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Coalescence dynamics of viscous conical drops
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When two oppositely charged drops come into light contact, a liquid meniscus bridge with double-cone
geometry forms between the drops. Recent experiments have demonstrated the existence of a critical cone angle
above which the meniscus bridge pinches off and the drops do not coalesce. This striking behavior—which
has implications for processes ranging from the coarsening of emulsions to electrospray ionization in mass
spectrometry—has been studied theoretically and experimentally for inertial liquid drops. Little is known,
however, about the influence of the liquid viscosity on the critical cone angle. Here, we use high-fidelity
numerical simulations to gain insight into the coalescence dynamics of conical drops at intermediate Reynolds
numbers. The simulations, which account for viscous, inertial, and surface tension effects, predict that the critical
cone angle increases as the viscosity of the drops decreases. When approaching the inertial regime, however, the
predicted critical angle quickly stabilizes at approximately 27◦, as observed in experiments.
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I. INTRODUCTION

When two oppositely charged drops in an electric field are
sufficiently close, the adjacent interfaces develop a protruding
conical shape known as a Taylor cone [1]. As a result, when
the drops eventually come into contact the liquid meniscus
bridge connecting the drops adopts a double-cone geometry,
as sketched in Fig. 1(b). Remarkably, recent experiments by
Ristenpart et al. [2] have shown that above a critical cone angle
βc the meniscus bridge becomes unstable, and the drops fail
to coalesce.

The dynamics of charged drops have important implications
for a a wide range of physical processes. Examples include the
coalescence of drops in thunderstorms, electrospray ionization
in mass spectrometry, oil dehydration, and the coarsening of
pH-sensitive emulsions [3–6]. Coalescence of small charged
drops also plays an important role in digital microfluidics and
in electrodemulsification in microfluidic devices [7,8].

Recently, the noncoalescence dynamics of inertial conical
drops have been studied both theoretically and experimen-
tally [2,9–11], and the critical cone angle for low-viscosity
drops has been well characterized experimentally [2,9] as
βc = 27◦ ± 2◦. However, surprisingly little is known about
the noncoalescence dynamics of viscous conical drops. In
particular, how viscosity influences the stability of the conical
meniscus bridge, and therefore how the critical cone angle
changes with the Reynolds number, is still an open question.

Indeed, in a very recent numerical work, Bartlett et al. [12]
investigated the noncoalescence dynamics of conical drops
using a volume-of-fluid technique. Their findings provide
important insight into the influence of fluid inertia on the
evolution of the conical meniscus bridge. But results from
the simulations correspond to nearly inviscid drops. For
conditions representative of millimeter water drops these
authors predicted a critical angle of 25◦, consistent with the
experimental observations by Ristenpart et al. [2] and Bird
et al. [9].
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Here, we use high-fidelity numerical simulation to gain in-
sight into the influence of viscosity on the dynamics of conical
drops. Results show that increasing the fluid viscosity favors
the breakup of the conical meniscus bridge. Accordingly,
we find that the critical cone angle characterizing the phase
boundary between coalescence and noncoalescence exhibits
a strong dependence on the Reynolds number in the viscous
regime. Conversely, for low-viscosity drops our simulations
predict a constant critical cone angle βc ≈ 27◦, as observed in
experiments [2].

II. PROBLEM DESCRIPTION

We consider two supported liquid drops connected by a tiny
meniscus bridge at the intersection of two Taylor cones, as
shown in Fig. 1. The drops have radius R, density ρ, viscosity
μ, and surface tension σ [Fig. 1(a)]. The cone angle is β, and
the meniscus bridge has an initial radius R0 at z = 0 [Fig. 1(b)].
The drops are assumed to be sufficiently small that gravity is
negligible compared with capillary forces, and the air around
the drops is considered dynamically inert.

The dimensionless equations governing the evolution of
the liquid velocity v and the pressure p in the drops, as well
as the evolution of the drop interface, are the axisymmetric
Navier-Stokes system

∇ · v = 0, (1)

Re

(
∂v
∂t

+ v · ∇v
)

= ∇ · T (2)

and the kinematic and stress conditions at the fluid surface

n · (v − vs) = 0, (3)

2H n = n · T. (4)

Here T = −pI + (∇v + ∇vT ) is the stress tensor, n the
outward normal vector, and vs the velocity of the surface [13].
The local mean curvature of the interface H = (κr + κz)/2 is
obtained using the exact expression

H = −1/2(∇s · n), (5)
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FIG. 1. (a) Sketch of the conical liquid drops and (b) the joining
meniscus bridge. The radius of the drops is R, and the cone angle is
β. The density of the liquid is ρ, the viscosity is μ, and the surface
tension is σ .

where ∇s = (I − nn) · ∇ is the surface gradient operator [13].
Therefore, the axisymmetric radial and azimuthal curvatures
are calculated numerically as

κz = (dt/ds) · n, (6)

κr = −(n · er )/rs, (7)

where s is the arc length and t is the unit vector tangent to
the interface, following the procedure described in detail by
Kistler and Scriven [14]. In this study the length scale is the
radius R, the time scale is the viscous time τ = μR/σ , and the
stress scale is the capillary stress σ/R. Therefore, the Reynolds
number Re = ρσR/μ2 relates the ratio of inertial to viscous
forces with R/τ = σ/μ as the velocity scale of the fluid. Note
that, alternatively, the Reynolds number can be expressed in
terms of the Ohnesorge number Oh as Re = Oh−2, where
Oh = μ/

√
ρσR.

The supported drops are axisymmetric about the centerline
r = 0 and symmetric about the midplane z = 0. The initial
shape of the interface corresponds to the shape used by Bartlett
et al. [Eq. (2.1)] [12] to analyze the coalescence dynamics
of conical drops of nearly inviscid fluids. Similarly, the
initial neck radius r0 = R0/R = 10−4 and the initial meniscus
curvatureH0 = 1/2(κr0 + κz0) = 1/r0, where the initial radial
curvature κr0 = −1/r0 and the initial azimuthal curvature
κz0 = 3/r0 were also taken from Bartlett et al. [12]. Note
that the axial curvature and azimutal curvatures are competing
factors that determine the initial breakup or coalescence of
the conical drops [15]. As described in detail by Bartlett
et al. [12], the choice of initial meniscus curvatures in this
study leads to a neck region with a positive initial mean
curvature H0 = 1/r0, resulting in a negative capillary pressure
in the neck, which favors coalescence at the beginning.
The drops are supported by solid surfaces in which no-slip
and no-penetration conditions are imposed and in which the
circular contact lines are considered static.

The numerical approach is based on the simultaneous
solution of the full Navier-Stokes governing equations using
the arbitrary Lagrangian-Eulerian method of spines [14] with
an adaptive finite-element mesh and adaptive time integration
and a full analytical Jacobian. We have successfully validated
and applied this numerical approach to the study of drop
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FIG. 2. Radius of the meniscus bridge for three Reynolds num-
bers. Time evolution of the minimum neck radius rm for conical drops
with cone angle β = 50◦ and three Reynolds numbers: Re = 2 × 105

(Oh = 2.2 × 10−3) [thick (blue) line], Re = 2 × 104 (Oh = 7.07 ×
10−3) [thin (red) line], and Re = 2 × 102 (Oh = 7.07 × 10−2) (black
line).

coalescence [16] and other free surface flows [17–20] in
previous works where more details of the algorithm are given.

III. RESULTS AND DISCUSSION

A. Wide cone angle

Recent experiments have shown that low-viscosity conical
drops fail to coalesce if the angle β of the Taylor cone is wider
than approximately 27◦ [2]. Thus, we begin our discussion
with an example that illustrates the effect of the fluid viscosity
on noncoalescing conical drops with a cone angle β > 27◦.

Figure 2 shows the evolution of the minimum radius rm of
the thinning neck for conical drops with a wide cone angle, β =
50◦, and three values of the Reynolds number: Re = 2 × 105

[inertial; thick (blue) line], Re = 2 × 104 [intermediate; thin
(red) line], and Re = 2 × 102 (viscous; thick black line). For
the purpose of our discussion, the central observation in Fig. 2
is that increasing the fluid viscosity limits the extent to which
the neck can grow before starting to contract.

The liquid neck connecting the inertial drops starts to
contract at a minimum neck radius rm/r0 ≈ 1.3, after the
capillary pressure jump becomes positive and sufficiently large
to drive the fluid away from the neck, as shown in Fig. 3
[thick (blue) line]. The theoretical background of the role
of the capillary pressure in the dynamics of inertial conical
drops was explained by Bird et al. [9] and Helmensdorfer
and Topping [10]. The liquid bridge connecting the viscous
drops, however, starts to contract at a smaller neck radius
rm/r0 ≈ 1.036, long before the pressure becomes positive, as
also shown in Fig. 3 (black line). Thus, the contraction is
initially driven not by the capillary pressure but, rather, by the
enhanced viscous transfer of axial momentum on the viscous
drops, as illustrated in Fig. 4.

Figure 4 shows the temporal evolution of the cross-sectional
velocity field in the liquid bridge joining the viscous drops. The
figure illustrates the significance of the viscous momentum
transfer at the incipience of the transition from coalescence to
noncoalescence. In the online version, the red area indicates
positive radial flow (flow away from the symmetry axis) and
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FIG. 3. Evolution of the pressure on the meniscus bridge for
two Reynolds numbers. Evolution of the capillary pressure on the
meniscus bridge pm for conical drops with cone angle β = 50◦ and
Reynolds numbers Re = 2 × 105 (Oh = 2.2 × 10−3) [thick (blue)
line] and Re = 2 × 102 (Oh = 7.07 × 10−2) (black line).

the blue area indicates negative radial flow (flow toward the
axis). Figure 4(a) shows that during the coalescence phase the
negative capillary pressure induced by the meniscus curvature
drives a positive radial flow on the meniscus bridge that
expands the neck radius (red area in the figure). As time
progresses, the viscous transfer of momentum from the region
on the conical side of the drops with a negative radial velocity
[blue area in Fig. 4(b)] decelerates and gradually reverses the
growth of the meniscus neck, which was initially moving with a
positive radial velocity. Finally, Fig. 4(c) illustrates the reversal
of the original flow pattern at the meniscus interface. Here,
the full meniscus interface starts to move towards the axis
of symmetry, revealing the beginning of the noncoalescence
process. This reversal corresponds to the maximum of the rm

in Fig. 3 (black line) and therefore occurs despite the capillary
pressure being negative at the neck. Only after the neck radius
decreases below rm ≈ 9.3 × 10−5 does the capillary pressure

FIG. 4. Velocity field in the conical meniscus bridge. Evolution
of the radial velocity field in the meniscus bridge for conical viscous
drops with Re = 2 × 102 (Oh = 7.07 × 10−2) and cone angle β =
50◦ at dimensionless times t = 0.1 × 10−5,1.3 × 10−5, and 5.4 ×
10−5 (left to right). Here red corresponds to positive radial velocity
and blue to negative radial velocity.
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FIG. 5. Interface shape of a conical meniscus bridge near pinch-
off. (a) Interface shape of the conical meniscus bridge formed between
two conical drops with Re = 2 × 104 (Oh = 7.07 × 10−3) and β =
50◦ when the minimum neck radius is rm = 5 × 10−7. (b) Magnified
view of the satellite droplet formed in the filament connecting the
main drops.

become positive and contribute to the thinning of the liquid
bridge.

The above results show that the viscous momentum transfer
has a destabilizing effect on the conical meniscus bridge and,
thus, suggest that narrower cone angles, β < 27◦, exist, for
which inertial drops will coalesce but viscous drops may still
fail to coalesce. But before moving on to show, in Sec. III C,
that such opening angles do indeed exist, we pause to note that
the pinch-off dynamics follow scalings and self-similarities
at the imminence of breakup that have been well established
theoretically and that can be used as a stringent benchmark.

B. Scaling and self-similarity

Different shapes and scalings were observed during the
pinch-off of the drops in Fig. 2, depending on whether inertia
or viscosity was dominant in the dynamics. For example, a
small satellite drop was observed between the inertial drops
(Re = 2 × 105) but no satellite drop was observed during the
pinch-off of the high-viscosity drops (Re = 2 × 102). In this
section, we describe the shape and the self-similar behavior
observed for the drops with the intermediate Reynolds number
Re = 2 × 104. We focus on the drops with intermediate Re
because they successively exhibit both inertial and viscous
behavior while approaching the singularity.

Figure 5(a) illustrates the interfacial shape of the liquid
bridge at the imminence of breakup (rm ≈ 5 × 10−7) for
the conical drops with Re = 2 × 104. The enlarged view in
Fig. 5(b) makes clear that a small satellite droplet has formed
between the main drops, as typically observed during the
breakup of moderately viscous liquid filaments due to the
Rayleigh instability [21]. In addition, Fig. 6 demonstrates
that both the temporal and the spatial coalescence dynamics
exhibit self-similar behavior near breakup. Figure 6(a) shows
that the minimum radius of the thinning neck rm versus the
time to collapse t ′ initially exhibits the 2/3 scaling that can
be expected from straightforward dimensional analysis of the
inertial limit [22] (dashed line). As the neck radius decreases,
however, local viscous effects become dominant and the tem-
poral scaling merges onto Eggers’ viscous universal solution,
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FIG. 6. Scaling and self-similarity. (a) Evolution of the thinning
neck radius rm with the time to pinch-off t ′ = t − t0, where t0 is the
time of pinch-off, for conical drops with β = 50◦ and Re = 2 × 104

(Oh = 7.07 × 10−3). The radius initially follows a 2/3 power-law
scaling (dashed line) and then transitions to Eggers’ universal scaling
rm = 0.0304t ′ (solid black line). (b) Interface shapes in similarity
coordinates ξ = r/rm and η = t ′ 0.5(z − zm)/rm for neck radius rm =
1.004 × 10−6 [thin (red) line], 8.215 × 10−7 [thick (green) line],
6.785 × 10−7 (black line), and 5.077 × 10−7 [thick (blue) line].

rm = 0.0304 t ′ (black line) [23]. Due to the orders-of-
magnitude gap between the initial neck radius r0 and the
minimum neck radius rm, the drop profile also exhibits spatial
self-similarity near the singularity [21]. This is illustrated in
Fig. 6(b), which shows that the portion of the interface over
which the neck profiles approach a similar shape increases as
rm goes to zero when plotted in scaled similarity coordinates
ξ = r/rm and η = t ′ 0.5(z − zm)/rm, where zm is the axial
coordinate of the minimum neck radius.

C. Phase diagram showing regions of coalescence and breakup

In Sec. III A we discuss the destabilizing influence of
the viscosity for conical drops with cone angle β > 27◦.
Here, we show that this destabilizing influence can prevent
the coalescence of conical drops with cone angles β < 27◦
and, consequently, modifies the phase boundary between
coalescence and noncoalescence.

This is first exemplified in Fig. 7. In the figure, we compare
the time evolution of the minimum neck radius rm for three
conical drops with intermediate Reynolds number Re = 2 ×
104 and three values of the cone angle: β = 22◦ [thick (blue)
line], β = 23◦ (black line), and β = 25◦ [thin (red) line]. For
the parameters used in the figure, the simulations predict that
the transition between coalescence and noncoalescence occurs
for a critical cone angle 22◦ < βc < 23◦, a few degrees smaller
than the critical cone angle βc ≈ 27◦ corresponding to inertial
drops.

We have performed a number of similar simulations to map
the regions of coalescence and noncoalescence spanning about
three orders of magnitude in the Reynolds number. We focus
on characterizing the influence of the Reynolds number, so
the other parameters are held constant. The resulting diagram
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FIG. 7. Radius of the meniscus bridge for three cone angles. Time
evolution of the minimum neck radius rm for conical drops with
Re = 2 × 104 (Oh = 7.07 × 10−3) and cone angles β = 22◦ [thick
(blue) line], β = 23◦ (thick black line), and β = 25◦ [thin (red) line].

demonstrates, for the first time, to our knowledge, that the
phase boundary between coalescence and noncoalescence
exhibits a strong dependence on the Reynolds number (Fig. 8).
Specifically, we find that the boundary between coalescence
and noncoalescence is characterized by a critical cone angle
βc that increases with the Reynolds number (Fig. 8; filled sym-
bols). We note that, as the Reynolds number decreases and the
characteristic viscous length scale becomes increasingly large,
the influence of the macroscopic drop configuration (e.g.,
supported as opposed to freestanding drops) should become
more relevant. The results in Fig. 8, however, correspond to
drops with Re = ρσR/μ2 � 1—that is, drops with a radius
R much larger than the viscous length scale lμ = μ2/ρσ—
which are expected to be largely insensitive to macroscopic
changes in configuration. We have tested this expectation at

FIG. 8. Phase diagram showing regions of coalescence and
noncoalescence. Instances of coalescence [(red) diamonds] and
noncoalescence [(blue) circles] in the Re and β space for conical
drops with r0 = 10−4 and H0 = 104. Filled symbols correspond to
supported drops, and open symbols correspond to freestanding drops.
Here, Oh∗ = μ/

√
ρσR0 is the local Ohnesorge number based on the

neck radius.
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the lower end of the Reynolds numbers in Fig. 8. We performed
simulations for Re = 1 × 103 and Re = 2 × 104 for the more
computationally demanding freestanding drops, and the results
are depicted as open symbols in Fig. 8. The simulations show
no differences between the critical cone angle of the supported
and that of the freestanding drops. We have also tested the
influence of the initial meniscus shape by decreasing the radius
of the initial meniscus curvature up to a full order of magnitude
smaller and found no differences in the predicted critical cone
angles.

In addition, the phase diagram shows that as the Reynolds
number increases and viscous effects become negligible,
the critical cone angle rapidly stabilizes and then remains
essentially constant. Therefore, it is relevant to compare the
results in this region with the experimental measurement of
the critical cone angle of inertial drops by Ristenpart et al. [2]
and Bird et al. [9]. In this regard, the results from our full N-S
simulations predict that the inertial cone angle in the region of
large Reynolds numbers is βc ≈ 27◦ (Fig. 8; dashed line), in
excellent agreement with the value βc = 27◦ ± 2◦ observed in
the experiments.

IV. CONCLUSION

In this work, we have studied the noncoalescence dynamics
of viscous conical drops using direct numerical simulations.
We have demonstrated that this approach is highly accurate,

as it is able to reproduce asymptotic self-similar behavior at
the imminence of the pinch-off of the conical meniscus bridge,
including Eggers’s universal scaling.

Results from the simulations show that increasing the fluid
viscosity favors the pinch-off of the liquid meniscus bridge.
Accordingly, results show that the critical cone angle βc,
which characterizes the phase boundary between coalescence
and noncoalescence, decreases as the viscosity increases. The
nature of the noncoalescence dynamics also changes with the
fluid viscosity. While the pinch-off of inertial conical drops
is largely due to the higher capillary pressure in the meniscus
bridge, which drives the fluid away from the neck [2,9,10], the
pinch-off of viscous conical drops is favored by the enhanced
transfer of the viscous momentum. Results also show that when
the Reynolds number is large and so the characteristic viscous
length is negligible, the momentum transfer is ineffective
and the critical cone angle becomes constant. Under these
conditions, the predicted critical cone angle is βc ≈ 27◦, in
excellent agreement with previous experiments on inertial
conical drops. We expect that our findings will motivate similar
experimental studies on conical drops with lower Reynolds
numbers.
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