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The Richtmyer-Meshkov instability (RMI) of single-mode air-SF6 interfaces is studied numerically and the
emphasis is placed on the effect of the principal curvature on the early evolution of the shocked interface.
Two three-dimensional initial interfaces with opposite (3D−) and identical (3D+) principal curvatures and
a traditional two-dimensional interface (2D) are considered. The weighted essentially nonoscillatory scheme
and the Level-Set method combined with the real ghost fluid method are adopted. For comparison, perturbations
on the initial interfaces with the same wavelength and amplitude in the symmetry plane are employed. The
numerical results confirm the experimental finding that the growth rate of perturbations in the symmetry plane at
the linear stage in the 3D− case is much smaller than that in the 2D and 3D+ cases. The difference among them
can be ascribed to the different pressure and vorticity distributions associated with the principal curvatures of the
initial interface. On the one hand, the high-pressure zones in the vicinity of the deformed interface are significantly
different for three cases especially in the very beginning. The shock convergence and divergence at the interface
are more severe in the 3D+ case than those in the 2D case, while the wave pattern in the 3D− case is more
complex. On the other hand, the baroclinic vorticity distribution plays a leading role in the interface deformation
of the 3D RMI after the passage of the planar shock. The accumulated vorticity changes the movement of the
deformed interface and makes the local growth of perturbations different among three cases.
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I. INTRODUCTION

The Richtmyer-Meshkov instability (RMI) occurs when
an initially perturbed density interface between two different
fluids is accelerated by a shock wave. The interface is com-
pressed in the beginning of the shock-interface interaction and
develops gradually due to the baroclinic vorticity caused by the
misalignment between the pressure and the density gradients
at the interface. In a planar shock case, the perturbation of
the interface grows linearly with time in the early stage, as
first predicted theoretically by Richtmyer [1] and confirmed
experimentally by Meshkov [2]. In contrast, in the late stage,
the growth of the perturbation becomes nonlinear with spikes
and bubbles of the interface evolving asymmetrically and
finally turns into turbulent mixing. Extensive studies have been
performed on the subject of RMI and significant advancements
have been achieved by experiments, theories, and simulations
[3,4] due to the significant applications in fields such as
inertial confinement fusion [5], supernova explosions [6], and
supersonic combustion [7].

In previous studies, the shapes of the initial interface mainly
include spherical and cylindrical bubbles [4,8], polygonal
gaseous cylinders [9,10], and single-mode and multimode
interfaces [11–14]. The single-mode gaseous interface is one
of the most used cases due to its simple geometry and
sinusoidal structure. As shown in Fig. 1, there are three typical
configurations depending on the principal curvatures of the
initial single-mode interface, including a two-dimensional
interface with only one principal curvature (2D), a three-
dimensional interface with two identical principal curvatures
(3D+), and a three-dimensional interface with two opposite
principal curvatures (3D−) in the transverse and longitudinal
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directions. The 2D interface has been widely used in the study
of the RMI to model the growth rate of the mixing layer in the
linear, nonlinear, and turbulent regimes [15,16], while studies
of the 3D+ interface [17–19] and the 3D− interface [20] are
still in their early stages. The 3D RMI cases leave some open
questions; in particular the stability characteristics of a surface
bent in the transverse and the longitudinal directions are not
fully understood yet [21]. Moreover, in most applications the
RMI occurs generally in 3D geometric conditions and the
development of a density interface is intrinsically in the 3D
behavior. Therefore, it is still desirable to put forth great effort
in studying the 3D cases in order to understand the properties
of the 3D RMI, even for the early evolution stages.

A minimum-surface featured single-mode interface can
be recognized as one of the 3D− interfaces, which has a
zero mean curvature with opposite principle curvatures at
every point of the interface [22]. In our previous work, we
generated this type of 3D− interface by soap film techniques
and performed RMI experiments in a shock tube [20]. A 3D
stability analysis was also carried out to propose an extended
theoretical model that combined the early linear growth with
the late-time nonlinear growth for the whole evolution process
of the 3D− configuration. The experimental and theoretical
investigations indicated that the growth rate of the mixing layer
at the symmetric plane in the 3D− case was much slower than
the 3D+ and 2D counterparts. However, due to the limitations
of the initial interface formation and the schlieren photography
in experiments, it was not possible to observe the dynamic
behavior of the 3D− single-mode interface at a very early
stage of evolution. Moreover, it was difficult to obtain the
quantitative information of the flow field for understanding
the vortex dynamics and the shock refraction and reflection
in 3D single-mode RMI. The present work is a follow-up of
our previous study, aiming to numerically study the effects of
principal curvatures on the interface evolution.
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FIG. 1. Schematics of three typical single-mode interfaces with
(a) only one principal curvature (2D), (b) identical principal cur-
vatures (3D+), and (c) opposite principal curvatures (3D−) in the
transverse and longitudinal directions.

II. NUMERICAL METHOD AND VALIDATION

A. Numerical method and physical model

In the numerical simulation, we will restrict our focus to
the early stage of the RMI; therefore, the turbulent mixing
is beyond the scope of the present work. The 3D unsteady
compressible Euler equations with the ideal gas law as the
equation of state are appropriately adopted. The level set
method [23] and the real ghost fluid method [24] are used
to represent the interface that initially separates the different
gases. In a Cartesian coordinate system, the level set function
φ(x,y,z,t) satisfies

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
+ w

∂φ

∂z
= 0, (1)

where (u,v,w) are the velocity components in the x, y, and
z directions, respectively. The location of the interface is
captured automatically by advancing φ(x,y,z,t) to the next
time step. Reinitialization is used to maintain the level set
function as a signed distance function

φt + S(φ0)
(√

φ2
x + φ2

y + φ2
z − 1

) = 0,

(2)
φ(x,y,z,0) = φ0,

where the sign function is S(φ0) = φ0/
√

φ2
0 + �l2 , with

φ0 the location of the interface and �l the mesh size. The
governing equation and the level set function are solved by a
fifth-order weighted essentially nonoscillatory scheme [25] in
uniform cubic cells and advanced in time by the third-order
Runge-Kutta method.

For comparison, Fig. 2 presents the initial setting for the
3D− case based on our previous experimental work [20]. The
interface has an initial amplitude of ao = 5 mm at the top and

FIG. 2. (a) Initial setting for the 3D− single-mode interface and
(b) top view of the interface with IL,IR,IL and OL,OR,OR (I ,
inner; O, outer; L, left; R, right) denoting the positions of the troughs
and crests of the initially perturbed interface at y = 0 and 9 mm,
respectively.

the bottom boundaries (line OR′-OL-OR) and a wavelength
of λ = 35 mm. Based on the property of a minimum surface
for the 3D− case [22], the interfacial geometry can be
characterized in each xz plane as

z = f (y) cos(kx), y ∈ [−9,9], (3)

and

y = ±
∫ f (y)

ai

dx√
ek2(x2−ai

2) − 1
, (4)

where the plus (minus) sign stands for y > 0 (y < 0) and
ai for the perturbation amplitude of the symmetry plane at
y = 0. Considering the initial amplitude ao = 5 mm at the
top and the bottom boundaries (y = ±9 mm), the interfacial
amplitude ai = 1.79 mm at the symmetry plane (y = 0) can
be determined from Eq. (4).

The 2D, 3D+, and 3D− interfaces are considered in the
present numerical simulations, in which the computational
domains are similar. The interfacial geometries in each xz

plane have the mathematical expression for three cases as
written in Eq. (3), where f (y) = ai for the 2D case and f (y) =
ai cos(ky) for the 3D+ case.

Due to the symmetric structures of the whole physical
space shown in Fig. 2, we consider the upper left quarter
as the computational domain with a cuboid shape of 17.5 ×
9 × 100 mm3. (The length in the z direction can be adjusted
in different numerical cases to improve the efficiency.) The
locations of the gaseous interface initially separating SF6

(right) from air (left) and of the planar shock wave with a Mach
number of Ms = 1.21 initially moving from left to right along
the positive z direction are indicated in Fig. 2. The preshock
flow field is set to be stationary and the postshock flow
variables are computed by the Rankine-Hugoniot relations.
The boundary conditions on the six surfaces of the cuboid
include two solid boundaries (top and back surfaces), two
symmetric boundaries (bottom and front surfaces) and two
outflow boundaries (left and right surfaces). The outflow
conditions are enforced on the two surfaces by applying a
zeroth-order extrapolation to the boundaries. The effects of
the mesh size on the numerical accuracy are evaluated in
advance and the number of grid cells is finally considered
to be 175 × 90 × 1000, which corresponds to a uniform grid
size of �x = �y = �z = 0.1 mm.

B. Comparison with previous experiments

The complete evolution processes of the 2D, 3D+, and
3D− interfaces accelerated by the planar shock wave in
the early stage have been simulated numerically. In order
to validate the numerical method, the results for the 3D−
interface case are first compared with previous experimental
observations [20]. In the experiment, schlieren photography
only records the shock propagation and interface deformation
in an integrated view, while in the numerical simulation, the
3D flow structures can be obtained. Figure 3 presents an
example of the deformation of an initial 3D− interface with
ao = 5 mm, ai = 1.79 mm, and λ = 35 mm accelerated by a
planar shock wave at different moments. It can be easily seen
that the 3D numerical simulation is able to provide details
of the evolving interface that behaves differently along the
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FIG. 3. Numerical simulation of the flow structures for the 3D−
interface at different moments: (a) t = 0, (b) t = 0.26 ms, and
(c) t = 0.61 ms.

y axis owing to the 3D characteristics. Figure 4 compares
the schlieren images of the shocked 3D− interface from the
experiments (upper part) with the corresponding numerical
results (lower part). Although the schlieren results indicate
an integrated view of the deformed interfaces along the y

direction at different times, the evolving interfaces in the
symmetry (y = 0, i.e., IR′-IL-IR in Fig. 2) and boundary
(y = ±9 mm, i.e., OR′-OL-OR in Fig. 2) planes can be
easily extracted. Therefore, the interfacial evolution of the
symmetry or the top-bottom boundary can be revealed by
the inner or outer contours in each image, as represented by
the dashed lines in Fig. 4. It can be directly found that the
numerical results exhibit all the features of the shock-interface
interaction presented in the experiments and good agreement
between them can be obtained. Furthermore, Fig. 5 compares
the geometric quantities that characterize the evolution of this
minimum surface between the experimental (symbols) and the
numerical results (lines). The displacements of the crest and the
trough along the symmetry plane (the inner contour) are nearly
the same between experimental and numerical results. There is
a little difference between the outer contour in the numerical
simulation and the experimental counterpart, which may lie
in the fact that the soap film and the small protrusions for
fixing the soap film in experiments never exist in the numerical
simulation. The effects of other slight differences including the
incident shock strength, the temperature, and the pressure can
be neglected. Overall, the agreement between experiments and
numerical simulations is acceptable.

0 23 ms. 0 41 ms.

0 61 ms. 0 81 ms.

Inner
evolution

Outer
evolution

FIG. 4. Schlieren scenarios of the evolution of a minimum-
surface featured air-SF6 interface impacted by a shock wave with
Ms = 1.21. The top halves are experimental schlieren results and the
bottom halves are numerical ones, indicating an integrated view of
the deformed interfaces along the y direction at different times.

FIG. 5. Comparison of three geometric quantities that character-
ize the evolution of the shocked 3D− interface between experimental
(symbols) and numerical (lines) results. The definitions of the
measurement are indicated in the inset image taken from the
numerical simulation in Fig. 4.

Previous experimental studies have found that the instabil-
ity growth rates in the symmetry plane are distinct among the
2D, 3D+, and 3D− single-mode cases in the linear stage [20].
Figure 6 presents the numerical results of the dimensionless
growth rates in the y = 0 plane for 2D, 3D+, and 3D− single-
mode interfaces with the initial wavelength of λ = 35 mm and
amplitude ai = 1.79 mm subjected to a shock wave of Ms =
1.21. The quantities are nondimensionalized as ā = k(at

i −
Zca

0
i ) and τ = kvRM

i (t − t0), with vRM
i = ZckaiA

+�V the
growth rate estimated from the 2D impulsive model [1], Zc =
1 − �V /Ws the compression factor, �V the velocity jump
of the shocked interface, Ws the incident shock velocity, k the
wave number, and A+ the postshock Atwood number. The data
are nearly the same as those in the experimental observations,
which further validates the numerical method. According to
the extended linear theoretical model [20], the growth rate
of the 2D interface symmetry plane is vRM

i , for the 3D+
case it is

√
2vRM

i , and for the 3D− case it is (2 − √
2)vRM

i .
It can be seen that the predictions of the theoretical model
fit the numerical results well in the linear stage (τ < 0.7).
The 3D+ instability grows much faster than the 2D one,
while the 3D− instability has the lowest growth rate. This
would be ascribed to the different principal curvatures among
them. In comparison with the 2D interface instability, the
identical principal curvatures of the 3D+ interface enhance
the instability, while the opposite principal curvatures of
the 3D− interface suppress the instability. At later times, the
linear theory overpredicts the growth rates for all three cases
because of the nonlinearity caused by the appearance of the
bubble-spike structures.
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FIG. 6. Dimensionless growth rates in the y = 0 plane for 3D−,
3D+, and 2D single-mode interfaces subjected to the planar shock
wave of Ms = 1.21. The symbols stand for the numerical results
and the solid lines for the theoretical ones predicted by the extended
impulsive models.

III. PRINCIPAL CURVATURE EFFECTS ON
THE INTERFACE EVOLUTION

The effect of the postshock pressure gradients in the vicinity
of the interface on the early evolution of the 3D single-mode
RMI is assessed numerically. As the previous experiments
for the 3D− interface hardly obtain the pressure distribution
[20], we first simulate the 3D flow field. Figure 7 presents the
high-pressure zones (HPZs) for the shocked 3D− interface at
two moments after the shock-interface interactions (i.e., 15.76
and 50.78 μs). When the planar shock impacts the interface, a
transmitted shock (TS) and a reflected shock (RS) are formed.
The TS moves from left to right and the high-pressure zone
HPZ1 can form immediately between the interface and the TS
along the middle of the top and bottom walls. The RS moves
from right to left and high-pressure zones HPZ2 and HPZ3
arise in the postshock area along the diagonal lines of the RS.
As time proceeds, the shapes of the RS and the TS change and
the postshock pressure distributions vary in the 3D postshock
space. The HPZ3 expands and is further divided into two parts

along the x axis and the upper and lower parts around the four
corners of HPZ2 move toward the symmetry plane along the
y axis. Meanwhile, HPZ1 develops and another HPZ4 arises
along the middle of the front and back walls after the passage
of the TS. Due to the larger acoustic impedance of SF6 on
the right side of interface, the TS moves more slowly than
the RS, and the HPZ1 and the HPZ4 will be maintained for a
relatively long time. These HPZs cause pressure drops at two
sides of the evolving interface and directly affect the growth
of perturbations in the flow field.

Figure 8 further presents schlieren images of the early
evolution of the shock pattern and the interface deformation
subjected to the shocked 3D− interface at four characteristic
slices. It can be seen that the initial opposite interfacial princi-
pal curvatures have great effects on the pressure distributions
in the flow field, resulting in different shapes of the TS, the
RS, and the deformed interface along each slice, respectively.
In the symmetry plane (S1) and the top (or bottom) plane
(S2), the initial interfaces have a single-mode shape with
the same wavelength λ = 35 mm and different amplitudes
ai = 1.79 mm and ao = 5 mm, respectively. For the interface
along the top or bottom boundary plane, the HPZ1 enhances
the transition of its crests into spikes (e.g., OL in S2 and IL

in S3) and the HPZ2 promotes the transition of its troughs
into bubbles (e.g., OR in S2 and OR in S4). In contrast, for
the interface along the symmetry plane the HPZ3 suppresses
the development of its crests into spikes (e.g., IL in S1 and
IL in S3) and the HPZ4 suppresses the development of its
troughs into bubbles (e.g., IR in S1 and OR in S4). As
indicated in Fig. 3, the interfaces along S2 (y = ±9 mm,
i.e., OR′-OL-OR in Fig. 2) develop much faster than that
along the S1 (y = 0, i.e., IR′-IL-IR in Fig. 2), in which
the bubble-spike structures hardly appear in the early stage.
It should be mentioned that the opposite principal curvatures
along the interface cause 3D structures of the RS and the TS
with convergent and divergent characteristics. For example,
the RS front shown in S3 can be divided into three parts,
including one middle strong convergent part and one upper
and one lower weak divergent parts. Because of the strong and
weak reflections, rarefaction waves can form at the junctions
of different pressure zones, inducing the variation of pressure
distributions in the flow field. These phenomena in the 3D−
case are much different from those in the 2D [15,16] and 3D+
[17–19] cases.

The evolutions of the 3D+ and 2D shocked interfaces are
simulated numerically and further compared with the 3D−
case. Figure 9 presents the cross-sectional view of three

Interface HPZ1
TS

HPZ2

HPZ3

RS

Interface
HPZ1

HPZ4

TS
RS

FIG. 7. Distribution of the high-pressure zone (HPZ) for the shocked 3D− interface at two moments: (a) 15.76 μs and (b) 50.78 μs,
respectively. RS denotes reflected shock and TS transmitted shock.
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S1

S2

S3

S4

8.76 15.76 22.76 36.77 50.78 68.29 77.05

RS TS

HPZ1

HPZ3

HPZ2
HPZ4HPZ3

HPZ4

HPZ2

IR'

IL

OR'

OL

OL

IL

OR

IR

FIG. 8. Cross-sectional view of the numerical schlieren sequences showing the early evolution of the shocked 3D− interface in four
characteristic planes at the moments in sequence: 8.76, 15.76, 22.76, 36.77, 50.78, 68.29, and 77.05 μs.

shocked interfaces in the y = 0 plane at different moments
after the shock-interface interactions, respectively. In the very
beginning, the shapes of the TS, the RS, and the shocked
interface are nearly the same in the y = 0 plane due to the
same amplitude of the initial interface and the same shock
strength. However, as the principal curvatures are different,
the difference of the pressure distributions in the vicinity of
the interface will result in different velocities of the interface.
Figure 10 plots the pressure distributions along the central
line in the y = 0 plane for the shocked 3D+, 2D, and 3D−

interfaces at 8.76, 15.76, and 22.76 μs, respectively. Since the
initial shape of the 3D+ interface is horizontally convex to the
negative z direction, the RS is horizontally divergent during
its traveling from right to left. Compared with the 2D case, the
RS acquires an extra divergent expansion as its initial shape is
vertically convex to the negative z direction. Meanwhile, the
shock convergence on the right side of the interface caused by
the TS is also stronger in the 3D+ case than that in the 2D
case. Therefore, the pressure gradient across both sides of the
interface in the 3D+ case is higher than that in the 2D case. The

3D+

2D

3D-

15.76 22.76 36.77 50.78 68.29 77.058.76

RS TS

HPZ3

HPZ4

Trough

Crest

FIG. 9. Comparison of the numerical schlieren sequences among the shocked 3D+, 2D, and 3D− single-mode interfaces showing the
early evolution of them in the symmetry plane at different moments in sequence: 8.76, 15.76, 22.76, 36.77, 50.78, 68.29, and 77.05 μs. At the
moment 77.05 μs, the locations of the crest and the trough for the three cases are indicated by vertical dashed lines to show the differences of
their displacements.
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FIG. 10. Pressure distributions along the central line at y = 0 plane for the shocked (a) 3D+, (b) 2D, and (c) 3D− interfaces at 8.76, 15.76,
and 22.76 μs, respectively. The inset images indicate the pressure gradients in the vicinity of the evolving interface. The pressure data are
extracted along the horizontal dashed lines shown in Fig. 9.

wave pattern in the 3D− case is much more complex. Because
of the opposite directions of the two principal curvatures, the
rarefaction waves appear after the wave convergence of the
RS and result in the formation of HPZ3. It can be easily seen
that the pressure gradient in the 3D− case at 8.76 μs is even
opposite to the pressure gradients in the 2D and 3D+ cases. As
a result, the crest of the interface in the 3D− case will move
more slowly than that in the 2D case and the 3D+ case will
obtain the largest displacement of the interface corresponding
to the crest, as indicated in Fig. 9 at 77.05 μs. Moreover, the

displacements of the evolving interface corresponding to the
trough for three cases follow the same rules. Therefore, the
growth rate of perturbations at the linear stage in the 3D−
case is much smaller than that in the 2D and 3D+ cases and
the 3D+ case has the largest perturbation growth, which firmly
confirms the experimental finding [20].

Due to the misalignment of density and pressure gradients,
baroclinic vorticity is deposited at the gaseous interface.
Figure 11 presents the vorticity distributions in the flow field
at 15.76 μs. The 2D vorticity distributions are plotted in three

S1

S3

S4

TS

Interface

RS

HPZ3

x

z

y

z

y

z

(a) (b) (c)

2D 3D+ 3D-

S3
S1
S4

S3
S1
S4

S3
S1
S4

FIG. 11. Vorticity distributions in the flow field for the shocked (a) 2D, (b) 3D+, and (c) 3D− interfaces at 15.76 μs. The definitions of
S1, S3, and S4 are indicated in Fig. 8.
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characteristic slices where S1, S3, and S4 correspond to the
cut planes shown in Fig. 8. In the horizontal symmetry plane
S1 (y = 0), three cases acquire nearly the same vorticity
distributions because of the same initial shock strength and
interface shape. The vorticity induces velocities of the interface
in the postshock flow field. In the vertical central plane S3
(x = 0), however, there are great differences among three
cases. Considering the top half part of the interface, one can
obtain that the vorticity is equal to zero in the 2D case,
positive in the 3D+ case, and negative in the 3D− case.
The same direction of the vorticity deposited on the 3D+
interface around its crest will intensify the instability growth,
which is much larger than that in the 2D case, while the
opposite direction of the vorticity deposited on the 3D−
interface around its crest will suppress the instability growth.
Meanwhile, the interface trough (S4) experiences nearly the
same tendency of movements due to the deposited vorticity. As
time proceeds, the accumulated vorticity will further change
the flow field and make the phenomena among three cases
much more different.

IV. CONCLUSION

This numerical work has explored the effects of initial
interfacial principal curvatures on the early evolution of the 3D
RMI. Three types of single-mode air-SF6 interface (i.e., 2D,

3D+, and 3D−) accelerated by a planar shock are considered.
Specifically, the initial interfaces have perturbations of the
same wavelength and amplitude in the symmetry plane, but
their principal curvatures are completely different. Compared
with the 2D case, identical principal curvatures in the 3D+
case can increase the local growth of perturbations, while the
opposite principal curvatures in the 3D− case can reduce the
local growth. In the very beginning (e.g., 8.76 μs in Fig. 9),
the shock reflection and transmission cause different pressure
gradients across the interface for three cases. The pressure
gradient in the 3D− case is even opposite to the pressure
gradients in 2D and 3D+ cases (e.g., Fig. 10). The vorticity
distributions are further given to assess the difference among
three cases. In particular, in the vertical central plane (i.e., S3
in Fig. 11), there is no vorticity in the 2D case and the vorticity
directions are just opposite in the 3D+ and 3D− cases.
The numerical results can confirm our previous experimental
findings and validate the theoretical model for the 3D RMI
[20]. It is conjectured that the 3D RMI could be suppressed or
retarded to some extent by a clever design of the initial shape
of the interface.
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