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Transient elasticity and the rheology of polymeric fluids with large amplitude deformations
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Transient elasticity is a systematic generalization of viscoelasticity. Its purpose is to give a coherent description
of non-Newtonian effects displayed by soft-matter systems, especially polymer melts and solutions. Using the
concept of transient elasticity we describe here a hydrodynamic model for polymeric fluids, which is applicable
for large amplitude deformations. We present an energy density with only two independent parameters, which is
compatible with all thermodynamic requirements and which reduces for small deformations to models studied
previously. The expression discussed is simple enough to allow full analytic treatment and shows semiquantitative
agreement with experimental data. This model is used to capture many of the interesting effects thought to be
characteristic of polymer rheology for large deformations including viscosity overshoot near the onset of shear
flow, the onset of elongational flows in situations for which there is no stationary solution as well as shear thinning
and normal stress differences for a large range of shear rates. In addition, we analyze how well our model accounts
for empirical relations including the Cox-Merz rule, the Yamamoto relation, and Gleißle’s mirror relations.
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I. INTRODUCTION

In the companion paper to this one [1] [referred to
as part (I) here] we used a strong simplification of the
hydrodynamic model for polymeric fluids to describe a number
of simple flows. The most important assumptions used were
the restriction of the expansion of the energy density in powers
of the Eulerian strain tensor, Uij , to fourth order and the
simplifcation of its dynamic equation by assuming a single
relaxation behavior and neglecting a dissipative cross-coupling
to extensional flow. The resulting simplified model is therefore
only valid in the limit of small strains and contains in total five
parameters, namely, the relaxation time, τ , of the transient
network, the three elastic constants K1, K2, and K3 associated
with quadratic, cubic, and quartic transient elasticity and
the viscosity parameter η∞. It turned out that for low shear
and elongation rates the predictions of the model agree well
with experimental observations. It is, for example, possible
to capture the onset of shear thinning for a stationary shear
flow, surface effects including the Weissenberg effect [2–5],
and the surface curvature for the flow down a slightly tilted
channel [6]. In addition, one can make predictions about the
elongation rate dependence of the Trouton viscosity.

There is, however, a range of other fundamental and
interesting effects, which only arise for larger deformations.
These include the viscosity overshoot for the onset of shear
flow as well as the onset of elongational flow in situations
in which the elongation is so large that a stationary state no
longer exists. It also appears to be desirable to investigate
shear thinning for a large range of shear rates and to analyze
the two normal stress differences as a function of shear rate.
The key challenge is to generalize model (I) [1] to large
deformations without losing the useful results obtained so far
in the limit of small strains, but still maintaining the simplicity
and universality of the description.

One possibility would be to extend the nonlinear dynamic
equations for Uij . However, the version used in part (I) [1],
with a single linear relaxation term, has the advantage that one

can get a solution for the strain tensor without the need to know
the explicit structure of the energy. We want to still benefit from
this property and, thus, leave unchanged the dynamic equation
for the strain tensor,

U̇ 0
ij + vk∇kU

0
ij − Aij + [Ukj∇ivk + Uik∇j vk]0 = − 1

τ
U 0

ij ,

(1)

where the superscript 0 refers to the traceless part and Aij =
A0

ij because of the assumed incompressibility.
Instead, we focus on the generalization of the energy den-

sity. An obvious step in this direction would be a generalization
of the energy expansion beyond the fourth order in Uij . An
expansion to higher orders, however, has the disadvantage
of generating a larger number of elastic parameters that are
difficult to determine. Therefore we use a different route that
is a simple extension into the nonlinear deformation domain.
Based on general considerations we design in Sec. III an energy
density that is used in the subsequent sections to discuss the
flow behavior for large amplitude deformations. In Sec. IV
stationary and relaxing (as well as the onset of) shear flows
with large strains are considered. Elongational flows with large
deformations are discussed in Sec. V. In addition, in Sec. VI
we analyze how well we can capture empirical relations that
relate different material functions to different kinds of flow.
In particular, we discuss the Cox-Merz rule [7], the Gleißle
mirror relations [2,8], the Laun rule [2,9], and the Yamamoto
relation [10,11]. Finally, some conclusions and a perspective
are given in Sec. VII.

First, however, in the next section (II) we discuss what can
be learned about the stress tensor from the general properties
of the energy without using an explicit expression for it. This
sets the framework for some stress-strain relations and guides
the development of the energy density we choose to deal with
large amplitude flows.

2470-0045/2016/93(2)/023114(13) 023114-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.023114
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II. GENERAL PROPERTIES OF THE ENERGY AND THE
STRESS TENSOR

To address large deformations it is necessary to generalize
the energy density in a way so that the corresponding
expression is not valid just for small deformations. So far a
general expression for the energy density for large deforma-
tions is unknown. Therefore we investigate first what general
conclusions can be drawn from thermodynamic arguments and
we construct an energy density qualitatively satisfying these
constraints. For this construction we draw on existing work on
nonlinear deformations of elastic solids (compare Refs. [12]
and [13] for an overview of the field of rubber elasticity).

For a general treatment we first recall the approach for small
deformations. In the rest frame we assumed that we can use
the energy density εrf as a starting point and that the parts
depending on the entropy and mass density can be separated
from the elastic contributions:

εrf (s,ρ,Uij ) = ε̄(s,ρ) + εela(Uij ). (2)

In the following we want not to expand εela but, rather, to
analyze what properties this energy density possesses and how
one can represent it simply. As mentioned in [1], the elastic
energy density can only be a function of the three invariants
of Uij . In order to be able to make comparisons with the usual
representations of the nonlinear elasticity [12–14], we do not
use Tr(U), Tr(U2), and Tr(U3) but, rather, the three stretch
coefficients λ1, λ2, and λ3. The latter describe the relative
distortions along the principal axes of the strain tensor for a
given type of flow. We therefore rewrite Eq. (2) as

εrf = ε̄(s,ρ) + εela(λ1,λ2,λ3). (3)

Next we analyze which general statements are possible
about εela. Since we focus here on isotropic systems, εela must
reflect this symmetry as well. This means explicitly that an
interchange of λi and λj with i �= j in εela cannot change
the structure of the energy density. All properties which the
energy density has regarding λ1 must also apply to λ2 and
λ3. In addition, it is clear intuitively that the elastic energy in
the undeformed state must have a global minimum for λ1 =
λ2 = λ3 = 1. In the following we set the energy for this global
minimum to εela = 0. For arbitrary deformations we therefore
always have εela > 0. If the system is, on the other hand,
infinitely strongly stretched or compressed, then the elastic
energy will diverge:

lim
λi→∞

εela = +∞, lim
λi→0

εela = +∞. (4)

If the system is, in addition, incompressible, then an infinite
amount of stretching or compression automatically has, as a
consequence, an infinite compression/stretching into at least
one other direction.

For the discussion of the derivatives of εela with respect to
λi it is useful to introduce three abbreviations (i = 1,2,3)

ei ≡ ∂εela

∂λi

∣∣∣∣
λj ,λk=const.

≡ ∂ε

∂λi

∣∣∣∣
λj ,λk=const.

(5)

(for k �= i �= j ), which can be viewed as generalized elastic
forces. For the undeformed state we consequently have

ei(λ1 = λ2 = λ3 = 1) = 0, i = 1,2,3. (6)

FIG. 1. Schematic behavior of (a) the elastic energy density εela

and (b) its first derivative e = ∂εela/∂λ as a function of the one-
dimensional stretch ratio λ.

To guarantee that one has a global minimum, the Hessian
Hij = ∂2εela/(∂λi∂λj ) = ∂ei/∂λj at the location λ1 = λ2 =
λ3 = 1 must be positive definite [15]. The consequences of
these properties are sketched for the one-dimensional case in
Fig. 1.

A simplification is obtained by the assumption (also used
here) that the three functions ei depend only on the associated
stretch ratio, e.g., e1 is only a function of λ1. This is
equivalent to the assumption that the energy has no coupling
terms between the different λi’s. Based on the symmetry
requirements already discussed, the three functions ei(λi) with
i = 1,2,3 are converted into each other when the indices are
interchanged. The ei values have the properties that they have
a 0 at λi = 1 and a positive slope at this point [compare also
Fig. 1(b)]. If the system is, in addition, thermodynamically
stable for arbitrary deformations [15], then Hij is positive at
every point, or phrased differently, the ei’s are monotonically
growing functions of λi . Taken together this implies, for the
ei(λi),

ei < 0 for 0 < λi < 1,

ei = 0 for λi = 1,

ei > 0 for λi > 1.

(7)

A decisive advantage gained by the introduction of the ei

becomes obvious when the elastic part of the stress tensor, σ ela
ij

[1], is inspected:

σ ela
ij = Uikψkj + Ujkψik − ψij . (8)

The influence of the energy is expressed by the elastic stresses
ψij = ∂ε/∂Uij , meaning by six initially unknown functions
of Uij . Due to the introduction of the ei’s we can reduce
this number to three, making the structure of the stress tensor
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clearer. Using the chain rule we can express the ψij by the ei :

ψij = ek

∂λk

∂Uij

. (9)

The stretch coefficients are related to the eigenvalues Ui of
the strain tensor by [12] λi = 1/

√
1 − 2Ui . Since we need, for

our further discussion, the explicit dependence of the λi on
Uij , we consider shear and elongational flows separately, for
simplicity. The eigenvalues Ui for a shear flow are given by
the equations

U1 = 1
2 (Uxx + Uyy − U ), (10)

U2 = 1
2 (Uxx + Uyy + U ), (11)

with the abbreviation U ,

U ≡
√

(Uxx − Uyy)2 + 4UxyUyx (12)

[compare [1] for further details]. From Eq. (9) we then find,
for the nonvanishing components of ψij ,

ψxy = b
( − λ3

1e1 + λ3
2e2

)
, (13)

ψxx = 1
2 (1 − a)λ3

1e1 + 1
2 (1 + a)λ3

2e2, (14)

ψyy = 1
2 (1 + a)λ3

1e1 + 1
2 (1 − a)λ3

2e2. (15)

Since λ3 = 1 we have e3 = ψzz = 0. The abbreviations a

and b have been defined via

a ≡ Uxx − Uyy

U
, (16)

b ≡ Uxy

U
, (17)

and we note that these quantities are not independent of
each other but satisfy the relation a2 + 4b2 = 1. Using these
relations as well as λ2 = λ−1

1 for the incompressible case we
find from Eq. (8), for the elastic stress tensor,

σ ela
xy = b

(
λ1e1 − λ−1

1 e2
)
, (18)

σ ela
xx = − 1

2 (1 − a)λ1e1 − 1
2 (1 + a)λ−1

1 e2, (19)

σ ela
yy = − 1

2 (1 + a)λ1e1 − 1
2 (1 − a)λ−1

1 e2. (20)

The two normal stress differences N1 = σxx − σyy and N2 =
σyy − σzz read

N1 = a
(
λ1e1 − λ−1

1 e2
)
, (21)

N2 = − 1
2 (1 + a)λ1e1 − 1

2 (1 − a)λ−1
1 e2. (22)

Based on the structures derived so far, one can draw several
conclusions about the general properties of the stress. For
example, from Eqs. (18) and (21) we obtain the interesting
relation

σ ela
xx − σ ela

yy

σ ela
xy

= Uxx − Uyy

Uxy

= a

b
. (23)

Such a relation is trivial for linear elasticity but holds for gen-
eral nonlinear systems as well [16]. This relation is particularly

interesting, because we can make general statements about the
stress tensor without knowing the energy density explicitly.
We only need the solutions of the dynamic equations for Uij .
Below we make use of this possibility.

Based on the properties of the ei we can obtain information
about the sign of σ ela

xy and N1. Since U2 has been defined as

the largest eigenvalue, we always have λ1 < 1 and λ−1
1 > 1.

Together with Eq. (7) it follows immediately that λ1e1 − λ−1
1 e2

is always negative in a deformed system. This inequality is
equivalent to the Baker-Ericksen inequality [17,18] for the
situation considered here. As a consequence, σ ela

xy has the
opposite sign of b, and N1 the opposite sign of a, and we
can determine the signs of σ ela

xy and N1 based exclusively on
the structure of the strain tensor. For example, for a stationary
shear flow a is positive, thus, the first normal stress difference
must always be negative. On the contrary, σ ela

xy changes sign
with the shear direction, e.g., for positive shear rates the elastic
shear stress is negative, while for negative shear rates the elastic
shear stress is positive. For the second normal stress difference
such a discussion of the sign is not possible, since the two
contributions have different signs and therefore the sign of the
whole expression can be positive or negative.

For elongational flow the result is much simpler, since the
strain tensor is diagonal. In the notation of (I) [1] we have, for
ψij ,

ψxx = ψyy = λ3
1e1, (24)

ψzz = λ−3
1 e2, (25)

and all off-diagonal elements vanish. The experimentally
relevant normal stress difference takes the simple form

σ ela
zz − σ ela

xx = λ1e1 − λ−1
1 e2. (26)

Combining Eq. (26) with Eq. (7) we conclude that in a
uniaxial elongational flow the normal stress difference is
always negative, while it is always positive for a biaxial
elongational flow.

III. CONSTRUCTION OF AN ENERGY DENSITY
APPLICABLE TO LARGE DEFORMATIONS

Before beginning with the construction of a generalized
elastic energy density valid for large deformations, we recall
the expansion used for small deformations in the companion
paper [1]:

εrf (s,ρ,Uij ) = ε̄(s,ρ) + 1
2K1Tr(U2)

+ 1
3K2Tr(U3) + 1

4K3Tr(U4). (27)

This expression reads explicitly

εela
ent = 1

2K1
(
U 2

1 + U 2
2 + U 2

3

) + 1
3K2

(
U 3

1 + U 3
2 + U 3

3

)
+ 1

4K3
(
U 4

1 + U 4
2 + U 4

3

)
. (28)

Following the Cayley-Hamilton theorem, Eq. (27) can
be recast in a different form using the three invariants of
the symmetric three-dimensional tensor Uij (compare, for
example, Refs. [19] and [20]). We note that this leaves
the number of independent coefficients unchanged in the
compressible case.
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If we want to apply this energy density to strongly deformed
systems, we encounter two major problems:

1. The region of validity of this expansion is rather
limited. As we have seen, for the elastic parameters we have
K2 ≈ 4.5K1 and K3 ≈ 15K1, which means that the expansion
coefficients in Eq. (28) increase by a factor of about 2.5 to 3
at every order.

2. The behavior for large deformations is not given
correctly by Eq. (28). If the system is, for example, infinitely
stretched along the first principal axis, then the expansion
coefficient λ1 diverges and the energy density should diverge.
However, the associated eigenvalue U1 goes to 1/2 and εela

ent
stays finite.

Our approach is now, starting with Eq. (28), to find
a generalization which is as simple as possible, removes
the difficulties described, and satisfies the thermodynamic
properties listed in Sec. II. Furthermore, the expansion of the
new energy up to fourth order in the eigenvalues Ui should
coincide with Eq. (28).

One possibility for finding an elastic energy for polymeric
fluids comes from the field of rubber elasticity [12–14]. There
are numerous empirical expressions of the elastic energy of an
isotropic soft solid as a function of the expansion coefficients
λ1, λ2, and λ3, starting with the work of Rivlin [21]. While
it is not mandatory that the same elastic energy applies for
polymeric fluids and solids; on the other hand, this is an ansatz
which has a lot of appeal.

A very simple expression goes back to Mooney [22] and
reads

εela
M = C̃1

(
λ2

1 + λ2
2 + λ2

3 − 3
) + C̃2

(
λ−2

1 + λ−2
2 + λ−2

3 − 3
)
.

(29)
One sees immediately that this expression gives the behavior
for large deformations qualitatively correctly. Since the energy
density has only two elastic parameters, while our expansion
εela

ent has three, we have to verify, first, whether an expansion
of εela

M reduces to εela
ent so that all requirements for K1, K2,

and K3 can be satisfied. To check this we expand Eq. (29)
into U1, U2, and U3 up to fourth order and compare the
result with Eq. (28). In doing this we must take into account
that Mooney’s energy assumes incompressibility [22]. We
therefore express U3 with the incompressibility conditions
(1 − 2U1)(1 − 2U2)(1 − 2U3) = 1 in terms of U1 and U2 and
insert the result into εela

ent. Equation (28) then takes the form

εela
ent ≈ K1

(
U 2

1 + U 2
2 + U1U2

) + 2K1
(
U 3

1 + U 3
2

)
+ (

4K1 − K2
)(

U 2
1 U2 + U1U

2
2

)
+ (

6K1 − 2K2 + 1
2K3

)(
U 4

1 + U 4
2

)
+ (12K1 − 6K2 + K3)

(
U 3

1 U2 + U1U
3
2

)
+ (

14K1 − 8K2 + 3
2K3

)
U 2

1 U 2
2 . (30)

Comparing this expression with the corresponding result of
the expansion of Eq. (29), we can express the two parameters
C̃1 and C̃2 with K1 and K2:

C̃1 = 1
8 (K2 − 2K1), (31)

C̃2 = 1
8 (4K1 − K2). (32)

In addition, one must require

K3 = 4K2 − 4K1, (33)

implying that K3 can no longer be chosen freely. A comparison
with the restrictions found for the values of K3 in the
companion paper (compare Eqs. (30) and (49) in [1]),

4K2 − 4K1 < K3 < 4K2 − 2K1, (34)

shows that Eq. (33) coincides with the lower bound of
conditions (34). This means that the Mooney energy cannot
describe the relaxation behavior of a shear flow in the limit
of low shear rates. While εela

M is therefore not optimum, our
consideration shows that our approach is not completely off.

A more severe problem is, however, the fact that the
parameter C̃2 must be negative so that one can satisfy the
condition for the occurrence of the Weissenberg effect, K2 >

4K1. The consequences resulting from this condition become
clear using a simple example: if we insert into Eq. (29) the
geometry of an elongational flow, that is, λ1 = λ2 = λ

−1/2
3 ,

then for very small λ3 the Mooney energy takes the form
εela

M ≈ C̃2λ
−2
3 . Thus the energy becomes negative and tends to

−∞ for λ3 → 0, meaning that it behaves unphysically in this
regime (cf. also Fig. 3).

Finally, we remark that the Mooney energy has no global
minimum in the undistorted state, since one has for all ei (λi =
1) �= 0. This can be traced back to the fact that Eq. (29) only
applies to an incompressible system and that therefore the
relation λ1λ2λ3 = 1 must be used as an additional constraint to
have the global minimum at the correct location. This renders
the Mooney expression inappropriate for our purposes.

To address and solve the three problems described we mod-
ify the Mooney energy so that the resulting energy is minimal
in the undeformed state without the need for an additional
constraint. The simplest possibility for realizing this reads

εela
a = C1[(λ1 − 1)2 + (λ2 − 1)2 + (λ3 − 1)2]

+C2[(1 − λ−1
1 )2 + (1 − λ−1

2 )2 + (1 − λ−1
3 )2]. (35)

The energy density introduced this way indeed has the desired
global minimum as one can see from

ea
i = 2

(
C1 + C2

λ3
i

)
(λi − 1). (36)

From the behavior required for large deformations it follows
automatically that

C1 > 0 and C2 > 0. (37)

In addition, the ea
i are strictly monotonically increasing

functions.
The modified Mooney expression also contains only two

parameters, which can be expressed by K1 and K2 using the
same method as before,

C1 = 1
12 (2K2 − 3K1), (38)

C2 = 1
12 (9K1 − 2K2), (39)

with an additional, but different, condition on K3:

K3 = 4K2 − 7
2K1. (40)

In contrast to the previous case, this condition is compatible
with interval (34) for K3. However, because C2 > 0 we obtain
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from Eq. (39) the constraint that we can only describe systems
for which K2 < 4.5K1.

We can now express the conditions which we have derived
in the companion paper [1] for K1, K2, and K3 in terms of C1

and C2. Condition for

(a) shear thinning (K3 < 4K2 − 2K1), C1 + C2 > 0;
(b) the correct sign of 
1 (K1 > 0), C1 + C2 > 0;
(c) the correct sign of 
2 (K2 < 5K1), C1 + 7C2 > 0;
(d) the correct relaxation behavior

(K3 > 4K2 − 4K1), C1 + C2 > 0;
(e) the Weissenberg effect (K2 > 4K1), C1 > 5C2.

It is remarkable that three of the conditions, which look com-
pletely differently for the Ki , are identical in the representation
using C1 and C2. Since, in addition, C1 and C2 are positive, it
appears remarkable that all relations except for the condition
for the Weissenberg effect are already automatically satisfied.

In concluding this section we investigate how strongly the
modified Mooney energy εela

a introduced here differs from εela
M .

To see this we insert the structure of the stretch coefficients for
a shear flow (λ1 = λ, λ2 = 1/λ, λ3 = 1) into both energies:

εela
M = (C̃1 + C̃2)(λ2 + λ−2 − 2), (41)

εela
a = (C1 + C2)[(λ − 1)2 + (1 − λ−1)2]. (42)

Since 4(C̃1 + C̃2) = 2(C1 + C2) = K1, only one elastic
constant contributes effectively, and we can plot εela

M and εela
a

in units of K1 for the comparison of the energies in Fig. 2. It
turns out that both energies differ only quantitatively, and not
qualitatively, in the present case. One notes, however, that εela

a
increases more rapidly.

This situation changes drastically when we compare the
energies for a three-dimensional elongational flow (λ1 = λ2 =
λ−1/2, λ3 = λ):

εela
M = C̃1(2λ−1 + λ2 − 3) + C̃2(2λ + λ−2 − 3), (43)

εela
a = C1

[
2
(
λ− 1

2 − 1
)2 + (λ − 1)2

]
+C2

[
2
(
1 − λ

1
2
)2 + (1 − λ−1)2

]
. (44)

1 2 3 4 5

1

2

3

4

5

ela
a

K1
/

ela

K1
/M

FIG. 2. Energy densities εela
M and εela

a in units of K1 for a planar
shear geometry.

1 2 3 4 5

1

2

3

4

5

ela
a

K1
/

ela

K1
/M

FIG. 3. Energy densities εela
M and εela

a in units of K1 for an
elongational geometry. The plot is for K2 = 4.2K1.

Here we cannot simply represent the energies in terms of K1.
For Fig. 3 we have chosen K2 = 4.2K1 (this corresponds to
−
2/
1 = 0.2 for low shear rates). For uniaxial elongational
flow (λ > 1) both energies are qualitatively similar; for
λ < 1 we see, as expected, that the Mooney energy goes
through a maximum; and for λ → 0 it tends to −∞. In
contrast, our modified Mooney energy εela

a shows the correct
thermodynamic behavior.

IV. SHEAR FLOWS FOR LARGE STRAINS

We now have the possibility—using the energy derived in
the preceding section—to reach the domain of high shear rates
γ̇ (t) = ∇yvx(y,t) for planar shear flow. This means we can
go beyond the limit |ξ | 	 1 for the dimensionless shear rate
ξ ≡ τ γ̇ [with τ the relaxation time of Eq. (1)], which we had
to impose in the companion paper [1]. We discuss stationary
and relaxing shear flow as well as the onset behavior with the
newly determined stress tensor; the strain tensor is the same
as in part (I).

Before we discuss the examples, we use the generalized
elastic forces ei defined in Eq. (5) and the relations (18), (21),
and (22) introduced and evaluated in the preceding section to
obtain general expressions for σ ela

xy , N1, and N2. We make use
of the fact that for planar shear flow λ3 = 1 and λ1λ2 = 1.
Using the modified energy εela

a we have

σ ela
xy = 2(C1 + C2)b(λ1 − λ2)(λ1 + λ2 − 1) , (45)

N1 = 2(C1 + C2)a(λ1 − λ2)(λ1 + λ2 − 1) , (46)

N2 = −(C1 − C2)
[(

λ2
1 − λ1

) + (
λ2

2 − λ2
)]

− (C1 + C2)a
[(

λ2
1 − λ1

) − (
λ2

2 − λ2
)]

, (47)

where the normalized strain components a and b are defined
in Eqs. (16) and (17). This result has a remarkable feature: The
elastic shear stress and the first normal stress difference depend
effectively only on one elastic constant, namely, C1 + C2 =
(1/2)K1.

With these preparations we are now ready to discuss the
three examples separately. For the plots in this section we use
K2 = 4.4K1. This relation also implies that the ratio −
2/
1
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has, for vanishing shear rate, the value 0.15, K3 = 14.1K1, and
29 C2 = C1. For the plots it is useful to express the parameters
in K1, namely, C1 = (29/60)K1 and C2 = (1/60)K1.

A. Stationary shear flow

The strain field of a stationary shear flow follows from
Eq. (1) and has been calculated in part (I) [1]:

λ1 =
√√

1 + ξ 2 − |ξ |, (48)

λ2 =
√√

1 + ξ 2 + |ξ |, (49)

a = |ξ |√
1 + ξ 2

, (50)

b = sign(ξ )

2
√

1 + ξ 2
. (51)

We start our discussion with the shear viscosity η = −σxy/γ̇ ,
where σxy = σ ela

xy − η∞γ̇ . A straightforward calculation gives
the expression

η = η∞ + (C1 + C2)τ

ξ
√

1 + ξ 2
(2ξ − R+ + R−), (52)

with R± = (
√

1 + ξ 2 ± ξ )1/2 and where the first part is the
Newtonian viscosity η∞ and the second part comes from
Eq. (45).

The behavior of η as a function of the shear rate is
shown in Fig. 4. Since the viscosity depends effectively on
only one elastic constant, the curve obtained is universal and
possesses two basic features: It is monotonically decreasing
and thus shows the typical shear thinning behavior [2], and
for large values of ξ it converges towards the constant η∞.
Experimentally it is well established [2] that the shear viscosity
can decrease by several orders of magnitude. From Eq. (52)
we see that η → η∞ for ξ → ∞; it can decrease by orders of
magnitude for η∞ 	 K1τ .

For comparison we have plotted as a dashed line the result
of the expansion for low shear rates obtained in part (I) [1],

FIG. 4. The shear viscosity η in units of K1τ as a function of the
dimensionless shear rate ξ . The dashed curve represents the solution
of the expansion up to second order in ξ part (I) [1].

0.1 0.2 0.5 1 2 5 10
0

0.2

0.4

0.6

0.8

1

K1
2

1

FIG. 5. The first normal stress coefficient 
1 in units of K1τ
2 as

a function of the dimensionless shear rate ξ . The dashed horizontal
line represents the result in part (I) [1].

using K3 = 4K2 − (7/2)K1,

η = η∞ + 1
2K1τ

(
1 − 3

8ξ 2
) + O(ξ 4), (53)

which again depends only on K1, so that Fig. 4 is applicable for
arbitrary values of K2 in the admissible range. The first normal
stress difference 
1 = −N1/γ̇ assumes a similar shape as η,


1 = 2(C1 + C2)τ 2

ξ
√

1 + ξ 2
(2ξ − R+ + R−), (54)

and is a universal function when plotted in units of K1τ
2

as a function of ξ (Fig. 5). Similarly, as the viscosity, 
1 is
also a monotonically decreasing function of the shear rate. In
contrast to the viscosity, however, the normal stress coefficient
goes to 0 for ξ → ∞, and not to a finite value. This behavior
is in accord with available experimental data [2]. The result
obtained by the energy expansion in part (I) [1] is plotted as the
dashed horizontal line. It is a constant, since one would have to
expand the energy density to fifth order to get a ξ dependence.

The similarity of the ξ dependence of η − η∞ and 
1 is
neither accidental nor a result of the special form of our
energy, but is universal. Using the energy-independent relation,
Eq. (23), for shear flows, we immediately get, with Eqs. (50)
and (51),

N1

σxy + η∞
τ

ξ
= 2ξ. (55)

For low shear rates N1 = 2ξσxy and the material functions
η and 
1 differ only by the constant factor 2τ . With
increasing shear rate, the η∞ contribution becomes more and
more important (due to shear thinning) so that η and 
1

differ not by just a constant, a feature that is also observed
experimentally [2]. For the ratio N1/σxy this means that with
increasing shear rate it first grows linearly and then flattens out
gradually [2].

B. Relaxing shear flow

The relaxation behavior of the strain for low shear rates has
been discussed in part (I) [1]. Assuming a constant shear flow
γ̇0 that is instantaneously switched off at time t = 0 the strain
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field for time t > 0 is found from Eq. (1) and takes the form

λ1 =
√√

1 + ξ 2
0 e−2d − |ξ0 e−d |, (56)

λ2 =
√√

1 + ξ 2
0 e−2d + |ξ0 e−d |, (57)

a = |ξ0|√
1 + ξ 2

0

, (58)

b = sign(ξ0)

2
√

1 + ξ 2
0

, (59)

where ξ0 ≡ γ̇0τ is the dimensionless shear rate and d ≡ t/τ is
the dimensionless time.

The material function (for t > 0) η− = −σxy/γ̇0 is now
time dependent and has the same structure as η − η∞ in the
stationary case,

η− = (C1 + C2)τ

ξ0

√
1 + ξ 2

0

(
2ξ0e

−d − S+ + S−
)
, (60)

with S± = (
√

1 + ξ 2
0 e−2d ± ξ0e

−d )1/2 and can be plotted
equally well universally (Fig. 6).

We are interested in the question how the relaxation
behavior of η− is influenced by higher values of |ξ0|. In
our discussion for the case of small shear rates in part (I)
[1] we have seen that the property that η− relaxes more
rapidly for larger values of |ξ0| is captured well by our model.
The relaxation behavior of η− relative to the initial value
η−(ξ0,0) = η(ξ0) − η∞ for several shear rates is plotted in
Fig. 6. All curves are relaxing monotonically to 0.

It turns out that for |ξ0| 
 1 we have

η−

η − η∞
≈ e−d . (61)

Thus the behavior of the curve is almost independent of
shear rate in the limit of high initial shear rates, while the
experiments show a stronger dependence [23]. It emerges that
a modified equation for Uij will be necessary to account for
this observation.

FIG. 6. The material function η− relative to its stationary value
η − η∞ as a function of the dimensionless time d for various
shear rates.

C. The onset of shear flow

We assume no flow for t < 0 and an instantaneously
switched-on constant shear flow γ̇0 for t > 0. In part (I) it
is shown that in this case the set of equations that determines
the strain components or the stretch ratios (as functions of γ̇0)
is nonlinear and no analytic result can be given [1]. For low
shear rates ξ0 = γ̇0 an expansion in powers of ξ0 has been
used, but here we are interested in the case of large ξ0 and only
a numerical solution is possible. The results for ξ0 = 1 and
ξ0 = 10 are shown in Fig. 7, where the stretch ratios λ1 and λ2

are given as functions of time.
In the case of low shear rates both quantities are

monotonous functions of d (compare the corresponding figures
in part (I) [1]). Here, however they show a pronounced
overshoot behavior; i.e., they go through one or more minima
or maxima before they converge towards their stationary
values. This effect is more significant for higher ξ0.

A similar behavior is found for the material functions
η+ = −σxy/γ̇0 and 
+

1 = −(σxx − σyy)/γ̇ 2
0 , both experimen-

tally [24,25] and in our description using Eqs. (45) and (46).
They are evaluated again numerically and shown in dimen-
sionless form in Figs. 8 and 9.

In particular, the height of the maxima grows with the shear
rate (note the different vertical scales) and shifts to shorter
values of time. From the measured curves presented in Ref. [2]
one sees that for a fixed value of ξ0 the overshoot of 
+

1 /
1

is higher than that of η+/η, while in our plots η+/η has the
more pronounced maximum. Therefore we cannot make a
quantitative comparison as already expected.

The temporal behavior of the material function 
+
2 =

−(σyy − σzz)/γ̇ 2
0 for ξ0 = 1 and ξ0 = 10 is plotted in Fig. 10.

As already shown for low shear rates in part (I), 
+
2 /
2 is

negative for small times, which means that 
+
2 is positive [1].

With increasing time 
+
2 /
2 changes its sign and converges

after an overshoot towards its stationary value. We note that the
negative range of 
+

2 /
2 becomes smaller for a higher shear
rate. For the overshoot we find the same behavior as before
for η+ and 
+

1 : for growing shear rate the overshoot becomes
more pronounced and moves to shorter times. Clearly, this can
be traced back to the behavior of the strains.

V. ELONGATIONAL FLOW FOR LARGE DEFORMATIONS

Similarly to shear flow we can also generalize our discus-
sions in part (I) for elongational flows using the generalized
energy density [1]. We consider a three-dimensional rotational
invariant elongational flow of the form vx = − 1

2 ε̇x, vy =
− 1

2 ε̇y, and vz = ε̇z. For positive ε̇ this describes a uniaxial
elongation along the z axis, while for negative ones it is a
biaxial elongation in the x-y plane. As known from part (I),
in elongational flows the normal stress difference σzz − σxx is
the important measurable quantity [1]. From Eq. (26) and the
expression for ei from Eq. (36) we find for the elastic part

σ ela
zz − σ ela

xx = 2C1[λ1(λ1 − 1) − λ2(λ2 − 1)]

+ 2C2

(
λ1 − 1

λ2
1

− λ2 − 1

λ2
2

)
. (62)
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FIG. 7. The stretch ratios λ1 and λ2 as a function of the
dimensionless time d for (a, b) ξ0 = 1 and (c, d) ξ0 = 10.

For the following plots we use the same numbers for C1 and
C2 as in the section on shear flows, C1 = (29/60)K1 and C2 =
(1/60)K1.

FIG. 8. The material function η+ relative to the stationary value
η as a function of the dimensionless time d for (a) ξ0 = 1 and
(b) ξ0 = 10, where K2 = 4.4K1.

A. Stationary elongational flow

The stretch ratios λ1 and λ2 for general ε̇ have been found
in part (I) [1]:
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FIG. 9. The material function 
+
1 relative to its stationary value


1 as a function of the dimensionless time d for (a) ξ0 = 1 and
(b) ξ0 = 10, where K2 = 4.4K1.
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FIG. 10. The material function 
+
2 relative to its stationary value


2 as a function of the dimensionless time d for (a) ξ0 = 1 and
(b) ξ0 = 10, where K2 = 4.4K1.

λ1 =
(

1 − ζ

1 + 2ζ

)1/6

, (63)

λ2 =
(

1 + 2ζ

1 − ζ

)1/3

. (64)

For a stationary solution to exist, the dimensionless elongation
rate ζ ≡ ε̇ τ can only assume values in the interval

− 1
2 < ζ < 1. (65)

The Trouton viscosity η̄ = −(σzz − σxx)/ε̇ = 3η∞ −
(σ ela

zz − σ ela
xx )/ε̇ can be calculated from Eq. (62). Since the

analytical result is a cumbersome expression, we plot the
numerical solution in Fig. 11 as a function of ζ . For
comparison, we show the parabola, which resulted from the
energy expansion in part (I) [1].

The Trouton viscosity diverges near the boundaries of
the existence range for stationary elongation flow rates—in
contrast to the results obtained from the energy expansion
in part (I) [1]. For a uniaxial elongation flow such a rapid
increase is not observed experimentally; the curves end
rather abruptly instead [2,14]. For biaxial elongational flows,
however, one indeed observes a very strong increase in the
viscosity beyond the minimum [26]. For the location of the
increase the prediction of various constitutive models is also
a dimensionless elongation rate of 1/2 [26,27]. Therefore our
model fits well into the existing picture.

B. Onset of elongational flow

A high elongation rate means, in particular, that ε̇ is
outside the range, Eq. (65), for which a spatially homogeneous

FIG. 11. The Trouton viscosity η̄ is plotted in units of K1τ as
a function of the dimensionless elongation rate ζ . The dashed line
represents the solution of the energy expansion from part (I) [1]. For
both curves we have used K2 = 4.4K1.

stationary solution for the strain exists. Dealing with the onset
of an elongational flow, ε̇ = 0 for t < 0 and ε̇ = ε̇0 for t > 0,
we focus on the different behavior for elongation rates inside
and outside of this range.

Similarly to the onset of shear flow, there is no analytic
solution for the onset of elongational flow. Nevertheless,
one can reach some general conclusions using numerical
solutions. For the onset of uniaxial elongational flow in the
regime where stationary flow exists, i.e., for 0 < ζ0 < 1, the
stretch coefficients λ1 and λ2 show no overshoot and approach
monotonically an asymptotic value [cf. Fig. 12(a)]. A similar
behavior was found for the small-ζ0 expansion in part (I) [1].

For the range ζ0 > 1 the behavior of λ1 and λ2 changes
qualitatively. There is no longer a stationary state for finite
deformations. λ1 approaches 0 for d → ∞ and λ2 tends to
+∞ with increasing time d. We see in Fig. 12(b) that λ1

and λ2 are monotonic functions of time. We also note that
for higher elongation rates they decrease and increase more
rapidly, respectively.

For biaxial elongation flow (negative ζ0) λ1 > λ2, but for
d → ∞ both converge towards a limiting value if ζ0 > −0.5.
This temporal behavior of λ1 and λ2 is plotted in Fig. 13(a). We
note that λ1 and λ2 are monotonous functions of time: there is
no overshoot for a biaxial flow either.

For ζ0 < −0.5, for which no stationary solution exists, we
find that the stretch ratio λ1 diverges while λ2 tends to 0 for
d → ∞. This behavior is shown in Fig. 13(b). Similarly to a
uniaxial extensional flow the stretch ratios grow or decrease
more rapidly with time when the magnitude of ζ0 is larger.

After evaluating the stretch ratios λ1 and λ2 we can
now determine the time-dependent elongational viscosity
η̄+(ζ0,d) = −(σzz − σxx)/ε̇0. Both the uniaxial and the biaxial
elongation flow [Figs. 14(a) and 14(b), respectively] show
two distinct regimes, depending on whether or not stationary
elongational flow exists. In the latter region the Trouton
viscosity grows monotonically and converges to its value for
a stationary elongational flow.

In the former region, the elongational viscosity diverges
for d → ∞. In Fig. 14 this divergence appears as an abrupt
increase in η̄+, which is shifted to shorter times for higher
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FIG. 12. Behavior of the stretch coefficients λ1 and λ2 for a
uniaxial elongational flow as a function of the dimensionless time, d ,
for different ζ0’s. (a) Values of ζ0 for which a stationary state exists
(0 < ζ0 < 1). (b) Values of ζ0 for which no stationary state exists
(ζ0 > 1).

elongation rates ε̇0. This effect is known as “strain harden-
ing” [2] and is qualitatively well accounted for in our model.

From experiments one finds, for the time scale tc of the
abrupt increase,

εH = ε̇0 tc = ζ0 dc = const. (66)

εH is known as the Hencky strain and has different values for
different samples [2]. Inspection of Fig. 14 shows that is is
difficult within our model to determine dc precisely, since η̄+
grows monotonically and does not break at a specific instant in
time. It is clear, however, that relation (66) is roughly satisfied,
since dc tends to decrease with increasing ζ0.

Since we have used a logarithmic time axis in Fig. 14, we see
that for short times, that is, for t 	 τ , the behavior of η̄+(ζ0,d)
is obviously independent of the elongation rate. This property
is also known from experimental data [28]. We investigate this
feature and expand η̄+(ζ0,d) into the dimensionless time d up
to second order. For arbitrary values of ζ0 we find

η̄+(ζ0,d) = 3η∞ + 3
2K1τ d − 3

4 [K1τ + (3K1 − K2)τζ0]d2.

(67)
This result is independent of whether one uses the expanded
energy density or εela

a . We see that the first-order term depends
only on the material parameters, while the dependence on
the elongation rate arises only in second order. Therefore the
influence of the elongation rate becomes important only for
increasing times.

FIG. 13. Behavior of the stretch ratios λ1 and λ2 for a biaxial
elongational flow as a function of the dimensionless time d for various
values of ζ0. (a) Values of ζ0 for which a stationary state exists
(−1/2 < ζ0 < 0). (b) Values of ζ0 for which there is no stationary
state (ζ0 < −1/2).

FIG. 14. Onset behavior of the elongational viscosity η̄+ as a
function of the dimensionless time d for different values of ζ0 with
K2 = 4.4K1. (a) Uniaxial and (b) biaxial elongational flow.
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VI. EMPIRICAL RELATIONS

In rheology, there are a number of empirical relations that
connect various material functions of different types of flows.
These relations are empirical and typically cannot be derived
theoretically. An example, which we have discussed for the
linear regime, is the Cox-Merz rule [7]. These relations are
frequently used to supplement experimental data with results
from experiments, which are easier to perform. In this section
we investigate how well our model satisfies some of the
best-known relations. The goal is not to explain these empirical
relations but, rather, to check our model using a different
viewing angle.

A. The Cox-Merz rule

In part (I) we have inspected the Cox-Merz rule [7] for low
shear rates [1]. Here we generalize the discussion to higher
shear rates. The relation reads

η(γ̇ ) = ∣∣η�(ω̃ = ξ )
∣∣, (68)

with ω̃ = ωτ the dimensionless frequency of linear oscillatory
shear flow. It represents a relation between the shear thinning
and the magnitude of the complex viscosity associated with
an oscillatory shear flow. In Fig. 15 we compare the solutions
for η from Eq. (52) with the expression we obtained in part (I)
[1]:

|η�(ω̃ = ξ )| = K1τ

2
√

1 + ξ 2
. (69)

We discard the parameter η∞, since it plays almost no
role in the range ξ � 10. As a consequence, the curves for
η and |η�| in Fig. 15 are universal and parameter-free. Both
curves show qualitatively the same behavior, however, |η�|
falls off somewhat more rapidly. Given the limited quantitative
applicability of the simple expression for the energy density
εela

a , the result is quite satisfactory.
In Fig. 15 the larger ξ becomes, the more important the

influence of the viscosity η∞. |η�| then takes the form [compare
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FIG. 15. Comparison of the shear thinning curve η(ξ ) with |η�|
(Cox-Merz rule) and with η+

0 (first Gleißle mirror relation) as
functions of ξ = ω̃. η∞ has been neglected.
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FIG. 16. Comparison of η′ and η̂ as functions of ξ = ω̃.

Eqs. (86) and (87) in part (I)]

|η�| =
√

η2∞ + K1τ (K1τ + 4η∞)

4(1 + ω̃2)
(70)

[1], and we see that this function converges for ξ = ω̃ → ∞
to η∞ as does η. For finite frequencies, however, there is a
qualitative difference: for η, η∞ is simply an additive constant,
which has no influence on the shape of the function. This
property is independent of the form of the energy and results
from η = η∞ − σ ela

xy /γ̇ and the fact that η∞ does not enter σ ela
xy .

On the contrary, |η�| depends on η∞ in a complex fashion. As
a consequence, the viscosity constant influences the shape of
|η�| for higher frequencies. Therefore it is no longer possible
to fulfill the Cox-Merz rule exactly, but it is an approximation
in this framework.

In the companion paper [1] we have also discussed a variant
of the Cox-Merz rule, which connects the linear behavior of
an oscillatory flow with the derivative of the shear stress for a
stationary flow [7]:

η′(ω = γ̇ ) = −∂σxy

∂γ̇
(γ̇ ). (71)

The “viscosity” η̂ = −∂σxy/∂γ̇ is easy to calculate from
Eq. (53) but leads to a rather lengthy expression, which we
do not report explicitly here. The result depends effectively on
only one material parameter, (C1 + C2)τ . In addition, we note
that—in contrast to the usual Cox-Merz rule—the parameter
η∞ is additive for η′ as well as for η̂ and, therefore, plays no
role in the comparison and is discarded in Fig. 16.

We find excellent agreement, even better than for the usual
Cox-Merz rule. This result is also in accordance with what we
found in the discussion of low shear rates in part (I) [1].

B. Gleißle’s mirror relations

In 1980 Gleißle introduced two empirical relations that
connect material functions for a stationary shear flow with
those for a start-up shear flow [2,8]. They are used to obtain
data for η(γ̇ ) and 
1(γ̇ ) from nonstationary experiments [29].
Especially the first mirror relation was confirmed experimen-
tally quite well [10].

The first relation is a remarkable connection between the
shear thinning curve η(γ̇ ) and the limiting curve η+

0 (t) for a
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start-up shear flow taken at the time given by the reciprocal
shear rate [cf. part (I) [1] and Fig. 8]

η(γ̇ ) = η+
0 (t = 1/γ̇ ). (72)

This relation is also plotted in Fig. 15. The qualitative
agreement using our model is equally as good as before for the
Cox-Merz rule. We note, however, that η+

0 falls off somewhat
more rapidly. Of special interest is a direct comparison between
the curve |η�| and the curve η+

0 , since both can be calculated
from the linear elasticity and, therefore, without using a
general expression for the energy density. The clearly visible
similarity between the two functions in Fig. 15 is very high
and corresponds to experimentally known features [2]. In our
model it is not dependent on the choice of parameters but,
instead, closely connected to the similarities of the functions
1/

√
1 + ξ 2 and 1 − e−1/ξ .

The second mirror relation [8] connects the first normal
stress difference for a stationary shear flow 
1,


1(γ̇ ) = 
+
1 (γ̇0 = 0,t = k/γ̇ ), (73)

with that of a start-up shear flow for zero shear rate and taken
at time k/γ̇ . In contrast to the first mirror relation, there
is a phenomenological dimensionless constant k, which lies
experimentally between 2.5 and 3 [2]. There is again good
qualitative agreement, but some quantitative differences for
ξ > 1.

C. The Laun rule

The Laun rule [2,9] provides the empirical possibility of
determining the first normal stress difference of a stationary
shear flow from the linear data on an oscillatory shear flow,


1(γ̇ ) = 2η′′(ω)

ω

[
1 +

(
η′′(ω)

η′(ω)

)2]0.7∣∣∣∣
ω=γ̇

. (74)

The functions η′ and η′′ have been calculated in part (I) [1].
If we neglect η∞, we find, for the right-hand side of Eq. (74),


L
1 (ξ ) = K1τ

(1 + ξ 2)0.3
. (75)

Figure 17 shows that 
1 of Eq. (54) agrees quite well with the
function 
L

1 obtained from Laun’s rule.
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FIG. 17. Comparison of 
1 and 
L
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1 (Yamamoto relation) as

functions of ξ .

D. The Yamamoto relation

A relation of a somewhat different nature compared to
those discussed so far is the Yamamoto relation [10,11]. It
connects the viscosity for a relaxing shear flow η− with the
first normal stress difference 
1 for a stationary flow via an
integral relation,


1(ξ ) = 2

∞∫
0

η−(ξ,d = T )dT ≡ 
Y
1 (ξ ). (76)

A comparison of the integral over η− from Eq. (60) and 
1

from Eq. (54) is shown in Fig. 18. We note that we could not
find an analytic solution for 
Y

1 .
In this plot the behavior of the curves is again independent

of the material properties. The Yamamoto relation is satisfied
very well. This is a remarkable result, since we have seen in
Sec. IV B that the behavior of η−(ξ,d) is not completely in
agreement with experimental results.

VII. CONCLUSIONS AND PERSPECTIVE

In this paper we have applied the systematic model of
transient elasticity to the rheology of polymer melts and
solutions under large amplitude deformations. Based on a
generalized deformation energy applicable for finite strain
with only two independent parameters, which reduces to the
conventional elastic energy in the limit of small deformations,
we have provided qualitative, and frequently even almost-
quantitative, agreement with experimental data for many
phenomena characteristic of large deformations in polymer
rheology. These include viscosity overshoot near the onset of
shear flow, the onset of elongational flows in situations for
which there is no stationary solution, and shear thinning and
normal stress differences for a large range of shear rates. In
addition, we find that our model satisfies empirical relations
including the Cox-Merz rule, Gleißle’s mirror relations, the
Laun rule, and the Yamamoto relation, in several cases
quantitatively, but always at least qualitatively.

Thus the present work complements nicely the companion
paper [1], where the emphasis is on small amplitude defor-
mations. In part (I) we have shown that in the framework
of the simplified transient elasticity model valid in the small
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strain limit, containing in total five parameters—namely, the
relaxation time τ of the transient network, the three elastic
constants K1, K2, and K3 associated with the quadratic, cubic,
and quartic transient elasticity, and the viscosity parameter
η∞—we could account for many of the experimental obser-
vations already occurring for small strains qualitatively and,
quite often, even almost quantitatively [1]. These phenomena
include, for example, the onset of shear thinning for a station-
ary shear flow, surface effects including the Weissenberg effect
and the surface curvature for the flow down a slightly tilted
channel, and predictions about the elongation rate dependence
of the Trouton viscosity.

There are several directions in which the results presented
could be generalized. One direction is the incorporation of
transient orientational elasticity, a concept put forward in [30]

that has been compared to classical rheological descriptions
in [31]. Another area in which the approach of transient
elasticity could turn out to be fruitful is anisotropic composite
materials including anisotropic magnetic gels [32,33] as well
as liquid crystalline polymers and liquid crystalline elastomers
and gels [34–36]. All these systems have a transient network,
in many cases in addition to the permanent cross-linking.
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