internal one on the
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electronic structure. The system of equations when Te �= Ti

converges well. When the convergence is achieved, one has
data from the SCAALP model such as the average ionization
Z̄ or the electron-ion interaction-potential Vei(r) that depend
both on Te and Ti . Vei(r) is different from Veff (r) since this
potential depends explicitly on the pair correlation function but
not Vei(r) which is related to one NPA. This is an approximate
but powerful way to describe a two-temperature electron-ion
system. To be explicit [37,42], for r � RWS ,

Vei(r) = −Ze2

r
+ Vdir (r) + Vxc[n(r)] − Vxc[n(RWS)], (3)

where Vxc(r) is the exchange-correlation potential and Vdir (r)
is the direct potential that satisfies the Poisson equation

∇2Vdir = −4πe2n(r). (4)

For r > RWS , Vei(r) = 0. Veff (r) is calculated as follows, i.e.,

Veff (r) = Vei(r) + Ni

∫
Vei(r − r′)hOCP (r′,�ii)dr′ (5)

where hOCP (r,�ii) is the OCP pair correlation function
related to the pair distribution gOCP (r,�ii) by the identity
gOCP (r,�ii) = hOCP (r,�ii) + 1. We have included the cor-
relation effects since only the exchange terms appear in
the original Hartree-Fock formalism [33,34]. For simplicity
and numerical reasons, exchange and correlation effects are
calculated using the density functional theory in the local
density approximation. One can see that the spherically
symmetric effective potential Veff (r) is the sum of two
contributions, i.e., the NPA potential Vei(r) and the effect of
environment Ni

∫
Vei(r − r′)hOCP (r′,�ii)dr′. When we have

complete disorder, the pair distribution function is equal to 1
so the pair correlation function is equal to zero and Veff (r) =
Vei(r). We recover the usual average-atom model [37,42]. The
environment term can induce not-trivial dense-plasma effects
on the electronic structure of the average-atom model. The
NPA electron density n(r) is calculated as follows, i.e.:

n(r) =
∑

n

|ϕn(r)|2
1 + eβe(εn−μ)

, (6)

where the bound and free one-electron wave functions satisfy
the Schrödinger equation[

− �
2∇2

2me

+ Veff (r)

]
ϕn(r) = εnϕn(r). (7)

βe = 1/kBTe, me is the electron mass, and � is the reduced
Planck constant. One can see that the electron density depends
on Te but also on Ti through the environment term in Veff (r).
This explains why Vei(r) or Z̄ depend on both Te and Ti . We
insist on the fact that we do not need any free energy nor
GBI in the present approach. The SCAALP model contains no
adjustable parameters. The input parameters of the calculation
are nuclear charge of the element, the mass density, and the
electron and ion temperatures when we take into account the
fact that Te can be different from Ti . Note that we have not
developed a self-consistent treatment of a system with two
different temperatures from first principles. Instead of using
the SCAALP model with a fixed �ii , we write this parameter
as in Eq. (2) and perform calculations at fixed Ti . Since Z̄ must

be determined self-consistently, we have two loops instead of
simply one loop on the electronic structure when we perform
calculations at fixed �ii to describe Te �= Ti systems. The
treatment of Te �= Ti from first principles is a difficult topic
that deserves a particular study [43]. Finally, using an OCP
as in Eq. (2) to describe the ionic structure and combining it
with the NPA approach is clearly an approximation. It is an
option in the SCAALP model because the Gibbs-Bogolyubov
inequality is very robust, contrary to the (VM)HNC option [34]
that does not always converge. We use the HS and the OCP
systems because one has access relatively easily to the excess
free energy and to the pair distribution from one parameter, i.e.,
the HS packing fraction or the plasma coupling parameter. In
standard calculations, we prefer to use the HS system that is
more closely related to the notion of NPA. Yet, using the
OCP is the most natural way to introduce Te �= Ti in the
SCAALP model but it may not be so compatible with the
NPA approximation since the OCP is based on a long-range
potential that necessitates a neutralizing background. In the
NPA approximation, no such background is necessary since
we are working with neutral Wigner-Seitz cells. The effective
ion-ion potential �eff (r) is by construction short range since
it is zero when the radius is larger than two times the
Wigner-Seitz radius.

B. Electron-ion relaxation rate

When Te �= Ti , we have a flow of energy between the
electron and ion subsystems until equilibration is reached.
In that case, Te = Ti = Teq where Teq is the equilibration
temperature. The time variation of Te and Ti is usually
described by rate equations. Let us establish these equations
starting from the total energy density U of the system.
Considering only the kinetic energy, U reads [44,45]

U = 3
2NikBTi + Ue(Te,Ti), (8)

where

Ue(Te,Ti) = Z̄NikBTe

F3/2(η̃)

F1/2(η̃)
(9)

and

Z̄Ni =
√

2(mekBTe)3/2

π2�3
F1/2(η̃). (10)

We have introduced the Fermi-Dirac integral [46,47]

Fn(η) =
∫ +∞

0
dx

xn

1 + ex−η
(11)

that satisfies

F ′
n(η) = nFn−1(η). (12)

We make the distinction between η = μ/kBT e and η̃. In
practice, they are close to each other. The average ionization
Z̄ is a function of Te and Ti , hence Ue and η̃. Equation (10)
enables us to determine η̃ from Z̄. We insist on the fact that the
effective chemical potential η̃ defined by Eq. (10) is precisely
the usual reduced chemical potential of an ideal electron gas
with density Z̄Ni . Ions are classical particles whereas electrons
are treated as an ideal Fermi gas that can be degenerate or not.
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By definition,

d

dt

(
3

2
NikBTi

)
= −g(Ti − Te) (13)

and
d

dt
Ue(Te,Ti) = −g(Te − Ti). (14)

This system of equations ensures the conservation of the
energy U . The relaxation rate g is usually expressed in
W/m3 K. It can depend on Te and Ti . From this factor, one
can define a relaxation rate νie such that [20,23]

g = 3
2NiνiekB. (15)

To calculate νie, we use the model of Daligault and Di-
monte [23], i.e.,

dTi

dt
= −νie(Ti − Te), (16)

where the temperature relaxation rate reads

νie = − 1

3π2mi

∫ +∞

0
dkk4 | V̂ei(k) |2 ∂Imχ0

e (k,ω)

∂ω
|ω=0 .

(17)
mi is the atomic mass of the element. In this expression,

V̂ei(k) =
∫ RWS

0
4πr2Vei(r)

sin(kr)

kr
dr (18)

is the Fourier transform of the NPA electron-ion interaction
potential Vei(r) and χ0

e (k,ω) is the dynamic density response
function of the electron gas. χ0

e (k,ω) is related to the dynamic
dielectric function in the random phase approximation (RPA)
by

ε(k,ω) = 1 − 4πe2

k2
χ0

e (k,ω), (19)

where

χ0
e (k,ω) =

∫
f (p + �k/2) − f (p − �k/2)

�k.p/me − �ω − i0+
2dp

(2π�)3
. (20)

f (p) is the Fermi-Dirac distribution function

f (p) = 1

1 + exp
(
βe

p2

2me
− η̃

) . (21)

In atomic units, one has [23,37]

∂Imχ0
e (k,ω)

∂ω
|ω=0= − 1

2πk

1

1 + exp
(
βe

k2

8 − η̃
) . (22)

Screening cuts the divergence at small k and the Fermi-Dirac
factor makes the integral convergent at large k. Note that we do
not use analytical formulas to describe screening. We simply
use the electron-ion potential Vei , derived from n(r), that is
used to build the effective electron-ion potential Veff using the
pair distribution function [33,34]. This electron-ion potential
Vei is naturally screened since we take into account, in a
self-consistent way, the bound and free electrons that screen
the nuclear charge. This screening is nonlinear and can only be
calculated numerically by solving the SCAALP equations. In
the present approach, we have neglected electron-electron and
electron-ion correlations due to their difficult calculation in

dense plasmas. Our approach must be understood to be a first
step in the calculation of temperature-relaxation rates in dense
plasmas, the next step being the inclusion of electron-electron
and electron-ion correlations that can matter [23]. The main
advantage of the present approach is that νie can be calculated
using the RPA approximation and an average-atom model.
Doing so, we take into account self-consistently electron
degeneracy and screening. We assume weak electron-ion
coupling but possibly strong ion-ion coupling. Equation (17)
is valid when the ion-excitation spectrum lies well below
the electron-excitation spectrum and one uses the fluctuation-
dissipation theorem. One can see that the rate of temperature
relaxation does not depend on the details of the ionic
spectrum of excitations and depends only on the low-frequency
properties of the electronic spectrum of fluctuations. Even if
the screening can be nonlinear, Eq. (17) is indeed based on
the linear-response theory [9]. Note also that expression (17)
for νie is very similar to the collision frequency calculated
using the Born approximation [48] with the exception that
νie is purely real and that the ion mass appears instead of
the electron mass. To derive a rate equation for Te, one starts
from (14). One finds that

∂Ue

∂Te

dTe

dt
+ ∂Ue

∂Ti

dTi

dt
= −g(Te − Ti). (23)

From (9) and (10), one finds that

∂Ue

∂Te

= Z̄NikBCe(η̃) + 3NikBTe

∂Z̄

∂Te

F1/2(η̃)

F−1/2(η̃)
(24)

and

∂Ue

∂Ti

= 3NikBTe

∂Z̄

∂Ti

F1/2(η̃)

F−1/2(η̃)
, (25)

where

Ce(η̃) = 5

2

F3/2(η̃)

F1/2(η̃)
− 9

2

F1/2(η̃)

F−1/2(η̃)
. (26)

These expressions are valid at arbitrary degeneracy. For Te,
one has finally

dTe

dt
= −νei(Te − Ti), (27)

where

νei = νie

3
2 + 3Te

∂Z̄
∂Ti

F1/2(η̃)
F−1/2(η̃)

Z̄Ce(η̃) + 3Te
∂Z̄
∂Te

F1/2(η̃)
F−1/2(η̃)

. (28)

When the system is nondegenerate

Ce ≈ 3
2 (29)

and when Z̄ is constant, one has the reciprocity relation-
ship [21]

Z̄νei ≈ νie. (30)

In the general case, νei is not so simply related to νie. The
relationship between these two quantities reflects the fact that
Z̄ depends on both Te and Ti at fixed mass density. It ensures
also that the energy U is conserved during the relaxation
process.
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The rate equations (16) and (27) are solved starting from
initial temperatures T 0

e and T 0
i using an explicit scheme. In

practice, νie and Z̄ are calculated with the SCAALP model.
We have built a data table of quantities that depend on Te

and Ti at constant mass density. The two-dimensional (2D)
Chebychev polynomial interpolation [49] allows ourselves to
calculate the quantities of interest for any Te and Ti inside
the data table. In practice, we have tabulated Z̄ and νie. From
the properties of the Chebychev polynomials [49], one can
calculate ∂Z̄

∂Te
and ∂Z̄

∂Ti
from the tabulated values of Z̄. The fact

that Z̄ is usually not constant in dense plasmas complicates the
problem. Since our approach conserved the energy U , one can
find the equilibration temperature Teq by solving the equation

3
2NikBT 0

i + Ue

(
T 0

e ,T 0
i

)
= 3

2NikBTeq + Ue(Teq,Teq). (31)

From Teq , one can determine the thermodynamic conditions at
equilibration and check the accuracy of the numerical scheme
used to solve the rates equations (16) and (27).

In the present approach, we have neglected the electron-
electron and electron-ion correlations but also the ion-ion
correlations in Eq. (31). In order to describe these ion-ion
correlations, we characterize the ion subsystem by an effective
OCP with an effective parameter �ii . The time variation of Ti

is now given by(
1 + 2

3NikB

∂Uex
ii

∂Ti

)
dTi

dt
+

(
2

3NikB

∂Uex
ii

∂Te

)
dTe

dt

= −νie(Ti − Te) (32)

whereas (14) is unchanged. Introducing

αii = 2

3NikB

∂Uex
ii

∂Ti

(33)

and

αee = 2

3NikB

∂Uex
ii

∂Te

(34)

the rate equations including Uex
ii read now

dTi

dt
= −νie

(Ti − Te)

1 + αii

(
1 + αee

3
2NikB + 1

1+αii

∂Ue

∂Ti

∂Ue

∂Te
− αee

1+αii

∂Ue

∂Ti

)
(35)

and

dTe

dt
= −νie(Te − Ti)

3
2NikB + 1

1+αii

∂Ue

∂Ti

∂Ue

∂Te
− αee

1+αii

∂Ue

∂Ti

. (36)

∂Ue

∂Te
and ∂Ue

∂Ti
are given by Eqs. (24) and (25). The rate

equations (35) and (36) ensure the constancy of U + Uex
ii .

For instance, the equilibration temperature Teq satisfies the
equation

3
2NikBT 0

i + Uex
ii

(
T 0

e ,T 0
i

) + Ue(T 0
e ,T 0

i )

= 3
2NikBTeq + +Uex

ii (Teq,Teq) + Ue(Teq,Teq) (37)

when we include Uex
ii instead of (31). The ion excess energy

Uex
ii is given by

Uex
ii = N2

i

2

∫
dr

Z̄2e2

r
hOCP (r,�ii), (38)
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FIG. 1. Electronic densities in a carbon plasma at 2.25 g/cm3,
Te = 100 eV, and Ti = 10 eV. We plot the NPA electronic density
(solid line) as well as the bound (dashed line) and free (dash-dot line)
electronic densities.

where hOCP (r,�ii) is the pair correlation function of the OCP
at �ii . Here, Uex

ii is the excess internal energy per unit volume
of the OCP. To see the impact of the correction factor due to
ion-ion correlations, we have built a data table of the OCP
excess internal energy for �ii between 0 and 180 using the
Chebychev method [50]. The calculations were done using a
hypernetted chain code [51] with the bridge function proposed
by Iyetomi et al. [52]. The correction factor in (32) is expressed
as a function of Ti and �ii . The calculation of the derivative
with respect to �ii is done using the Chebychev method [49]
as well as the ones that appear in the calculation of ∂�ii/∂Ti .

What has been presented in so far in this section does not
depend too much on the SCAALP model with Te �= Ti . We
can use an average-atom model with Te = Ti or even no ionic
environment. The rate in Eq. (17) can be computed even in the
Thomas-Fermi approximation. Like Z̄, the rate will depend

0 5 10 15 20 25 30
r (a.u.)

-6

-5

-4

-3

-2

-1

0

1

r*Vei(r)
r*Veff(r)

FIG. 2. r × Vei(r) (solid line) and r × Veff (r) (dashed line) in a
carbon plasma at 2.25 g/cm3, Te = 100 eV, and Ti = 10 eV. Vei(r)
and Veff (r) are in atomic units.
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FIG. 3. Fourier transform V̂ei(k) of Vei(r) in a carbon plasma at
2.25 g/cm3, Te = 100 eV, and Ti = 10 eV.

only on Te. This simplifies Eq. (28) since ∂Z̄/∂Ti = 0. Of
course, some physics is missed with such an approach since
the rate equations (16) and (27) are less coupled. This may
impact the relaxation to equilibrium.

III. NUMERICAL APPLICATIONS

As a first application we consider a carbon plasma at solid
density ρ = 2.25 g/cm3 with Te = 100 eV and Ti = 10 eV.
We find that Z̄ = 4.17. We plot in Fig. 1 the NPA electronic
density, which is truncated in RWS = 2.43 a.u., and the bound
and free components. The bump near r = 0.18 a.u. is related
to the 1s orbital. We plot in Fig. 2 the two potentials Vei(r) and
Veff (r). As expected, Vei(r) = 0 when r > RWS . One can see
in this figure the effect of the environment taken into account
in Veff (r). The more structured the pair correlation function,
the more Veff (r) oscillates around zero. We plot in Fig. 3 the
Fourier transform V̂ei(k) of Vei(r). One can see that V̂ei(k) does
not diverge as 1/k2 at small wave number k due to screening.
For the cases considered in this work, the average ionization
depends weakly on Ti at fixed Te.

As a second application, we consider a hydrogen plasma.
We plot in Table I the plasmas parameters considered [20].
We give in Table II the relaxation rate g in W/m3 K for the
cases shown in Table I. We compare the SCAALP calcula-
tions with another average-atom model [53] (AA), Brown-
Preston-Singleton [11] (BPS), and Landau-Spitzer [4,5] (LS).
SCAALP and AA cases use Eqs. (17) and (15). One can see
that when the density is increasing, the relaxation rate g is
smaller than the other cases. This means that the relaxation

TABLE I. Hydrogen plasma configurations [20]. The ion density
Ni is in cm−3 and the electron and ion temperatures are in eV.

Symbol A B C D

Ni 2.4 × 1022 2.68 × 1023 7.59 × 1023 2.4 × 1025

Te 80 400 800 8000
Ti 100 500 1000 10000

TABLE II. Relaxation rate g in W/m3 K for the cases considered
in Table I. SCAALP calculations (SCAALP) are compared to
another average-atom model [53] (AA), Brown-Preston-
Singleton [11] (BPS), and Landau-Spitzer [4,5] (LS). AA,
BPS, and LS data are taken from Ref. [20].

A × 1017 B × 1018 C × 1018 D × 1020

MD 1.03 0.98 4.06
SCAALP 0.87 0.97 2.74 0.87
AA 0.88 1.40 4.62 1.74
BPS 1.53 1.94 5.79 2.14
LS 0.90 1.24 3.81 1.51

is longer with the SCAALP model. Compared to AA, the
difference comes from the calculation of the Fourier transform
of the electron-ion interaction potential Vei(r). Screening can
be important in the calculation of the relaxation rate. One may
also question the use of an average-atom model to describe a
hydrogen plasma. In principle, the average-atom model is more
sound to treat many-electron atoms in which the statistical
approximation really makes sense. As an illustration, we plot
in Fig. 4 the relaxation of Te and Ti starting from T 0

e = 30 eV
and T 0

i = 60 eV for Ni = 1022 cm−3 (case D of Ref. [19]).
Molecular dynamics simulations (MD) [28] are compared to
SCAALP calculations (SCAALP) and the Gericke-Murillo-
Schlanges model (GMS) [10]. The MD simulations were
carried out treating the electrons and ions classically and using
semiclassical potentials as in MD simulations of Ref. [19]. No
recombination or ionization processes were taken into account,
as in Refs. [54,55]. Compared to MD, SCAALP (GMS)
relaxation is longer (shorter). Since the average ionization is
slightly different from 1, the equilibration temperature for the
SCAALP case is different from 45 eV. At the equilibration
estimated reached after 20 ps, Teq = 44.96 eV, Z̄eq = 0.97,
and geq = 3.63 × 1016 W/m3 K. The fact that Z̄ �= 1 during
the relaxation process makes the curves not symmetric with
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FIG. 4. Relaxation of Te and Ti starting from T 0
e = 30 eV and

T 0
i = 60 eV for a hydrogen plasma at Ni = 1022 cm−3. Molecular

dynamics simulations (MD) are compared to SCAALP calculations
(SCAALP) and the model of Gericke-Murillo-Schlanges (GMS) [10].
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FIG. 5. Relaxation of Te and Ti starting from T 0
e = 300 eV and

T 0
i = 100 eV for a carbon plasma at ρ = 2.25 g/cm3 using the

SCAALP model.

respect to the line T = Teq . In the present case, the fact that
Z̄ �= 1 has a negligible impact on the relaxation time. Knowing
the approximations involved in our approach, one can say that
the agreement with MD simulations is good. In the present
case, note that GMS is in better agreement with MD data than
BPS [11] or LS [4,5].

As a third application, we consider solid-density carbon
plasmas. As an example, we consider the relaxation starting
from T 0

e = 300 eV and T 0
i = 100 eV using the SCAALP

model. In Fig. 5, we plot the temperature relaxation as a
function of time. Due to Eq. (28), we can see that the relaxation
is asymmetric, the ion temperature relaxing more than the
electron temperature. At equilibration, Teq = 273.3 eV, Z̄eq =
5.52, and geq = 5.25 × 1018 W/m3 K. We plot in Fig. 6 the
relaxation of the average ionization Z̄ as a function of time.
Since this quantity depends more on Te than on Ti and since
Te does not change too much during the relaxation, Z̄ stays
close to 5.5–5.6. We give in Tables III and IV the equilibration
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FIG. 6. Relaxation of Z̄ starting from T 0
e = 300 eV and T 0

i =
100 eV for a carbon plasma at ρ = 2.25 g/cm3 using the SCAALP
model.

TABLE III. Equilibration temperature Teq as a function of T 0
e

(line) and T 0
i (column) in a carbon plasma at ρ = 2.25 g/cm3 using

the SCAALP model. Temperatures are in eV.

10 30 50 70 100 300 500 700 1000

10 14.63 19.13 23.53 30.02 68.72 100.1 128.4 169.0
30 25.61 34.12 38.20 44.16 79.46 109.6 137.2 177.7
50 41.96 46.12 53.66 59.33 91.40 120.2 147.5 187.9
70 59.39 63.27 66.58 74.80 104.7 132.5 159.4 199.8
100 86.25 89.75 92.71 95.83 127.5 154.3 181.1 221.6
300 260.9 264.0 266.8 269.4 273.3 327.3 355.0 396.9
500 432.6 435.7 438.4 441.2 445.1 472.3 527.9 570.2
700 604.3 607.2 609.9 612.5 616.7 644.0 671.9 742.3
1000 861.3 864.4 867.1 870.0 873.9 901.5 929.5 957.6

temperature Teq and average ionization at equilibration Z̄eq

starting from various T 0
e and T 0

i . One can see that we need
a relatively large difference between T 0

e and T 0
i in order

for Teq to deviate significantly from T 0
e . One can note also

that the results are smooth functions of T 0
e and T 0

i . In could
be interesting to compare the results presented in Tables III
and IV with classical molecular dynamics simulations of dense
plasmas [54,55]. Note finally that the system becomes coupled
when Ti is small. This indicates that we may reach the limit
of validity of the present approach at low Ti since we neglect
the Coulomb contributions between ion-ion, ion-electron, and
electron-electron. These contributions can be important in the
warm dense matter regime, especially the ion-ion one when �ii

changes noticeably during a relaxation [12]. As an example,
let us take the case T 0

e = 100 eV and T 0
i = 10 eV. In Fig. 7,

we plot the evolution of �ii during the relaxation. �ii changes
between 19.5 and 2.0, meaning that the ion-ion correlations
can play a role. To see this, we plot in Fig. 8 the relaxation
of Te and Ti without the correction (wo) due to the ion excess
energy Uex

ii and with this correction (wi). As found previously
by Gericke [12], the ions heat much slower at the beginning of
the relaxation if the ion correlations are taken into account and
the electron temperature decreases much faster. Note that the
overall relaxation is slower and the equilibration temperature
Teq is also affected. Without the correction, we find Teq =
86.25 eV whereas with the correction, we find Teq = 80.84 eV.
The full calculation reaches a lower temperature than the ideal
one since Uex

ii becomes less negative during the relaxation [12].

TABLE IV. Average ionization at equilibration Z̄eq as a function
of T 0

e (line) and T 0
i (column) in a carbon plasma at ρ = 2.25 g/cm3

using the SCAALP model. Temperatures are in eV.

10 30 50 70 100 300 500 700 1000

10 2.61 2.76 2.87 3.01 3.64 4.17 4.59 5.02
30 2.92 3.09 3.15 3.25 3.84 4.32 4.70 5.08
50 3.21 3.27 3.38 3.47 4.04 4.47 4.81 5.16
70 3.47 3.54 3.60 3.75 4.24 4.64 4.93 5.23
100 3.95 4.00 4.06 4.11 4.57 4.88 5.11 5.34
300 5.48 5.49 5.50 5.51 5.52 5.62 5.66 5.71
500 5.74 5.74 5.74 5.75 5.75 5.77 5.80 5.82
700 5.83 5.83 5.83 5.83 5.83 5.84 5.85 5.87
1000 5.89 5.89 5.89 5.89 5.89 5.90 5.90 5.90
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FIG. 7. Relaxation of �ii starting from T 0
e = 100 eV and T 0

i =
10 eV for a carbon plasma at ρ = 2.25 g/cm3 using the SCAALP
model.

These results were obtained for T 0
e > T 0

i . When T 0
i > T 0

e ,
we find the opposite effect since the initial ion system is
initially less coupled than at equilibration, i.e., Uex

ii becomes
more negative during the relaxation. As an illustration, if
T 0

e = 10 eV and T 0
i = 100 eV, we find that Teq = 30.02

eV without the OCP correction but Teq = 37.69 eV with
this OCP correction. Of course, the present approach is an
approximation since we consider an OCP system and we
neglect screening but it gives a relative good overview of the
physics involved. The complete treatment of the relaxation that
takes into account in a self-consistent way the ion-ion (beyond
the OCP approximation), ion-electron, and electron-electron
correlations to go beyond the ideal gas approximation is still
to be developed.

IV. CONCLUSION

We have presented a model to calculate rates of
temperature-relaxation in dense plasmas using an average-
atom model. An approximate way has been described to
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FIG. 8. Relaxation of Te and Ti starting from T 0
e = 100 eV

and T 0
i = 10 eV for a carbon plasma at ρ = 2.25 g/cm3 using the

SCAALP model without the correction (solid line) due to the ion
excess energy and with this correction (dashed line).

consider the case where the electron and ion temperatures Te

and Ti are different directly inside the average-atom model.
This enriches the model since the rates and the average
ionization depend on Te and Ti but complicates the resolution
of the rate equations. Comparison with molecular dynamics
simulations for a hydrogen plasma have shown that this
approach makes sense. We have also studied the role of
ionization along the temperature relaxation for solid-density
carbon plasmas. We have gone beyond the usual treatment of
the kinetic energy balance in such kind of study by considering
the role of ion-ion correlations using the OCP approximation.
The effect is to lower the equilibration temperature compared
to the case when we consider only the kinetic energy balance
when the initial electron temperature T 0

e is greater than the
initial ion temperature T 0

i . We have the opposite effect when
T 0

i is greater than T 0
e . The next step consists of taking into

account from first principles electron-electron, electron-ion,
and ion-ion correlations beyond the OCP approximation as
well as treating mixtures.
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