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Transient elasticity and polymeric fluids: Small-amplitude deformations

Oliver Müller,1 Mario Liu,1 Harald Pleiner,2 and Helmut R. Brand2,3

1Institut für Theoretische Physik, Universität Tübingen, 72076 Tübingen, Germany
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Transient elasticity (TE) is a concept useful for a systematic generalization of viscoelasticity. Due to its
thermodynamic consistency, it naturally leads to a simple description of non-Newtonian effects displayed by
polymeric fluids, granular media, and other soft matter. We employ a continuum-mechanical theory that is derived
from TE and tailored to polymeric fluids, showing how it captures a surprisingly large number of phenomena
in shear and elongational flows, including stationary, oscillatory, and transient ones, as well as the flow down
an inclined channel. Even the Weissenberg effect is well accounted for. This theory is applicable for small- as
well as large-amplitude deformations. We concentrate on the former in the present article, leaving the latter to a
companion article.
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I. INTRODUCTION

The hydrodynamic method is a powerful and top-down
approach to describe the continuum-mechanical, macroscopic
behavior of any condensed systems. Starting from the basic
physics of the system (rather than a collection of character-
istic experiments), one can use it to derive the appropriate
continuum-mechanical, or, better, hydrodynamic, theory. It
is done by considering energy and momentum conservation
simultaneously, combining both in a thermodynamically con-
sistent way.

This approach has been applied to many systems, including
the superfluid helium [1,2] and nematic liquid crystals [3,4].
The hydrodynamic theories are so accurate and encom-
passing that both systems—in spite of their considerable
complexities—are accepted as well understood. Hereby, the
basic physics for the superfluids is spontaneously broken
gauge symmetry, and for liquid crystals broken rotational
ones, and the associated state variables are, respectively, the
superfluid velocity and director. Given these, the structure
of the hydrodynamic theory can be uniquely determined,
including especially the explicit form of the stress tensor σij .

For a host of complex fluids and soft materials, such
as polymers, colloidal suspensions, and granular matter, the
circumstances are less clarified. Lacking a similarly clear idea
of their basic physics, the prevailing macroscopic understand-
ing is based on a collection of experimental observations.
Very often, the rheological behavior is characterized as non-
Newtonian, stressing the distance to the simple Newtonian
ones. Typical non-Newtonian effects are linear viscoelasticity,
shear thinning, elongational hardening, rod climbing (Weis-
senberg effect), yield stress, viscoplasticity, and thixotropy.
To account for them, there are many textbook models,
including Maxwell, Jeffrey, Oldroyd, Giesekus, Leonov, and
the intricate Kaye-Bernstein-Kearsley-Zapas [5–8]. All are
designed bottom-up, with these effects in mind, by skillfully
combining fluid dynamic insights, elasticity theory, and the
frame-indifference principle. Starting from momentum con-
servation, ġi + ∇j σij = 0, they provide a constitutive relation
that specifies the time derivative of σk� as a function of the rate
of stretching Ak� ≡ 1

2 (∇kv� + ∇�vk) and σk� itself. Though no

model is encompassing, or generally accepted as authoritative,
the more sophisticated ones are capable of accounting for a
number of these experiments.

In recent years, the approach of constitutive relations has
been supplemented by sophisticated mesoscopic models of
local and transient substructures, such as the tube model for
polymer melts [9]. Consequently, rather more complicated
equations have been employed that, on one hand, are better
at reproducing even the slightest details of an experiment but,
on the other, frequently require separate descriptions for each
new experiment. For instance, the description of shear flow
[10] differs from that of elongational ones [11], and branched
polymers require a treatment distinct from linear ones [12].

Instead of tailoring yet another constitutive relation, we aim
to identify the basic physics of polymeric fluids, searching for
qualitative understanding rather than faithful rendition. This
can be done only by starting from a proposition to derive
the associated hydrodynamics and check its results against
observations. Taking transient elasticity (TE) as the basic
physics of polymeric fluids, we have derived the associated
hydrodynamic theory [13–16] and are in the present article
working out its results.

The variable associated with TE is the elastic strain Uij —
the part of the total strain that leads to reversible storage of
elastic energy. The rest of the strain does not store any energy
and is plastic and irrelevant. To account for the nonpermanency
of elasticity, Uij is taken as a relaxing variable. All this is in
contrast to true elasticity, in which the total strain, completely
elastic and nonrelaxing, always leads to energy storage. As
nonlinear terms are important, we take Uij to be the Eulerian
strain tensor that vanishes in the absence of any deformation.

Without energy input, a TE system is elastic for time spans
much smaller than the relaxation time τ of Uij , t � τ . For
t � τ , Uij = 0 is relaxed, there is no elastic stress, and the
system is fluid. With input, such as under a steady shear flow,
circumstances are more subtle. We note it is not at all obvious
that by making viscoelasticity thermodynamically consistent
will yield a model capable of accounting for characteristic
polymeric effects: shear thinning, normal stress differences,
and others. Yet applying the TE hydrodynamics to varying
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flows, we find a surprisingly wide range of instances that
display satisfactory agreement to experimental observations.

Any hydrodynamic theory has two parts: structure and
coefficients. To set up the structure, one first defines a set
of state variables associated to the postulated basic physics.
It is crucial for this set to be complete. Only then is the
hydrodynamic theory local in space and time, with gradient
expansion rather than integral equations. And there are no
hysteresis or history dependence. We take the variables to be
the elastic strain Uij , in addition to the densities of mass and
entropy: ρ,s. The total, conserved energy εrf in the rest frame is
a function of them, εrf = εrf (ρ,s,Uij ). The conjugate variables
are partial derivatives of εrf , e.g., ψij ≡ ∂εrf/∂Uij . [ψij is the
elastic stress to linear order in Uij . The complete expression
is given in Eq. (4) below.] Without specifying εrf (ρ,s,Uij ),
all conjugate variables, especially ψij , are formal, abstract
quantities.

The dynamic equations for the state variables ρ,s,Uij

and for the momentum densities ρvi define the fluxes,
with the total stress tensor σij given by the momentum
flux. Ensuring energy, momentum, and mass conservation,
and the validity of the second law of thermodynamics, all
fluxes may be uniquely determined, in terms of the state
and conjugate variables. They hold irrespective what form
εrf (ρ,s,Uij ) has. The fluxes contain transport coefficients that
are frequently taken as constant but are generally functions
of the state variables. A discussion of the hydrodynamic
framework and the elastic strain is in Refs. [13–16] and
a comparison to conventional approaches in Ref. [17]. The
advantages of this method are (1) its explicit compliance with
general principles including conservation laws, thermodynam-
ics, and symmetry requirements and (2) its easy generaliza-
tion to incorporate additional variables (such as the elastic
strain).

To arrive at a concrete theory, one that may be tested against
experiments, the energy εrf and the transport coefficients need
to be specified. These are material-dependent properties that
reflect, on the macroscopic level, the microscopic structures
and properties. There is no systematic treatment, and we had
to resort to a trial-and-error approach. The expressions given
in Sec. II are found appropriate for standard polymeric fluids.

It is useful in this context to note the similarities between
some soft-matter systems. For instance, granular media are
also characterized by TE and the elastic strain Uij , although
the elastic energy εrf differs completely [18–21]. (In addition,
the granular temperature Tg is needed as a variable.) Again,
a wide range of experiments were shown well accounted for
by its hydrodynamics [22]. Colloidal suspensions and yielding
soft matter are prime candidates for a similar treatment in the
future.

In Sec. II, a simplified version of the TE hydrodynamics
named the polymeric hydrodynamics, as derived and argued
for in the Appendix, is presented. The energy and the
transport coefficients are specified such that the equations
are simple enough for an analytic or quasianalytic treat-
ment, rendering the physics underlying polymeric effects
such as shear thinning, elongational hardening, and rod-
climbing transparent. We employ it to study shear flows in
Sec. III and elongational ones in Sec. IV—both confined to
small strains, leaving the case of large deformations to the

companion article [denoted by (II) throughout the present
article].

II. THE POLYMERIC HYDRODYNAMICS

The TE hydrodynamics, as given in Refs. [13–16], is
general. It accounts not only for various flows but also for
sound propagation, temperature diffusion, and other hydrody-
namic phenomena, many of which are of low interest at the
moment. Therefore, we take the liquid to be incompressible
and isothermal, T ,ρ = const, A�� = 0. In addition, we have
Ukk = 0 for linear elasticity. As this is insufficient for our
purposes, we employ the general condition [7],

(1 − 2U1)(1 − 2U2)(1 − 2U3) = 1, (1)

with Ui the eigenvalues of Uij . Its dynamic equation is

U̇ 0
ij + vk∇kU

0
ij + [Ukj∇ivk + Uik∇j vk]0

= A0
ij − U 0

ij /τ, τ > 0, (2)

where the superscript 0 denotes the traceless part. Clearly, vis-
coelasticity is codified by the term −U 0

ij /τ . The conservation
of momentum sports three stress terms:

ρ(v̇i + vk∇kvi) + ∇iP + ∇j

(
σ ela

ij − σ D
ij

) = 0, (3)

σ ela
ij = −ψij + ψkiUjk + ψkjUik, (4)

σ D
ij = 2η∞A0

ij , η∞ > 0, (5)

P = −εrf + T s + μρ, (6)

ψij ≡ ∂εrf

∂Uij

, T ≡ ∂εrf

∂s
, μ ≡ ∂εrf

∂ρ
. (7)

Next, we specify εrf by expanding it in Uij . The general form
to fourth order and the associated elastic stress are

εrf − ε̄ = K1UijUji/2 + K2UijUjkUki/3

+K3UijUjkUk�U�i/4, K1 > 0, (8)

σ ela
ij = −K1Uij + (2K1 − K2)UikUkj

+(2K2 − K3)UikUklUlj , (9)

see the Appendix for derivation. We note it is the expansion that
limits the validity of these expressions to small deformations.
To guarantee the uniqueness of the zero-stress solution associ-
ated with Eq. (8), we require the condition K2

2 < 2K1K3. This
condition will turn out to be consistent with all inequalities
arising in the following. For the case of large deformations a
detailed analysis is given in the companion article. We also
note there are two transport coefficients, the relaxation time
τ and the viscosity η∞, and three elasticity coefficients, Ki

(altogether five). The quantity ε̄ contains the thermodynamic
degrees of freedom of a usual liquid, which, however, do not
play a role in the following.

III. SHEAR FLOWS

A. General considerations

We now consider the case of planar shear flows. We will
apply the polymeric hydrodynamics to this geometry to see
how well it captures the experimental observations. We first
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FIG. 1. Planar shear flow between two parallel infinitely extended
plates.

recall the geometry of simple shear from Fig. 1 and the general
form of the velocity profile

v(r,t) = vx(y,t)x̂, (10)

where x̂ is flow direction, ŷ the direction of the velocity
changes, and ẑ the neutral direction. The gradient ∇yvx is
usually called shear rate and denoted by γ̇ [23].

For a start we must analyze the structure of the strain tensor
Uij . Considering a 2D plane strain flow we have for Uij and
U 0

ij

U =
(

Uxx Uxy

Uyx Uyy

)
, (11)

U0 =
(

1
2 (Uxx − Uyy) Uxy

Uyx
1
2 (Uyy − Uxx)

)
. (12)

To get an intuitive picture of the deformations one can
introduce the stretch coefficients λi [24],

λi = 1√
1 − 2Ui

, i = 1,2,3, (13)

that describe the stretching along the principal axes relative to
the unstrained geometry. Here the eigenvalues of Eq. (11) are

U1,2 = 1
2 (Uxx + Uyy ∓ U ) and U3 = 0 (14)

with the abbreviation U 2 = (Uxx − Uyy)2 + 4UxyUyx . The
orientation of the principal axes in the x-y plane is given
by the rotation angle φ, with

tan φ =
√

U + Uxx − Uyy

U − Uxx + Uyy

. (15)

It is useful to bring the dynamic equations for the strain
tensor into a dimensionless form. Uij itself is already dimen-
sionless, and time t and the shear rate γ̇ will be given in units
of the relaxation time

ξ ≡ γ̇ τ d ≡ t

τ
. (16)

The dimensionless shear rate ξ is called Weissenberg number
in the rheology literature [7]. We will not use this terminology
here, since the time scale τ arising here has a different origin
than the one used historically in rheology.

Based on the translation symmetry in x and z directions
we will also allow for the strain tensor only a y dependence.
We are now in a position to write down the three independent
equations of motion for the strain components, Eqs. (2) and

(1), in the form

(
U̇xx − U̇yy

)+ (
Uxx − Uyy

) = 2ξUxy, (17)

U̇xy + Uxy = 1
2ξ − ξUxx, (18)

Uxx + Uyy = 2
(
UxxUyy − U 2

xy

)
, (19)

where the dot denotes a partial derivative with respect to the
dimensionless time d.

In spite of the numerous simplifications made, the resulting
model for the motion of the upper plate without a well-
determined velocity v0(t) is still difficult to solve. In addition
to the three independent equations for Uxx , Uyy , and Uxy given
above, we must consider in addition a nontrivial diffusion
equation for vx given by Eq. (3), which also contains the
components of the strain tensor. To address this complication
we will assume as for Newtonian fluids that the velocity profile
is linear. For Newtonian fluids this is a good approximation,
when the distance between the plates is small and the viscosity
is sufficiently high. This assumption therefore also appears
to be a good ansatz for polymeric liquids. The shear rate is
also independent of location, and from Eqs. (17) and (18) it
follows automatically, that in this case also the strain tensor
Uij is spatially homogeneous. Thus Eq. (3) is reduced to the
Navier-Stokes equation with η∞ instead of η0. This result
suggests that the shear rate has the same structure as for a
Newtonian fluid, namely γ̇ (t) = v0(t)/L.

We are now ready to calculate the stress tensor in a
polymeric fluid for a prescribed motion of the upper plate.
To do this we proceed as follows: For a given v0(t) we assume
that the shear rate is spatially homogeneous and has the same
structure as a for a Newtonian fluid. Using Eqs. (17)–(19) and
suitable initial conditions for Uxx , Uyy , and Uxy we can then
calculate the strain tensor. From this result we determine the
stress tensor σij by Eqs. (5) and (9). In the following we will
address the cases of planar stationary, relaxing and oscillatory
shear flows as well as the onset of a planar shear flow. In
addition, we will analyze the Weissenberg (rod-climbing)
effect and the flow down an inclined channel.

B. Stationary shear flow

The first and simplest case we will address is stationary
shear flow. For this example we are particularly interested in
the effects of shear thinning and the existence of normal stress
differences. The upper plate is moving with constant velocity
and the shear rate is therefore constant:

ξ = γ̇ τ = const. (20)

In addition, the strain tensor is time- independent, and the
dynamic Eqs. (17)–(19) are reduced to

Uxx − Uyy = 2ξUxy, (21)

Uxy = 1
2ξ − ξ Uxx, (22)

Uxx + Uyy = 2UxxUyy − 2 U 2
xy. (23)
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FIG. 2. The components of the stationary strain tensor are plotted
as a function of dimensionless shear rate. ξ .

This system of equations is straightforward to solve with
the result

U = 1

2

⎛
⎜⎝1 − 1√

1+ξ 2

ξ√
1+ξ 2

ξ√
1+ξ 2

1 − 1+2ξ 2√
1+ξ 2

⎞
⎟⎠, (24)

where a second solution is ruled out because of the condition
that the eigenvalues have to be smaller than 1/2.

As we have seen already from the equations of motion,
the strain is in our simple approximation only a function of
the dimensionless shear rate, and its behavior is therefore
universal. The nonvanishing components of Uij are plotted
in Fig. 2 as a function of ξ . We are plotting in Fig. 2 the
components of the strain tensor for a large range of ξ values.
While we focus in the present article on small ξ values, we
will come back in a comparison to the behavior of larger ξ

values in the companion article (II).
Especially interesting for the purpose of the present article

is the case |ξ | � 1, since in that limit also the strain compo-
nents are very small. Obviously, Uxy is linear in leading order,
while the diagonal components are quadratic. The existence
of diagonal components in a shear flow is a nonlinear effect,
which is, as we will see shortly, essential for the description
of the properties of polymeric fluids.

For a Newtonian fluid, τ vanishes, and therefore we can put
ξ = 0 and see that, as expected, the strain tensor vanishes. In
the limit of an elastic solid we have τ → ∞, and we find from
Eq. (24) an infinitely strong deformation Uyy . This result is
also sensible, since in a solid maintaining a constant shear rate
leads to an unbounded, ever-growing deformation. Of course,
in praxis one cannot apply a constant shear to a solid forever.

To visualize the deformation we calculate the stretch
coefficients, λ1, λ2, along the principal strain axes

λ1,2 =
√√

1 + ξ 2 ∓ |ξ | (25)

and the rotation angle, φ, with respect to the laboratory system,
tan φ = λ2/λ1.

For vanishing shear rate the system is undeformed and both
stretch coefficients are one (Fig. 3). They are strictly monotonic
functions of ξ , where for increasing ξ , λ2 grows without bound
and λ1 converges to zero. From the incompressibility condition

1 2 3 4 5

0.5

1

1.5

2

2.5

3

λ2

λ1

ξ

FIG. 3. The stretch coefficients λ1 and λ2 are plotted as functions
of the dimensionless shear rate ξ .

it follows that the product of the two stretch coefficients is unity
independent of the shear rate. We will come back to this figure
showing also the large deformation behavior in the comparison
given in the companion article (II).

The orientation angle φ also reflects the behavior of λ1 and
λ2 as a function of ξ . The strain axis turns away from the y axis
with growing shear rate and approaches asymptotically the x

axis, meaning the fluid is stretched parallel to the plates. For
ξ → 0 φ converges to 45◦. This case, however, has no physical
meaning, since it corresponds to the undeformed system.

After we have characterized the behavior of the strain
tensor, we now turn to the determination of the stress
tensor for small values of the strain. The stress tensor for
large deformations along with a consideration of the small
deformation limit as a special case will be presented and
discussed in the companion article (II). Since we have seen that
the components Uij are small when ξ is small, it is sensible to
expand the strain tensor as well as the stress tensor into powers
of ξ . Since we have expanded the elastic energy up to fourth
order in the strains, the third order in ξ is the highest we can
keep for the stress tensor without losing contributions to the
same order. We therefore expand the strain tensor Eq. (24)
in powers of ξ and obtain, with Eqs. (5) and (9), for the
nonvanishing components of the stress tensor, up to order ξ 3:

σxy = − η∞
τ

ξ − 1
2K1ξ − 1

8 (2K1 − 4K2 + K3)ξ 3, (26)

σxx = 1
4 (K1 − K2)ξ 2, (27)

σyy = 1
4 (5K1 − K2)ξ 2, (28)

σzz = 0. (29)

The stress tensor has the same symmetry properties as Uij :
While the diagonal elements are even functions of ξ , and
therefore independent of directions, the shear stress changes
sign with the shear rate.

We are now in a position to calculate for small shear
rates the three material functions that are commonly used to
characterize a stationary shear flow [5]. We consider first the
dynamic viscosity η = −σxy/γ̇ . It takes the form up to cubic
order

η = (
η∞ + 1

2K1τ
)− 1

8 (−2K1 + 4K2 − K3)τξ 2. (30)
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Thus the shear viscosity is an even function of the shear rate.
To obtain shear thinning, the quadratic contribution in ξ must
be negative. This leads to a restriction for K3,

K3 < 4K2 − 2K1. (31)

It is obvious that we must introduce further conditions for
the elastic constants to make sure that our model correctly
yields shear thinning, since not all viscoelastic media are
shear thinning. However, we will find out in the course of our
discussions that a consistent picture for polymeric materials
emerges. In the limit of a vanishing shear rate we obtain the
so-called zero-shear-rate viscosity [5],

η0 = η∞ + 1
2K1τ. (32)

This quantity is determined not only by the viscosity constant
η∞ but also by the relaxation time and the elastic parameter K1.
This result follows from linear elasticity while shear thinning
is a truly nonlinear effect.

For the first and second normal stress difference, �1 =
−(σxx − σyy)/γ̇ 2 and �2 = −(σyy − σzz)/γ̇ 2, we find, using
Eqs. (27) and (28),

�1 = K1τ
2 and �2 = − 1

4 (5K1 − K2)τ 2. (33)

We can thus obtain in the framework of our model the existence
of normal stress differences. In the order considered here,
the coefficients for these two quantities are constant; their
dependence on shear rate arises only if one expands the elastic
energy at least to fifth order in the strains. If one considers
only linear contributions to the elastic stress, then �1 and �2

are identically zero; the existence of normal stress differences
is thus uniquely a nonlinear elastic effect. As a rule �1 is
positive and �2 is negative [5]. The first condition is always
fulfilled, since K1 > 0 by definition, while the second one
requires additionally

K2 < 5K1. (34)

The ratio of the normal stress coefficients is known to be
typically about 0.1 [7]. In our model this requires K2 ∼ 4.5K1

and K2 is therefore obviously positive.
At the end of the present discussion we discuss the order of

magnitude of the material parameters. Our goal is to determine
from the observables �1 and η typical orders of magnitude for
τ and K1. We consider the limiting case of vanishing shear
rates

η0 ≈ 1
2K1τ and (�1)0 = K1τ

2, (35)

where we have assumed for simplicity that the elastic part of
η is much larger than the dissipative one. This is motivated by
the fact that for shear thinning the shear viscosity can decrease
by orders of magnitude. One will have to argue, however, that
η∞ is the limit of η for high shear rates; we will come back
to this question when we discuss large deformations and high
shear rates in the companion article (II).

These relations can be inverted,

τ ≈ (�1)0

2η0
and K1 ≈ 4η2

0

(�1)0
, (36)

in order to calculate τ and K1, if one knows the values of η0

and (�1)0, e.g., from extrapolations of measurements for η(γ̇ )

and �1(γ̇ ). In Table I the experimental values used are on the
left and the calculated results on the right. Both the relaxation
time and the first elastic modulus for the various samples can
vary by orders of magnitude. As a result, polymeric fluids are
typically much more viscous than Newtonian liquids. For the
two polydimethylsiloxane samples we can go further with the
comparison. In Ref. [27] the empirical Carreau-Yasuda model
is used to fit the measured curves η(γ̇ ) with τ0 as one of the
fit parameters. The results, τ0 = 0.3 s for LG1 and 102 s for
LG2, agree well with our calculated values using Eq. (36).

The relaxation time τ has also consequences for the range
of validity of the expansion in ξ—the smaller τ is, the
larger the shear rates can be, for which the approximation
is still applicable. This means, for example, that for very
small relaxation times the two normal stress coefficients are
still constants for higher shear rates. Similarly for the shear
viscosity—the smaller the relaxation time, the flatter the shear
thinning curve for small shear rates. This would suggest that,
e.g., the shear viscosity for the aluminum laurate solution from
Table I should decay much more slowly for small γ̇ than for
the polyisobutylene solution, which is clearly confirmed by
Fig. 3.3-3 in Ref. [5].

To get a feeling for the values of the elastic constant K1, we
compare it with the elastic moduli of elastic solids. Rubber,
for example, has a Young modulus of about 107 . . . 108Pa [28]
and which is therefore two to three orders of magnitude higher
than LG1, while the other samples tend to lie even well below
this value. Because of the realistic estimate K2 ≈ 4.5K1, K2 is
of the same order of magnitude as K1. For K3 such a statement
is not possible, but we will give an estimate further below.

Thus we have seen that the incorporation of nonlinear
elastic properties yields the typical phenomena in a stationary
shear flow. The price we had to pay were restrictions for
the elastic constants K2 and K3. Next we will apply our
model to time-dependent shear flows to see how well other
polymeric effects can be described by our ansatz and whether
the restrictions for the elastic parameters can still be satisfied
consistently.

C. Relaxing shear flow

In this section we will consider the case when the upper
plate for a stationary shear flow is stopped suddenly at a
certain time. While in a viscous Newtonian fluid the liquid
become quiescent rather fast and only the hydrostatic stress
distribution is measured, one can observe in a polymeric fluid
a slow nonexponential relaxation of the stress [5]. To discuss
this effect we assume for the shear rate the following time
dependence:

γ̇ (t) =
{
γ̇0 for t < 0

0 for t � 0.
(37)

This means that the upper plate comes to rest, and the velocity
gradient vanishes, abruptly at time t = 0. In experiments it
turns out that the time the fluid needs to come to rest is not zero,
but still much smaller than the time scale for stress relaxation
[29].

We begin again with the discussion of the strain tensor
Uij . For times t < 0 we have a stationary shear flow with
the dimensionless shear rate ξ0 = γ̇0τ as discussed in the
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preceding section. For t � 0 the shear rate is identical to zero
and the equations of motion for Uij , Eqs. (17)–(19) read

(U̇xx − U̇yy) = −(Uxx − Uyy), (38)

U̇xy = −Uxy, (39)

Uxx + Uyy = 2
(
UxxUyy − U 2

xy

)
, (40)

with the initial condition that for t = 0 the strain tensor has its
stationary form Eq. (24). The dynamic equations immediately
lead to an exponential relaxation of the difference of the
diagonal components and the shear component:

Uxx − Uyy = ξ 2
0 e−d√
1 + ξ 2

0

, (41)

Uxy = ξ0 e−d

2
√

1 + ξ 2
0

, (42)

with the characteristic time τ . Using these solutions the sum of
the diagonal components follows from the incompressibility
condition, Eq. (40), after some algebra,

Uxx + Uyy = 1 −
√

1 + ξ 2
0 e−2d . (43)

It shows a nonexponential decay to zero, due to the nonlineari-
ties in the incompressibility condition. Although the relaxation
is not exponential, τ sets the time scale. All other components
are zero.

Also in this example the calculation of λ1, λ2, and φ is very
useful. We find

λ1,2 = (√
1 + ξ 2

0 e−2d ∓ |ξ0 e−d |)1/2
(44)

and tan φ = λ2(d = 0)/λ1(d = 0).
The results contain the surprising feature that the orientation

of the system of principal axes does not depend on time during
the relaxation but maintains the orientation it had before the
switch-off of the driving. The relaxation behavior of the stretch
ratios also reveals an interesting property. For a fixed time d, λ1

and λ2 correspond to a stationary shear flow with the effective
shear rate ξeff = ξ0 e−d . Since λ1 and λ2 are strictly monotonic
functions of shear rate in the stationary case, it follows that
both relax strictly monotonically to 1, see also Fig. 4. An

1 2 3 4 5

0.5

0.75

1.25

1.5

1.75
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λ1

0 ξ  = 0.5

0ξ  = 2

d

FIG. 4. The stretch coefficients λ1 and λ2 as a function of time d

for ξ0 = 0.5 and ξ0 = 2.

overshoot or an oscillatory behavior therefore does not occur
within this model.

For the calculation of the stress tensor we are again confined
to the limit of small deformations. They are small not only for
small stationary shear rates ξ0 and arbitrary times d but also
for large times d and arbitrary shear rates ξ0. We are mainly
interested in the former case and expand Uij into powers of ξ0

up to third order,

U =
[

1
2

(
1 − 1

2e−d
)
e−d ξ 2

0
1
2e−d ξ0 − 1

4e−d ξ 3
0

1
2e−d ξ0 − 1

4e−d ξ 3
0 − 1

2

(
1 + 1

2e−d
)
e−d ξ 2

0

]
. (45)

When calculating the stress tensor, we realize that its
dissipative part σD

ij vanishes, since there is no flow for d � 0.
We obtain for the nonvanishing components of σij up to order
ξ 3

0

σxy = − 1
2K1e

−d ξ0
(
1 − 1

2ξ 2
0

)
+ 1

8 (−4K1 + 4K2 − K3)e−3dξ 3
0 , (46)

σxx = [− 1
2K1e

−d + 1
4 (3K1 − K2)e−2d

]
ξ 2

0 , (47)

σyy = [
1
2K1e

−d + 1
4 (3K1 − K2)e−2d

]
ξ 2

0 . (48)

For d → 0, σxx and σyy go over to their stationary form,
compare Eqs. (27)–(29), in contrast to σxy , which does not have
the contribution −η∞γ̇0 due to the lack of flow. We see that
the stress tensor relaxes to zero in the form of a superposition

TABLE I. Material parameters for various polymeric fluids.

η0 (�1)0

Sample in Pa s in Pa s2 τ in s K1 in Pa

Polyethylene melt at 423 K [25] 5 × 104 6 × 106 60 2 × 103

2.0% Polyisobutylene in primol [5,26] 103 7 × 104 35 57
1.5% Polyacrylamide in a
water-glycerol mixture [5,26] 3 × 102 2 × 104 33 18
7% Aluminiumlaurate in a
decalin–m-cresol mixture [5,26] 90 3 × 102 2 102

Linear polydimethylsiloxane,
LG1 [27] ∼2 × 104 ∼2 × 104 ∼0.5 ∼105

Linear polydimethylsiloxane,
LG2 [27] 5 × 105 108 102 104
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FIG. 5. The material function η− relative to the stationary value
η − η∞ as a function of dimensionless time d for ξ0 = 0.1 and ξ0 =
0.2. We have used K2 = 4.5K1 and K3 = 15K1.

of various relaxation processes with the characteristic times
τ , τ/2, and τ/3; the weight of the respective contributions
depends on the elastic constants and the shear rate.

For a relaxing shear flow material functions η−, �−
1 , and

�−
2 are defined [5] analogously to η, �1, and �2 by using ξ0

instead of ξ , since the latter is zero at the times, when they are
considered.

From Eq. (46) it is obvious that η−(ξ0,d) ≡ −σxy/ξ0 is
monotonically relaxing in time. To compare the slope of η−
for various shear rates, we discuss the normalized function
η−(ξ0,d)/η−(ξ0,0), where η−(ξ0,0) differs from η by the
contribution η∞. The slope of this normalized function should
decrease for increasing values of ξ0. To examine this question,
we evaluate this function at d = 0 and find for the slope up to
order ξ 3

0

∂

∂d

η−(ξ0,d)

η−(ξ0,0)

∣∣∣∣
d=0

= −1 + 1

2

(
− 4 + 4

K2

K1
− K3

K1

)
ξ 2

0 . (49)

The correct physical behavior is obtained when the prefactor
of the ξ 2

0 contribution is negative, which leads to a lower bound
for K3,

K3 > 4(K2 − K1). (50)

If this inequality turns into an equality, the relaxation would
be independent of ξ0 (up to order ξ 3

0 ). This bound is not
in contradiction to the upper bound, which was given by
the inequality (31) and which followed from shear thinning.
With the realistic estimate K2 ≈ 4.5K1 this means that K3

lies roughly between 14K1 and 16K1 and is thus obviously
positive. For Fig. 5 we used the values K2 = 4.5K1 and
K3 = 15K1.

It turns out that for small shear rates the curves for different
ξ0 are difficult to distinguish; this behavior is also known
from experiment [29]. This can be used for an interesting
comparison with experiments. The limiting curve, η−

0 (d), of
η−(ξ0,d) for ξ0 → 0 serves as a (rather accurate) upper bound
for all small-shear rate relaxation measurements. Its value,
η−

0 (d) = (1/2)K1τ exp(−d), which already follows from lin-
ear elasticity theory, features τ as the relevant relaxation time
scale. In Ref. [29] the measured relaxation curves of η− are
compared with various models and this way characteristic time

TABLE II. Comparison of the various relaxation time scales τexp

and τ .

Sample τexp in s τ in s

2.0% Polyisobutylene in primol [29] 145 35
1.5% Polyacrylamide in a
water-glycerol mixture [29] 104 33
7% Aluminiumlaurate in a
decaline–m-cresol mixture [29] 2.1 2

scales τexp are extracted. In Table II we compare these values
with our calculated values of τ from Table I for those materials
that were used in both the stationary [26] and the relaxational
measurements [29]. While for the aluminium soap solution the
agreement of the time scales is very good, we find for the other
samples a deviation by a factor of three to four. Since the time
scales have a completely different origin, this deviation is to be
expected, but we see nevertheless that the order of magnitude
of both scales agrees.

The material functions �−
1 = −(σxx − σyy)/ξ 2

0 and �−
2 =

−(σyy − σzz)/ξ 2
0 are (up to order ξ 2

0 )

�−
1 (ξ0,d) = K1τ

2e−d , (51)

�−
2 (ξ0,d) = − 1

2K1τ
2e−d + 1

4 (K2 − 3K1)τ 2e−2d . (52)

In the order considered these quantities do not depend on the
stationary shear rate ξ0 and �−

1 relaxes purely exponentially.
Comparing the relaxation behavior of �−

1 and η−, one finds
experimentally, that

�−
1 (ξ0,d)

�−
1 (ξ0,0)

>
η−(ξ0,d)

η−(ξ0,0)
. (53)

In simple words this means that the first normal stress
coefficient relaxes always more slowly than the viscosity,
independently of ξ0. Inserting our results into this inequality
and expanding up to quadratic order in ξ0, we obtain the
relation

(4K1 − 4K2 + K3)(e−2d − 1) < 0. (54)

Since the second factor is always negative for d > 0, the
resulting condition is identical with inequality (50). Therefore,
if Eq. (50) is satisfied, the qualitative relaxation properties of
�−

1 and η− are automatically given correctly.
�−

2 is negative just like �2 when the condition (34),
K2 < 5K1, is satisfied. In addition, the ratio �−

2 /�2 shows
an overshoot behavior at the beginning of the relaxation, when
K2 > 4K1. In Fig. 6 this is the case, because of our estimate
K2 ≈ 4.5K1.

To compare the solution for �−
2 with experimental results

is much more difficult than for �−
1 , since the second normal

stress difference is difficult to measure.

D. The onset of shear flow

In this section we discuss the complementary case com-
pared to the last section, namely the onset of shear flow. In
a fluid that is at rest initially, the upper plate starts moving
at a specific time with constant velocity. In a fluid at rest the
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FIG. 6. The material function �−
2 relative to its stationary value

�2 is plotted as a function of dimensionless time d with K2 = 4.5K1.

upper plate suddenly starts moving with constant velocity. We
expect that after some time a stationary shear flow results.
While a Newtonian fluid reaches stationarity in the scheme
presented on a negligible time scale, a polymeric fluid shows
a convergence to a stationary behavior on the time scale
τ . This convergence process qualitatively differs from the
relaxation processes of the last section. For shear rates that
are not too small, one finds for the components of the stress
tensor a nonmonotonic behavior in the form of an overshoot
and afterwards an oscillatory convergence [5]. Since we are
restricted to small shear rates here, we cannot give in this
article a complete discussion of the overshoot, but we will get
some interesting insights. Therefore we start with the velocity
profile

γ̇ (t) =
{

0 for t < 0

γ̇0 for t � 0
, (55)

meaning that the upper plate starts moving with constant
velocity, and the constant velocity gradient is established
abruptly at time t = 0. Of course, even this process takes a
finite time, which we neglect, however, compared to the time
scale τ relevant for strain and stress convergence.

To determine the temporal behavior of the strain tensor
for t � 0 we must solve Eqs. (17)–(19) with a spatially and
temporally constant shear rate ξ0 = γ̇0τ . As initial condition
the deformations are zero at time t = 0. Due to the time
dependence of the strain tensor, the equations have only a
numerical solution. But since we are restricting ourselves in
this article to small deformations and thus to small shear rates,
we can make an expansion:

Uxy(ξ0,d) = A(d) ξ0 + C(d) ξ 3
0 + O

(
ξ 5

0

)
, (56)

Uxx(ξ0,d) = Bx(d)ξ 2
0 + O

(
ξ 4

0

)
, (57)

Uyy(ξ0,d) = By(d)ξ 2
0 + O

(
ξ 4

0

)
. (58)

Writing down this ansatz we have already made use of
symmetry properties of the components with respect to the
shear rate. Inserting the ansatz and keeping track of the orders
in ξ0, we find

Ȧ + A = 1
2 , (59)
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FIG. 7. The stretch coefficients λ1 and λ2 are plotted as a function
of time d for ξ0 = 0.1 and ξ0 = 0.2.

Bx + By = −2A2, (60)

(Ḃx − Ḃy) + (Bx − By) = 2A, (61)

Ċ + C = −Bx, (62)

with the boundary conditions A(0) = Bx(0) = By(0) =
C(0) = 0. As solution we obtain with this method the
nonvanishing strain components up to order ξ 3

0 :

Uxy(ξ0,d) = 1
2 (1 − e−d )ξ0

+ 1
4 [−1 + (2 + d2)e−d − e−2d ]ξ 3

0 , (63)

Uxx(ξ0,d) = 1
4 (1 − 2de−d − e−2d )ξ 2

0 , (64)

Uyy(ξ0,d) = 1
4 [−3 + 2(2 + d)e−d − e−2d ]ξ 2

0 . (65)

We want to elucidate again the temporal behavior of the
deformations by considering the stretch ratios λ1,2, Eq. (13).
The analytical expressions are rather involved and we only
present a plot for two different dimensionless shear rates in
Fig. 7.

We notice two features: The strictly monotonic convergence
towards the stationary state takes place on a time scale set
by τ . For the small shear rates considered in this article, an
overshoot behavior is not visible, and the stretch ratios are
almost symmetric with respect to 1 (for all times d).

Similarly, the temporal behavior of the orientation angle φ

in Fig. 8 is monotonic.
In contrast to relaxing shear flow, φ is time dependent in the

present case. In the limit d → 0 the angle reaches 45◦, which
was identified in Sec. III B as the limiting case of vanishing
shear rate. With increasing time it converges monotonically
towards its stationary value.

For the calculation of the stress tensor σij we proceed as
usual. In contrast to the relaxing shear flow considered in the
preceding section, here we do have a flow and the viscosity
η∞ enters as well. The material functions are defined such
that for d → ∞ they reach asymptotically the appropriate
stationary values according to a shear rate ξ0. In particular, for
η+ = σxy/ξ0 we get

η+(ξ0,d) = η∞ + 1
2 (1 − e−d )K1τ + 1

8�2(d) τ ξ 2
0 , (66)

with the abbreviation

�2(d) = (2K1 − 4K2 + K3)
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FIG. 8. The orientation angle φ as a function of time τ for
ξ0 = 0.1 and ξ0 = 0.2.

+ (2[d2 − 4]K1 + 12K2 − 3K3)e−d

+ (10K1 − 12K2 + 3K3)e−2d

+ (−4K1 + 4K2 − K3)e−3d .

At time d = 0, η+ = η∞ according to its definition, while for
d → ∞ it takes the stationary value η(ξ0) from Eq. (30). The
behavior between these limits is visualized in Fig. 9.

For the small values of ξ0 considered here, the convergence
towards the stationary value is monotonic and (slightly) faster
for larger shear rates. This agrees with the observation for
small shear rates [5]. The overshoot behavior occurring for
higher shear rates cannot be obtained in the approximation
considered here. Therefore, η+(0,d) is a lower bound for all
small shear measurements. In addition, Ref. [29] refers to the
relation η+(0,d) + η−(0,d) = η(0), which is an exact result
within linear elasticity description. It is trivially fulfilled by our
expressions, but it is violated if extended to finite ξ0 already in
order ξ 2

0 , as can be seen from Eqs. (30), (46), and (66).
Much simpler forms than for η+ are obtained for

the material functions �+
1 = (σxx − σyy)/ξ 2

0 and �−
2 =

−(σyy − σzz)/ξ 2
0 . Both quantities do not depend on the shear

rate to the order considered. The former shows a universal
temporal behavior in units of its stationary value �1 = K1τ

2

�+
1 (d)/K1τ

2 = [1 − (1 + d)e−d ] + O
(
ξ 2

0

)
. (67)
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FIG. 9. The material function η+ relative to its stationary value η

as a function of the dimensionless time d for ξ0 = 0.1 and ξ0 = 0.2.
In addition, we have used K2 = 4.5K1 and K3 = 15K1.
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FIG. 10. The material function �+
1 in units of �1 as a function of

dimensionless time d .

As one can seen clearly in Fig. 10, there is in the present
approximation no overshoot and �+

1 converges monotonically
towards the stationary value �1.

The second material function depends on K ′ ≡ K2/K1

− 4�+
2 (d)/K1τ

2 = 5 − K ′ − 2(4 + d − K ′)e−d

+ (3 − K ′)e−2d + O
(
ξ 2

0

)
. (68)

Figure 11 reveals a negative dip of �+
2 /�2, meaning that

�+
2 becomes positive first, goes through a maximum, and

converges monotonically to the always-negative stationary
value �2 form Eq. (33). This is at least the case for values
of K ′ within our limits 4 < K ′ < 5. In addition, the time
interval for which �+

2 is positive becomes larger with larger
K ′. This property naturally influences also the ratio of �+

1
and �+

2 (Fig. 12), which becomes negative in the same time
interval, where �+

2 is positive. Note that the limiting value for
d → 0 is physically irrelevant here. Our results show that the
assumption [30], �+

2 /�+
1 = �2/�1, is reasonable only for

sufficiently large times.
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FIG. 11. The material function �+
2 in units of �2 as a function of

dimensionless time d for various values of K2/K1.
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E. Oscillatory shear flow

As a third example of a time-dependent shear flow with the
geometry of Fig. 1 we discuss the case that the upper plate is
oscillating with a frequency ω. The shear rate then takes the
form

γ̇ (t) = γ̇0 cos (ωt), (69)

where γ̇0 is the amplitude of the oscillation and the frequency
ω is chosen positive without loss of generality. The frequency
must satisfy the restriction

ω � η0

ρL2
(70)

so the velocity profile can be considered to be linear [5]. To get
a feeling for the order of magnitude, we estimate some typical
numbers. With the smallest value of the viscosity coefficient
from Table I, η0 = 3 × 102 Pa s, an estimated density of ρ ≈
103 kg/m3, and a distance between plates of 2 mm we find the
restriction ω � 105 s−1. In this connection we must keep in
mind that the viscosity is in general a function of the shear rate;
with the use of η0 we assume automatically that we consider
only small shear rates meaning also small amplitudes γ̇0. Our
main interest in this section will be the discussion of linear
viscoelasticity; in addition, we want to see what our model
predicts for the behavior of the normal stress differences.

The Eqs. (17)–(19) for the strain tensor Uij reads for the
present case

U̇xx − U̇yy + Uxx − Uyy = 2 ξ0 cos (ω̃d)Uxy, (71)

U̇xy + Uxy = ξ0 cos (ω̃d)
(

1
2 − Uxx

)
, (72)

Uxx + Uyy = 2 UxxUyy − 2 U 2
xy. (73)

Here we have introduced the dimensionless frequency ω̃ = ωτ

and the dimensionless amplitude of the shear rate, ξ0 = γ̇0τ .
The initial conditions do not need to be specified, since we are
not interested in the onset behavior but rather in the asymptotic
state.

Again, it is nontrivial to solve these dynamic equations.
But since the amplitude ξ0 is a small quantity, we will use the
following expansion:

Uxy(ξ0,d,ω̃) = Bxy(ω̃,d) ξ0 + O
(
ξ 3

0

)
, (74)

Uxx(ξ0,d,ω̃) = Bxx(ω̃,d) ξ 2
0 + O

(
ξ 4

0

)
, (75)

Uyy(ξ0,d,ω̃) = Byy(ω̃,d) ξ 2
0 + O

(
ξ 4

0

)
, (76)

where the shear component is linear and the diagonal com-
ponents are quadratic in ξ0. In leading orders, we find the
following solutions:

Bxy(ω̃,d) = Axy(ω̃) cos[ω̃d + ϕxy(ω̃)], (77)

Bii(ω̃,d) = Vii(ω̃) + Aii(ω̃) cos[2ω̃d + ϕii(ω̃)], (78)

with i = x,y. The amplitudes are

Axy(ω̃) = 1

2
√

1 + ω̃2
, (79)

Axx(ω̃) = 1

8(1 + ω̃2)

1√
1 + 4ω̃2

, (80)

−Ayy(ω̃) = 1

8(1 + ω̃2)

√
9 + 16ω̃2

1 + 4ω̃2
, (81)

Vxx(ω̃) = −1

3
Vyy(ω̃) = 1

8(1 + ω̃2)
, (82)

and for the phase angles we get

tan ϕxy(ω̃) = −ω̃, (83)

tan ϕxx(ω̃) = −2ω̃(2 − ω̃2)

1 − 5ω̃2
, (84)

tan ϕyy(ω̃) = − 2ω̃(4 + 7ω̃2)

3 + ω̃2 − 8ω̃4
. (85)

Thus Uxy oscillates around the undeformed state Uxy = 0 with
the same frequency as the upper plate but with a phase shift
ϕxy . The amplitude and the phase angle depend on ω̃ and
therefore on the frequency and the relaxation time. In contrast,
the diagonal elements Uxx and Uyy show a completely different
behavior. Both components oscillate with twice the frequency
around a value different from zero Vii , which is a function of
ω̃ and which differs for Uxx and Uyy . The amplitudes Axx and
Ayy as well as the phase angles ϕxx and ϕyy also differ from
each other.
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ω~
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Ayy−

FIG. 13. The amplitudes Axy , Axx , and Ayy are plotted as
functions of the dimensionless frequency ω̃ = ωτ .
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FIG. 14. The phase angles ϕxy , ϕxx , and ϕyy as a function of the
dimensionless frequency ω̃ = ωτ .

Figure 13 shows the behavior of the oscillation amplitudes
Axy , Axx , and Ayy . They are all monotonically decreasing
functions of the frequency ω and of the relaxation time τ . We
notice that Axy has the highest amplitude. Since, in addition,
the diagonal components of the strain tensor are by a factor
ξ0 smaller than the shear component, this means that the
oscillation of the latter is, as a rule, at least one order of
magnitude larger than that of the diagonal components.

In addition, we note that Vxx > Axx as well as |Vyy | >

|Ayy |. Therefore, the diagonal components do not change
sign during the oscillations and we always have Uxx > 0
and Uyy < 0. The frequency dependence of the various phase
angles becomes clear from Fig. 14. The phase shift is in general
larger the higher the frequency or the longer the relaxation
time.

For the shear stress σxy we find in linear order in ξ0 the
well-known linear viscoelastic form [5,6]

σxy = −(η′ cos (ω̃d) + η′′ sin (ω̃d))
ξ0

τ
, (86)

with

η′ = η∞ + K1τ

2(1 + ω̃2)
, (87)

η′′ = K1τ ω̃

2(1 + ω̃2)
. (88)

Both quantities are independent of the oscillation amplitude
and functions of the dimensionless frequency. The viscous
part, η′, is constant for vanishing frequency and monotonically
drops to zero for very high frequency. The elastic contribution,
η′′, vanishes for both these limits and has a maximum in
between at ω̃ = 1, allowing for an evaluation of the relaxation
time τ . Often the two functions are combined to a complex
material function η∗ = η′ − iη′′.

Written in the form of the strain components, σxy =
A12(ω̃)ξ0 cos[ω̃d + ϕ12(ω̃)], we note that the phase angle here,
ϕ12, differs from the phase of the shear strain, ϕxy . However,
tan ϕxy = tan ϕ12(1 + α[1 + ω̃2]), and the difference is negli-
gibly small, since α ≡ 2η∞/τK1 � 1.

Qualitatively, the behavior of η′ as a function of frequency
is reminiscent of the shear thinning of the stationary material
function η as a function of shear rate. Indeed, W. P. Cox and
E. H. Merz found, in 1958 from measured data, the empirical

relation [31]

η(ξ ) = |η�(ω̃ = ξ )|, (89)

which is known as the Cox-Merz rule [5]. If one replaces
the frequency in |η�| by the shear rate, then one obtains the
viscosity of stationary shear flow, η, as a function of shear
rate. This relation is valid for a number of materials within the
error bar of the measurements; for others this rule is a good
approximation mainly for small shear rates [5]. This relation
is rather remarkable, since |η�| follows from a linear analysis,
while shear thinning is an intrinsically nonlinear effect.

To investigate how well our model satisfies the Cox-Merz
rule, we confine ourselves in the present article to the case
of small ω̃. We therefore expand |η�|, the magnitude of the
complex viscosity η�, up to second order in ω̃, neglect the
influence of η∞, and obtain

|η�| = 1
2K1τ − 1

4K1τ ω̃2 + O(ω̃4). (90)

The material function η(ξ ) of a stationary shear flow is given
by Eq. (30). Neglecting also the constant η∞ and making the
replacement ξ = ω̃, both functions are identical, provided the
elastic constants satisfy

K3 = 4K2 − 4K1. (91)

In Sec. III C we have seen that the function η− only relaxes
faster with growing ξ0 when the condition K3 > 4K2 − 4K1

is satisfied. Equation (91) means that the relaxation of η− does
not depend on ξ0, at least up to order ξ 3

0 . Thus, the Cox-Merz
rule is marginally compatible with our admissible range for K3,
meaning it is only a good approximation within the framework
of our model.

A similar relation as for |η�| can also be formulated for
η′ [31]. Here one connects η′ with the derivative of the shear
stress for stationary shear with respect to the shear rate,

η′(ω̃ = ξ ) = −∂σxy

∂ξ
(ξ ). (92)

From Eq. (26) we find in order ξ 2
0

−∂σxy

∂γ̇
= (

η∞ + 1
2K1τ

)+ 3
8 (2K1 − 4K2 + K3)τξ 2, (93)

while in order ω̃2 Eq. (87) gives

η′ = (
η∞ + 1

2K1τ
)− 1

2K1τ ω̃2. (94)

Both expressions coincide for small ξ = ω̃ if

K3 = 4K2 − 10
3 K1. (95)

This relation is fully compatible with the admissible range for
K3 and therefore the empirical rule (92) is well satisfied.

The normal stress differences N1 = σxx − σyy and N2 =
σyy − σzz in oscillatory shear reflect the behavior of the
diagonal components of the strain tensor. They oscillate with
twice the applied frequency around finite values, which are
larger than the amplitudes of the oscillations, so N1 and N2

do not change sign as a function of time and are always
negative and positive, respectively. All amplitude decrease
monotonically with increasing frequency.

Defining material functions by

N1 = −�V
1 ξ 2

0 − � ′
1ξ

2
0 cos (ω̃d) − � ′′

1 ξ 2
0 sin (ω̃d), (96)
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we find

�V
1 = K1

2(1 + ω̃2)
, (97)

� ′
1 = K1(1 − 2ω̃2)

2(1 + ω̃2)(1 + 4ω̃2)
, (98)

� ′′
1 = 3K1ω̃

2(1 + ω̃2)(1 + 4ω̃2)
. (99)

These material functions have been discussed already in the
framework of various constitutive models [32]. With these
models the relationships among the three functions given
above and the quantities η′ and η′′ have been found [32]:

ω̃�V
1 (ω̃) = η′′(ω̃), (100)

ω̃� ′
1(ω̃) = η′′(2ω̃) − η′′(ω̃), (101)

ω̃� ′′
1 (ω̃) = η′(ω̃) − η′(2ω̃). (102)

By inserting and checking one can easily show that the
results of our calculations satisfy these relations exactly. Our
model is therefore also in the present case in agreement with
experimental results and other theories.

F. The Weissenberg effect

In the last two parts of Sec. III we will deal with effects
which appear in sheared fluids with a free surface. The
best-known example is the Weissenberg or rod-climbing effect
[5,33] (Fig. 15).

When a rod is inserted into a Newtonian fluid parallel to
gravity and rotated, the free surface is curved downward near
the rod. If the experiment is repeated with a polymeric liquid,
then one finds as a rule the opposite behavior: The fluid is
climbing up the rod. The magnitude of this surface deformation
is typically also much more pronounced than for Newtonian
fluids.

Ω

R

g

FIG. 15. The principle of the Weissenberg effect: A polymeric
fluid climbs up a rotating rod.

To discuss this effect we consider the system depicted in
Fig. 15: A cylindrical rod with radius R rotates with constant
angular velocity � in a polymeric fluid, whose free surface
extends to infinity and which is parallel to the x-y plane at
� = 0. The fluid layer is assumed to be sufficiently deep so
the bottom has no influence on the surface. The rotation axis
is taken to be the z axis, and the direction of gravity is taken
to be −ẑ. In addition, the rod is assumed to be so long that
there are no boundary effects from the ends of the rod near the
surface of the liquid. Since the system is rotationally symmetric
around the z axis, the use of cylindrical coordinates (r,ϕ,z)
seems natural; we also assume that the variables do not depend
on ϕ. Furthermore, we neglect a possible z dependence. For
the chosen system this implies that all frequency-dependent
quantities can be expanded into powers of � and can be
considered up to second order, since the z dependence turns
out to be a third-order effect [34]. While the geometry does
depend on z, this dependence can be expanded as a function
of r and leads to a higher-order effect [34]. The characteristic
time scale which is given by the geometry of the system is

τW =
√

R/g, (103)

where g is the acceleration due to gravity. In a Newtonian
fluid this is the only time scale; when we talk about small
values of �, we mean that �τW is a small quantity. This
means, for example, that for a rod with radius 1 cm we
have τW = 3 × 10−2 s and therefore we can consider in the
expansion only angular velocities that are considerably smaller
than 30 s−1. The thinner the rod, the larger the values for the
angular velocities we can take care of. In a polymeric fluid we
have the additional time scale τ , so we have to discuss in detail
later what we mean by small values of �.

To describe the deformation of the fluid surface one has
to determine the surface profile h(r), that is, the height of the
surface as a function of the distance from the central axis of
the rod (cf. Fig. 16).

The function h(r) is determined up to an additive constant,
since the depth of the fluid is unknown. Cylindrical coordinates
are used.

R

z

r

n

t

h (r )

FIG. 16. Cross section through the deformed surface for the
Weissenberg effect. h(r) denotes the surface profile, t̂ is the tangential
vector of the surface in the r-z plane, and n̂ is the normal vector.
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A general, model-independent equation to determine h(r)
has been derived in Refs. [5,7] and reads

ρgh(r) = C + ρ

r∫
R

v2
ϕ

r ′ dr ′ +
r∫

R

N1

r ′ dr ′ − N2, (104)

where C is a constant, vϕ is the azimuthal velocity component,
and N1 and N2 are the normal stress differences, which read
for this geometry

N1 = σϕϕ − σrr and N2 = σrr − σzz. (105)

We see that the surface profile has three contributions,
namely a velocity-dependent contribution, which also exists
for Newtonian fluids, as well as one contribution each from
N1 and N2.

Before we deal with polymeric fluids, we discuss first the
behavior of a Newtonian fluid. In this case σ ela

ij = 0 and only
the first integral in Eq. (104) contributes. The velocity profile
follows from the Laplace equation with suitable boundary
conditions in cylindrical geometry and reads

vϕ(r) = �R2

r
. (106)

The magnitude of the velocity decreases radially with 1/r .
The surface profile, Eq. (104), reads in dimensionless form

h̃(r) = h̃0 − (�τW )2

2 r̃2
, (107)

where all lengths with a tilde are scaled by R, e.g., r̃ = r/R.
We thus obtain the effect already described, namely that for
a Newtonian fluid the surface at the rod curves downward
with r−2. As already mentioned this profile is only valid when
the surface tension is neglected and under the condition that
�τW � 1.

With our model we have the possibility to calculate the
normal stress differences and therefore the surface profile of
a polymeric fluid explicitly. To do this we will assume, as we
have done before for all shear flow problems, that the velocity
profile in a polymeric fluid coincides with the profile of a
Newtonian fluid. Then we use Eqs. (2) and (1) to evaluate the
strain field. Finally, we have to examine the result obtained for
consistency.

As before, we assume that the fluid is not stretched along
its neutral direction, meaning that Uzz = U 0

zz = 0. Then the
determination of Uij is reduced to a two-dimensional problem,
this time in the r-ϕ plane. In polar coordinates (r,ϕ) the
dynamic Eqs. (2) and (1) for Uij take the form

2
(
∇rvϕ − vϕ

r

)
Urϕ = − 1

τ
(Urr − Uϕϕ), (108)

2
(
∇rvϕ − vϕ

r

)
Uϕϕ = − 2

τ
Urϕ + ∇rvϕ − vϕ

r
, (109)

Urr + Uϕϕ = 2(UrrUϕϕ − U 2
rϕ). (110)

Since the z dependence of vϕ becomes important in third order
in �, we can only expand the solution for Uij up to second

order and obtain

Urϕ = −�τ

r̃2
, (111)

Uϕϕ = −1

3
Urr = (�τ )2

r̃4
. (112)

The small expansion parameter is �τ � 1. Since τ is in
general larger than τW , the validity of the expansion is more
restricted for a polymeric fluid than for a Newtonian fluid.
As usual, the diagonal components are even and the shear
components odd functions of the shear direction, in this case
given by the sign of �.

The nonvanishing components of the stress tensor can be
calculated as usual and lead to the normal stress differences
(up to order �2)

N1 = −4K1
(�τ )2

r̃4
, (113)

N2 = (5K1 − K2)
(�τ )2

r̃4
. (114)

A comparison with the normal stress differences, which we
have obtained for a stationary planar shear flow, reveals that
the solutions are identical when the shear rate is γ̇ = −2�/r̃2

in accordance with γ̇ = ∇rvϕ . The shear rate therefore depends
on location and falls off radially as r−2. There is N1 < 0 and
N2 > 0 also in the present case.

At this point we can check whether it was justified to take for
a polymeric fluid the same velocity profile as for a Newtonian
fluid. In order (�τ )2 there is σ ela

rϕ ∼ Urϕ ∼ 1/r2. Therefore, the
elastic part of the conservation equation for the ϕ component
of the momentum, ∇r σ ela

rϕ + (2/r)σ ela
rϕ , is identically zero. This

leaves for the determination of vϕ(r) only the Newtonian part.
We are now able to evaluate the surface profile in the limit

�τ � 1. Inserting N1 [Eq. (113)], N2 [Eq. (114)], and vϕ

[Eq. (106)] into Eq. (104) we have

h̃(r̃) = h̃0 − �2τ 2
W

2r̃2
+ K2 − 4K1

ρgR

�2τ 2

r̃4
. (115)

This result coincides formally with the result of Ref. [35],
which has been obtained for a different model. In comparison
to the Newtonian case, Eq. (107), the additional term due to
the normal stress differences allows a rise of the fluid at the
rod. The necessary condition for that is a positive prefactor of
the new term, which requires

K2 > 4K1. (116)

Together with Eq. (34) this leads to an interval of admissible
values for K2, 4K1 < K2 < 5K1, resembling the similar
condition for K3 derived above. Relation (116) is compatible
with the typical order of magnitude K2 ≈ 4.5K1, which
we have derived in Sec. III B. Using Eq. (33), we can
express this condition in terms of the stationary normal stress
differences, �1 and �2, that can be observed in stationary
shear experiments,

−�2

�1
< 0.25, (117)

which allows for a prediction whether a fluid can show the
Weissenberg effect or not. In Ref. [7] this condition is also
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MÜLLER, LIU, PLEINER, AND BRAND PHYSICAL REVIEW E 93, 023113 (2016)

discussed. A survey for the values of these ratios for several
samples can be found, for example, in Ref. [7] in Table 3.9.

Equation (115) shows that two different effects compete
for the deformation of the surface. On the one hand, there
is a Newtonian contribution, which lowers the surface at
the rod proportionally to r−2, and, on the other hand, a
polymeric contribution, which raises the surface with the
stronger dependence r−4. To realize a rise of the liquid surface
at the rod in experiments, h(R) must be larger than h0. This is
the case for R < Rcrit with

R2
crit = 2(K2 − 4K1)τ 2

ρ
, (118)

with the change of the height at the rod given by

�h = h(R) − h0 = R2
crit − R2

2g
�2. (119)

The condition R < Rcrit relates material properties with
experimental geometric conditions. It comes in addition to
Eq. (116), which only involves material properties. Such a
supplementary condition is also discussed in Refs. [35] and
[36].

In a Newtonian fluid the strength of the deformation
Eq. (107) scales with �2 and R2, i.e., it is stronger for thicker
rods and for higher rotation rates. For a polymeric fluid the
situation differs somewhat, cf. Eq. (115). The elastic part of
the deformation also scales with �2 but is independent of the
rod radius. Both contributions scale with the square of the
respective relaxation time, which for the Newtonian effect is
the geometric relaxation τ 2

W and τ 2 for the elastic part. The
more slowly the polymer relaxes, the larger the Weissenberg
effect. These results are based on a power expansion that
is valid for �τ � 1 (and �τW � 1). Taking into account
additional effects neglected here, like surface tension, and
for frequencies outside the validity range of the expansion,
the Weissenberg effect shows a much more complex behavior
[35], in particular the change of height at the rod grows slower
than �2. In the present treatment we have focused on the
fundamental mechanisms based on the intrinsic elasticity and
its relaxation.

G. Flow through an inclined channel

As already mentioned, the second normal stress difference
for a shear flow is, in magnitude, much smaller than the
first normal stress difference and therefore much harder to
measure. In this section we want to examine a surface effect,
which is determined exclusively by N2 and therefore allows
the measurement of this quantity [37]. The experimental setup
is presented in Fig. 17.

We consider a channel with a small inclination and parallel
sidewalls in which the polymeric fluid flows. Experimentally,
it has been established [7] that the surface is curved weakly
upwards, when the effect of surface tension is negligible. In
contrast, for a Newtonian fluid a flat surface results. Figure 18
shows the velocity profile.

We assume that the flow is laminar so the velocity has
only a x component. In addition, we consider a deep channel
so the flow velocity does not depend on the depth and is z

independent. This assumption is justified by the fact that in the

α

y

x

z

FIG. 17. Flow of a polymeric fluid through a channel which is
tilted by an angle α. The deformation of the surface is exaggerated
for clarity.

description of the experiments a deep channel is considered
explicitly. In addition, we consider a sufficiently long channel
so we can use translational symmetry along the x axis.
Therefore the velocity profile takes the form

v(y) = vx(y) x̂. (120)

Thus, the present case also belongs to the class of stationary
shear flows. The form of the y dependence is sketched in the
right plot of Fig. 18. Since the fluid is sticking at the channel
walls, there are boundary conditions,

vx(0) = vx(B) = 0, (121)

where B is the width of the channel. Since there is flow within
the channel, the shear rate γ̇ = ∇y vx cannot be a constant but
is a function of y. Thus, we can take over all results from
Sec. III B, where the space dependence of γ̇ does not matter.
This is the case for the derivation of the strain and stress tensor
expressions.

The fluid is driven by gravity via gx = g sin α (left plot of
Fig. 18), where generally α is small. The force balance for the
x direction therefore reads cf. Eqs. (3) and (26),

[
η∞ + 1

2K1τ + 3
8 (2K1 − 4K2 + K3)τ 3γ̇ 2

]∇y γ̇ = −ρg sin α.

(122)

v

x

z

g gz

gx

α

gx

y

x0

B

v

FIG. 18. Structure of the flow profile in the x-z plane (left) and
in the x-y plane (right).
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t
n

z

0 B
y

h(y)

FIG. 19. Profile h(y) as well as normal and tangential directions
in the y-z plane for a channel with width B.

Since γ̇ vanishes with α, we will neglect the γ̇ 2 contributions
and get, with the proper boundary conditions,

γ̇ (y) = ρgα

2η∞ + K1τ
(B − 2y) + O(α3). (123)

The deformation of the surface is described by the profile
h(y), which arises by the intersection of the y-z plane with the
channel (Fig. 19).

It is determined only up to an additive constant, because of
the unspecified depth. Similarly to the case of the Weissenberg
effect a model-independent equation for h(y) can be derived
[7],

ρgh(y) cos α = C − N2, (124)

where N2 = σyy − σzz is the second normal stress differ-
ence and C is the undetermined (irrelevant) constant. For a
Newtonian fluid N2 = 0 and h has to be constant, i.e., the
surface is flat.

For the evaluation of N2 we again can take over the solutions
from Sec. III B,

N2 = 1
4 (5K1 − K2)τ 2γ̇ 2. (125)

We now have all informations to calculate the surface profile

h(y) = h0 + ρgα2

K1

(
5 − K2

K1

)
(B − y)y, (126)

where h0 is the undetermined constant and we have neglected
η∞ compared to K1τ . We thus find that the surface is
curved upward parabolically and that the amplitude of the
deformation grows quadratically in the tilt angle. The condition
for giving the correct sign of the deformation, K2 < 5K1, is
identical with the condition for N2 > 0 used in Sec. III B.
The deformation of the surface of shear flow in an inclined
channel qualitatively differs from the deformation obtained
for the Weissenberg effect. In the present case the relaxation
time τ has no influence on the deformation of the surface.
In addition, a large K1 and a small density reduce the
deformation, while for the Weissenberg effect the deformation
grows with τ 2 and is linear in the elastic constants and inversely
proportional to ρ. Decisive for this qualitative difference is
the structure of the velocity field. For the Weissenberg effect
it is completely determined by the geometry and contains
only external parameters, namely the radius of the rod and
its rotation frequency. Since for the channel the flow is driven

x

z

FIG. 20. Three-dimensional elongational flow. The flow field is
rotationally symmetric about the z axis. The orientation of the stream
lines is referring to ε̇ > 0.

by gravity, the velocity, Eq. (123), depends also on the material
parameters.

IV. ELONGATIONAL FLOWS

Looking at various types of planar shear flows, we have
noticed that in the limit of small deformations our model
describes qualitatively very well the behavior of measurable
quantities. To underline the importance of these results it is
useful to investigate another type of flow, which has properties
that qualitatively differ from those of shear flows. A natural
candidate is three-dimensional elongational flows, which
contain no shear component and show therefore a completely
different behavior (Fig. 20). We first present some general
considerations and then address two specific experimental
situations.

A. General considerations

Before we study concrete examples, we determine first the
structure of the strain tensor and the dynamic equations for
Uij . As for the planar shear flow studied in Sec. III A we
assume that the velocity profile is unchanged compared to
that of a Newtonian fluid. The validity of this assumption
is experimentally well confirmed [5]. The velocity profile of
interest here takes the form

v(r,t) =

⎡
⎢⎣

−(1/2)ε̇(t)x

−(1/2)ε̇(t)y

ε̇(t)z

⎤
⎥⎦. (127)

The flow is rotationally symmetric and incompressible. Its
strength is determined by the elongation rate ε̇, which is time
dependent but spatially homogeneous.

Because of the symmetry of the flow, the laboratory system
corresponds to the set of principal axes of Aij as well as of
Uij . This is in contrast to the case of shear flow, where the set
of principal axes of these two quantities differed significantly
from the laboratory system as well as from each other. The
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strain tensor therefore takes the form

U =

⎛
⎜⎝

Uxx 0 0

0 Uyy 0

0 0 Uzz

⎞
⎟⎠. (128)

In addition, there is Uxx = Uyy , due to the rotational symmetry
about the z axis. Since we are already in the set of principal
axes, we can give the stretch ratios directly:

λ1 = 1√
1 − 2Uxx

and λ2 = 1√
1 − 2Uzz

. (129)

When inserting the structure of Uij into the equation of
motion (2) we realize another difference to shear flow.
While in Sec. III A the contribution vk∇kU

0
ij is not allowed

for symmetry reasons, it contributes in the present case.
Therefore, the equations of motion represent a system of
partial differential equations, which is nontrivial to solve. We
circumvent this problem by assuming that the strain field is
spatially homogeneous. This assumption is supported by the
fact that the elongation rate is also spatially homogeneous.
Every component of Eq. (2) yields the same equation,(

1

τ
+ ∂

∂t

)
(Uxx − Uzz) + 3

2
ε̇ = Uxx + 2Uzz. (130)

As before for shear flow, we will work here with dimen-
sionless quantities and define

ζ ≡ ε̇τ and d ≡ t

τ
, (131)

where ζ is, analogously to ξ , the dimensionless elongation
rate, d, we know already from Sec. III A. Including the
incompressibility condition, Eq. (1), the system of equations
we analyze in the following takes the form

U̇xx − U̇zz + (1 − ζ )Uxx − (1 + 2ζ )Uzz = −3

2
ζ, (132)

(1 − 2Uxx)2(1 − 2Uzz) = 1, (133)

where from now on the dot refers to time derivatives with
respect to d.

Starting from Eqs. (132) and (133) we will now discuss two
scenarios, namely stationary elongational flow and the onset
of elongational flow.

B. Stationary elongational flow

While there are three different measurable quantities in a
shear flow, the situation in a rotationally symmetric elonga-
tional flow is simpler. Because of the high symmetry there
is only one measurable quantity namely the normal stress
difference σzz − σxx [5]. In this section we want to study the
behavior of this quantity in a stationary flow. The elongation
rate is constant in this case,

ε̇ = const, (134)

and also the strain components are time independent. Such a
flow is experimentally difficult to realize (cf., e.g., Ref. [38])
and then only for small elongation rates (ε̇ < 1–10 s−1); larger
values can be investigated for the onset of elongational flow.

The stationary solution of Eqs. (132) and (133) is simple to
determine and takes the form

2U = I −

⎡
⎢⎢⎣
( 1+2ζ

1−ζ

)1/3
0 0

0
( 1+2ζ

1−ζ

)1/3
0

0 0
( 1−ζ

1+2ζ

)2/3

⎤
⎥⎥⎦, (135)

with I the unit tensor. As for the strain tensor of a stationary
shear flow, Uij is universal, since there is only a dependence
on ζ . We note that the strain has singularities for ζ1 = − 1

2 and
ζ2 = 1 and a stationary elongational flow is only possible for

− 1

2τ
< ε̇ <

1

τ
. (136)

This provides a possible explanation for the experimental
restriction to small elongation rates. Such a restriction is
also found in various other approaches [7,39]. This regime
of existence becomes larger the faster the fluid relaxes.

The other properties of the strain tensor can be seen in
Fig. 21. There is no symmetry with respect to the sign of ζ .
For a uniaxial extensional flow (ε̇ > 0) the system expands
in the z direction (Uzz > 0) and it is compressed (Uxx < 0)
in all perpendicular directions. The magnitude of the strain
grows monotonically with ζ and reaches for ζ = 1 the location
where the strain diverges. For biaxial extensional flows (ε̇ < 0)
the behavior is reverse. The fluid is strained in all directions
perpendicular to the z axis (Uxx > 0) and compressed in the
z direction (Uzz < 0). The strain is growing monotonically
with larger values of |ζ | but reaches already at |ζ | = 1/2 the
singularity of infinitely large strain.

The stretch coefficients λ1 and λ2 according to (129) assume
the simple form

λ1 =
(

1 − ζ

1 + 2ζ

)1/6

and λ2 =
(

1 + 2ζ

1 − ζ

)1/3

. (137)

It is worth noting that the divergence at the boundary of
the realizable regime shows a power-law behavior: λ1 ∼
(1 + 2ζ )−1/6 near ζ = − 1

2 and λ2 ∼ (1 − ζ )−1/3 near ζ = 1.
To study the stresses appearing in an elongational flow we

carry out an expansion in powers of ζ , since Uxx and Uzz are

-0.4 -0.2 0.2 0.4 0.6 0.8 1

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0.25

0.5

Uxx

Uzz

ζ

FIG. 21. The strain components Uxx and Uzz of a stationary
elongational flow are plotted as a function of the dimensionless
elongation rate ζ .
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small quantities, when ζ is also small, cf. Fig. 21. Since ζ

is within the rather narrow range between −1/2 and 1, such
an expansion will be a good approximation except for the
boundary regime where the information about the divergence
is lost. The strain tensor takes then the form up to order ζ 3

U =

⎛
⎜⎝
− 1

2ζ − 1
3ζ 3 0 0

0 − 1
2ζ − 1

3ζ 3 0

0 0 ζ − 3
2ζ 2 + 8

3ζ 3

⎞
⎟⎠.

(138)
In leading order the diagonal components are linear in ζ , in
contrast to shear flow, where the diagonal components can
only be functions of ξ 2.

For the evaluation of the stress tensor we make again use
of Eqs. (5) and (9) and obtain up to third order in ζ :

σxx = σyy = −η∞
τ

ζ + 1
2K1ζ + 1

4 (2K1 − K2)ζ 2

+ 1
24 (8K1 − 6K2 + 3K3)ζ 3, (139)

σzz = 2
η∞
τ

ζ − K1ζ + 1
2 (7K1 − 2K2)ζ 2

+ 1
3 (−26K1 + 15K2 − 3K3)ζ 3. (140)

The material function, which is connected with the normal
stress difference σzz − σxx in an elongational flow, is the
Trouton or elongational viscosity η̄ [5],

η̄(ε̇) = −σzz − σxx

ε̇
. (141)

While it is constant in a Newtonian fluid, it is a function of the
elongation rate in a polymeric fluid. In our model we find

η̄ = 3
(
η∞ + 1

2K1τ
)+ 3

4 (−4K1 + K2)τζ

+ 3
8 (24K1 − 14K2 + 3K3)τζ 2 + O(ζ 3). (142)

As it is known [5,40], for ζ → 0 the Trouton viscosity,
η̄(ζ → 0) ≡ η̄0 = 3(η∞ + 1/2K1τ ), corresponds to three times
the value of the shear viscosity for ξ → 0. A comparison of
(30) and (142) shows that our model satisfies this property.

Since K2 > 4K1, Eq. (116), the linear part of η̄(ζ ) is
positive. This means that for small ζ � 1 the Trouton viscosity
increases for a uniaxial elongational flow and decreases with
the magnitude of the elongation rate for biaxial elongation,
which is in agreement with experiments [5,41]. For larger
magnitudes of ζ an increase of the viscosity is observed,
leading to a minimum [41]. In our expression this is taken
care of by the quadratic term ∼ζ 2. Indeed, it is positive, since

24K1 − 14K2 + 3K3 > 2(6K1 − K2) > 0, (143)

where we have made use of the inequalities K2 < 5K1,
Eq. (34), and K3 > 4K2 − 4K1, Eq. (50). Figure 22 shows this
behavior using our standard values for the elastic constants. Of
course, the steep increase of the Trouton viscosity observed
near the singularities cannot be covered by this expansion
approach and we have to refer to the companion article (II) for
further discussions.

The location of the minimum is given by

ζmin = − −4K1 + K2

24K1 − 14K2 + 3K3
, (144)

-0.4 -0.2 0.2 0.4

0.5

1

1.5

2

η − 3η
K1τ

ζ

FIG. 22. The Trouton viscosity η̄ in units of K1τ as a function of
ζ for K2 = 4.5K1 and K3 = 15K1.

which gives ζmin = −0.083 with the values used for Fig. 22.
Thus the minimum lies in a regime for which the approxima-
tion of small elongation rates is still valid.

C. The onset of elongational flow

As a last example we consider the onset behavior of an
elongational flow. In this case the elongation rate takes the
form

ε̇(t) =
{

0 for t < 0

ε̇0 for t � 0
. (145)

We proceed here in close analogy to the treatment of the onset
of a shear flow. Especially interesting in this connection is
the fact that one can choose elongation rates for which there
is no stationary solution according to the last section. Since
we consider first the limit of small elongation rates, we will
discuss in this section only cases for which a stationary state
exists. For the treatment of large elongation rates we refer to
the companion article (II).

To evaluate the strain tensor we must first solve the system
of dynamic equations for Uij , Eqs. (132) and (133), with ζ0

replacing ζ , together with the initial conditions

Uxx(ζ0,d = 0) = Uzz(ζ0,d = 0) = 0, (146)

where we have used the notation ζ0 = ε̇0τ . Although this
system of equations appears to be much simpler than that for
the onset of shear flow, we have to use an expansion in powers
of ζ . For the purposes of this section we need, however, this
expansion only up to order ζ 3

0 ,

Uxx(ζ0,d) = ax(d) ζ0 + bx(d) ζ 2
0 + cx(d) ζ 3

0 , (147)

Uzz(ζ0,d) = az(d) ζ0 + bz(d) ζ 2
0 + cz(d) ζ 3

0 . (148)

Since there are no symmetries for the elongational flow with
respect to the elongation rate, all orders contribute. Inserting
this expansion into the system of equations and comparing
coefficients, leads to six equations for the six time-dependent
expansion coefficients, which can be solved analytically. The
expressions obtained are rather involved and will not be shown
here.
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FIG. 23. The stretch coefficients λ1 and λ2 as a function of
dimensionless time d for uniaxial elongation flow (top) and biaxial
elongation flow (bottom).

From the calculated components of the strain tensor, we
obtain using Eq. (129) the stretch ratios λ1 and λ2, again as an
expansion in ζ0 up to third order,

λ1(ζ0,d) = 1 + 1
2 (e−d − 1)ζ0 + �12ζ

2
0 + �13ζ

3
0 , (149)

λ2(ζ0,d) = 1 + (1 − e−d )ζ0 + �22ζ
2
0 + �23ζ

3
0 , (150)

with the abbreviations

�12 = 3
8 − 1

4 (1 + 2d)e−d − 1

8
e−2d

�13 = − 31
48 + 1

16 (−5 + 20d + 4d2)e−d

+ 1
16 (17 + 4d)e−2d − 5

48
e−3d

�22 = (−1 + d)e−d + e−2d

�23 = 2
3 + 1

2 (2 − 2d − d2)e−d

−(1 + 2d)e−2d − 2
3e−3d .

λ1 and λ2 are plotted as a function of time for several values
of ζ0 in Fig. 23. For all values of the elongation rate shown
both stretch ratios converge monotonically to their stationary
value.

The material function η̄+ is defined as [5]

η̄+(ε̇0,t) = −σzz − σxx

ε̇0
, (151)
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FIG. 24. The Trouton viscosity η̄+ is plotted as a function of
dimensionless time d for uniaxial elongation flow (top) and biaxial
elongation flow (bottom). The limiting zero-elongation curve is
shown in both parts to facilitate their comparison. We have used
K2 = 4.5K1 and K3 = 15K1.

where t � 0. Using the same approach as for the stretch
coefficients we obtain

η̄+ = 3η∞ + 3
2 (1 − e−d )K1τ + 3

4
�6τζ0 + 3

8�7τζ 2
0 ,

(152)
with the abbreviations

�6 = −4K1 + K2 + 2[(3 + d)K1 − K2]e−d

− (2K1 − K2)e−2d

�7 = 24K1 − 14K2 + 3K3 − [(44 + 20d + 2d2)K1

− (38 + 4d)K2 + 9K3]e−d

+ [(36 + 8d)K1 − (34 + 4d)K2 + 6K3]e−2d

− (8K1 − 10K2 + 3K3)e−3d .

The behavior of this function of time is plotted in Fig. 24,
separately for uniaxial (top) and biaxial (bottom) elongation.
For d → ∞, the Trouton viscosity η̄+ approaches strictly
monotonically its stationary value, η̄, which is dependent on
ζ (cf. Fig. 22). For the biaxial elongational flow the stationary
Trouton viscosity has a minimum. In particular, η̄(ζ = 0) >

η̄(ζ = −0.1) < η̄(ζ = −0.2), which leads to an intersection of
η̄+(d) for ζ0 = −0.1 and ζ0 = −0.2 in the bottom of Fig. 24.
This intersection is also found in experimental data [5].
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The limiting zero-elongation curve η̄+
0 (d) ≡

η̄+(ζ0 = 0,d) = 3η∞ + (3/2)(1 − e−d )K1τ is related to the
limiting zero-shear curve for the onset of a shear flow, η+

0 (d),
Eq. (66). Both functions differ only by a factor of 3, a result
that already follows from linearized elasticity theory [5]. Of
course, this property is correctly derived also in our framework.

ACKNOWLEDGMENTS

H.R.B. and H.P. acknowledge partial support of their work
by the Deutsche Forschungsgemeinschaft through SPP 1681
“Feldgesteuerte Partikel-Matrix-Wechselwirkungen: Erzeu-
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APPENDIX: DERIVATION OF THE POLYMERIC
HYDRODYNAMICS

Starting from the equations as derived in Refs. [13,15,16],
we shall simplify them to obtain those given in Sec. II.
The starting equations are rather general. They contain many
aspects not of direct importance for the applications considered
in this article. In particular, we want to focus on the more
essential features, especially the nonlinear influence of the
strain tensor Uij , while neglecting that of temperature and
density gradients.

We use the Eulerian strain tensor, the variable part of the
Cauchy strain [7], Cij = δij − 2Uij . In the absence of any
deformation, Uij is zero. The Gibbs-Duhem relation [4,42–44],
valid in local equilibrium, reads

dε = T ds + μdρ + vidgi + ψijdUij , (A1)

where ψij is the elastic stress to lowest order in Uij , and
ψij ≡ 0 in equilibrium. All other quantities have the same
meaning as for a simple fluid [1,4].

The elastic strain tensor obeys [13,16]

U̇ij + vk∇kUij − Aij + Ukj∇ivk + Uik∇j vk = XD
ij . (A2)

Note the relaxation term XD
ij that is absent in an elastic system.

This quasicurrent XD
ij vanishes in the high-frequency (solid)

limit and, at small frequencies (liquid limit), becomes so large
that Uij relaxes infinitely fast to zero and is no longer a variable.

A first simplification is incompressibility. The mass density
ρ will be assumed to be constant from now on. Therefore mass
conservation [1] is reduced to ∇kvk = Akk = 0. It is important
to keep in mind that this assumption does not imply Ukk = 0.
We note that the strain tensor is solenoidal only at small strains.
The conservation of momentum density then simplifies to

ρ(v̇i + vk∇kvi) + ∇iP + ∇j σij = 0, (A3)

where P ≡ −εrf + T s + μρ is the pressure and σij is the
elastic stress tensor of the system.

Another important simplification is the restriction
to isothermal systems. Thus the temperature gradients
throughout the fluid vanish and the temperature dependence
of the material parameters is discarded. The entropy balance
then takes the form

ṡ + vk∇ks = R/T , (A4)

and is no longer of interest in the following.

For the dissipative parts of the currents σD
ij and XD

ij we have
in the incompressible limit

σD
ij = 2η∞A0

ij + 2β1ψij , (A5)

XD
ij = −2α1ψ

0
ij − α2ψkkδij + 2β1A

0
ij , (A6)

where a superscript 0 denotes the traceless part of that quantity.
The parameters α1,2 and η∞ must all be positive. So far there is
no experimental information about the magnitude of the cross-
coupling parameter β1. To keep the number of parameters
as small as possible, we will therefore take β1 = 0 in the
following. Should we find out that important effects cannot be
described this way, we can still incorporate β1 later.

Inserting the quasicurrent XD
ij into the dynamic equation

for Uij , Eq. (A2), we realize that the resulting equation is
difficult to solve: The elastic stress tensor ψij is in general
a nontrivial and as yet unspecified nonlinear function of
Uij , as is α1(Uij ). For simplicity, we assume (1) ψ0

ij /|ψ0
ij | =

U 0
ij /|U 0

ij |, or α1(Uij )ψ0
ij = α1|ψ0

ij |U 0
ij /|U 0

ij | = U 0
ij /τ , with (2)

τ a constant. Hence, for the traceless part,

U̇ 0
ij + vk∇kU

0
ij − A0

ij + [Ukj∇ivk + Uik∇j vk]0 = −U 0
ij /τ,

(A7)

with τ accounting for the relaxation of shear deformations.
By introducing the relaxation time τ we can quantify the
viscoelastic behavior: If for an external perturbation the
frequency ω obeys the inequality ωτ � 1, then the system
behaves like a Newtonian fluid, while for ωτ � 1 it behaves
like an elastic solid. Even for the second case, we have to
make sure that the condition of validity for hydrodynamics
ωτlg � 1 (with τlg the time scale to reach local equilibrium)
is still satisfied. Since we want to have a consistent nonlinear
elastic description in the solid limit, we will not make use of the
condition, Ukk = 0. The general nonlinear incompressibility
condition for Uij requires the determinant of the Cauchy tensor
Cij to be unity [7]. In the system of principal axes of Uij this
relation can be written as

(1 − 2U1)(1 − 2U2)(1 − 2U3) = 1, (A8)

where U1, U2, and U3 are the eigenvalues of Uij . Equation (A8)
connects the six components of Uij . It can be cast into the form
Ukk = f (U 0

ij ), where f is, in general, a rather complicated
function that vanishes, if linearized in U 0

ij , and if U 0
ij → 0.

Here we present the explicit result for two dimensions, since
for the examples considered in the bulk of the article either a
two-dimensional description is used (shear flow, Weissenberg
effect, flow through an inclined channel) or Uij is diagonal in
three dimensions (elongational flow) from the beginning. For
the two-dimensional case we find

Ukk = 1 − [
1 + 4U 2

xy + 4
(
U 0

xx

)2]1/2
. (A9)

We assume that this condition holds on the relevant time
scale τ for the U 0

ij dynamics. Therefore, XD
ij is of the general

form

XD
ij = − 1

τ
U 0

ij − 1

τ̂

[
Ukk − f

(
U 0

ij

)]
δij , (A10)

with the volume relaxation time τ̂ = 1/(3α2k2) much shorter
than τ ; k2 is the linear bulk elastic modulus. This representation
does not contradict the equilibrium condition ψij = 0, i.e.,
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Uij = 0. Within the approximation τ � τ̂ , the strain tensor
Uij is described by Eqs. (A7) and (A8).

Finally, we must come back to the problem of calculating
ψij . For the contribution to XD

ij we have linearized this
quantity, but, as already mentioned, the nonlinearities of the
elasticity are decisive for polymeric behavior. Since we cannot
calculate the stress tensor σij without specification of ψij , we
have to make a concrete assumption about the form of the
elastic free energy. A rather natural approach is to expand the
elastic contribution of the energy density into powers of Uij and
then to calculate ψij from this expansion. This step naturally
reduces the validity of the model for cases in which Uij is a
small quantity. We will deal with the possibility of a general-
ization to large deformations in the companion article (II).

To construct an expansion of ε, we start with Eq. (A1)
and go to the rest system with the transformation εrf = ε −
1/2ρv2

i . This energy density depends only on ρ, s, and Uij

and will now be expanded into powers of Uij . Since the elastic
energy is independent of rotations of the coordinate system,
only the three invariants of Uij contribute. We can therefore
expand εrf into the three eigenvalues U1, U2, and U3 but prefer
here the trace of Uij , Tr(U) ≡ Ukk , as well as the traces of the
squares of the second and third powers of Uij , Tr(U2) ≡ UklUkl

and Tr(U3) ≡ UklUlmUmk . It will become clear later in this
article that it is sensible to expand up to fourth order in Uij ,

εrf
(
s,ρ,Uij

) = ε̄(s,ρ) + K1Tr(U2)/2

+K2Tr
(
U3
)
/3 + K3Tr(U4)/4. (A11)

Since Ukk is zero in linear order, it has to be at least of
O(2). Therefore, there is only one term in quadratic and cubic
order, each. The two possible fourth order terms, Tr(U4) and
[Tr(U2)]2 give rise to only one additional coefficient, since
2Tr(U4) = [Tr(U2)]2 [45]. As a result, there are only three

elastic parameters K1, K2, and K3. In principle, they can be
functions of s and ρ, which plays, however, no role for our
considerations. The linear elasticity constants used before can
be represented by k1 = K1 and k2 = 1/3K1. To guarantee that
the energy is minimum in the undeformed state, K1 must be
positive. ψij can now be calculated up to third order,

ψij = K1Uij + K2UikUkj + K3UikUklUlj . (A12)

The elastic stress tensor is generally given as [17]

σ ela
ij = −ψij + ψkiUjk + ψkjUik. (A13)

This expression is completely fixed by the dynamic strain
equation, because of the zero entropy condition. Only in the
linear approximation does σ ela

ij = −ψij hold. With the result
for ψij we get

σ ela
ij = −K1Uij + (2K1 − K2)UikUkj

+ (2K2 − K3)UikUklUlj . (A14)

We have now achieved a simplification of the hydrodynamic
model for polymeric fluids, which is amenable to an analytic
or almost analytic description of elementary types of flows.
The important equations are the dynamic equations for Uij ,
Eq. (A7) [with the incompressibility (A8)], as well as the
conservation of momentum density (A3) and the contributions
to the stress tensor σij = σ ela

ij + σD
ij , Eqs. (A14) and (A5) (with

β1 = 0).
The simplified model has a total of five material parameters,

namely the viscosity constant η∞, the relaxation time τ and the
three elastic parameters K1, K2, and K3. In addition to K1 and
η∞ also τ must be positive due to the definition τ−1 = 2α1K1;
to the entropy production only η∞ and τ contribute:

R = 2η∞(Aij )2 + U 0
ijψij /τ. (A15)
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