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Droplet migration characteristics in confined oscillatory microflows

Kaustav Chaudhury, Shubhadeep Mandal, and Suman Chakraborty*

Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
(Received 15 July 2015; revised manuscript received 14 January 2016; published 8 February 2016)

We analyze the migration characteristics of a droplet in an oscillatory flow field in a parallel plate
microconfinement. Using phase field formalism, we capture the dynamical evolution of the droplet over a
wide range of the frequency of the imposed oscillation in the flow field, drop size relative to the channel gap, and
the capillary number. The latter two factors imply the contribution of droplet deformability, commonly considered
in the study of droplet migration under steady shear flow conditions. We show that the imposed oscillation brings
an additional time complexity in the droplet movement, realized through temporally varying drop shape, flow
direction, and the inertial response of the droplet. As a consequence, we observe a spatially complicated pathway
of the droplet along the transverse direction, in sharp contrast to the smooth migration under a similar yet steady
shear flow condition. Intuitively, the longitudinal component of the droplet movement is in tandem with the
flow continuity and evolves with time at the same frequency as that of the imposed oscillation, although with
an amplitude decreasing with the frequency. The time complexity of the transverse component of the movement
pattern, however, cannot be rationalized through such intuitive arguments. Towards bringing out the underlying
physics, we further endeavor in a reciprocal identity based analysis. Following this approach, we unveil the
time complexities of the droplet movement, which appear to be sufficient to rationalize the complex movement
patterns observed through the comprehensive simulation studies. These results can be of profound importance in
designing droplet based microfluidic systems in an oscillatory flow environment.
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I. INTRODUCTION

Droplet based microfluidics has brought in a revolution
in modern science and technology, with applications ranging
from material transport and active and passive mixing in
smart and compact technologies, to cutting edge biophysical
applications such as photoinitiated catalyst-initiated poly-
merization inside droplets, targeted drug delivery, and drug
discovery [1–5]. In spite of the apparent diversities in many
of these applications, the fundamental scientific challenge
often boils down to a comprehensive assessment of the
migration characteristics of the droplet in a microconfined flow
environment. While the migration pattern of a droplet in the
presence of a steady background (extensional, simple shear,
Poiseuille, etc.) flow has been studied quite extensively [6–16],
investigations of the possible implications of a time-complex
flow field in a confined microfluidic environment on the same
are relatively scarce.

In contrast to the cases of a steady flow, a time-complex flow
field introduces an inertial contribution in the flow environment
in addition to the time-complex forcing [17]. The latter is com-
monly perceived as a time varying imposed pressure gradient.
Subsequently, the flow field and the droplet shape both evolve
with time along with a time varying inertial response of the
droplet. Several studies have been reported in the literature on
the dynamics of a droplet in time periodic flow environments
[18–24]. However, those studies are mostly concerned with the
discrete features in isolation: shape dynamics or hydrodynamic
forces or streamwise migration characteristics. In contrast, the
combined confluence of the above mentioned factors needs
to be taken under consideration for actual representation of
the dynamics of the immersed droplet, particularly for lateral
migration characteristics.
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Here, we present a comprehensive description of the mi-
gration characteristics of a droplet in an oscillating flow field,
confined between two parallel plates. We employ numerical
simulations based on phase field formalism, and concurrent
analytical calculations based on a reciprocal identity based
paradigm towards developing the consensus. The present
analysis, based on imposed oscillating flow, eventually unveils
most of the generic and essential intricacies of the dynamics
of a confined droplet in a time-complex flow field. Moreover,
droplet dynamics within a confined flow environment is a
representative of a class of soft-body dynamics within a
confined physiological environment [25–27]. Therefore, the
present study bears a potential impact on the dynamical
features of biological moieties (such as red blood cells, white
blood cells, etc.) within a physiological system where the true
nature of the flow field is eventually time complex.

II. MODEL PROBLEM

We consider a Newtonian droplet of radius a, with dynamic
viscosity η and density ρ, initially submerged into another
viscosity and density matched immiscible Newtonian fluid
within a parallel plate channel, as shown in Fig. 1. The
droplet is placed at a certain distance offset from the channel
centerline. The flow within the domain is then imposed by
providing an oscillating body force. We carry out the analysis
with respect to a Cartesian reference frame fixed to the channel
wall, as shown in Fig. 1. Accordingly, the unit vectors are
denoted by êi with i being the corresponding coordinate.
The imposed oscillating body force is acting along the x

direction.

A. Phase field approach

We use the phase field model for simulating the dynamics
of the two-fluid system. Particulars regarding this method are
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FIG. 1. (a) Model problem setup, showing a Newtonian droplet immersed into another density and viscosity matched immiscible Newtonian
carrier fluid, within a parallel plate channel. We consider a rectangular 2D domain of dimensional length L and height H . The domain of
computation is bounded by periodically connected left and right boundaries (SL,SR), and the top and bottom bounding walls (ST ,SB ). Droplet
of initial radius a is placed at a transverse position yd form the bottom plate. (b) Typical velocity field at 1

4 of the cycle of imposed forcing; (c)
velocity profiles at different stages of the cycle are shown for the sake of comprehensiveness. The profile is shown for the rightmost boundary
SR; however, it remains the same without a droplet at all x.

detailed elsewhere [28–32]. Here we briefly revise the features
essential for our study. The distributions of the constituting
fluid components are estimated by the distribution of an order
parameter φ(x,t) (with x and t being position vector and time,
respectively), such that φ = −1 denotes the droplet region
and φ = +1 denotes the carrier fluid. The interfacial region,
between the droplet and the carrier fluid, is given by a diffused
zone marked with −1 < φ < +1.

Distribution of φ(x,t) leads to the free energy distribution
F (φ) = ∫

�
{f (φ) + 2−1σζ |∇φ|2}d� over the entire volume

of the domain �. Here f (φ) = 4−1ζ−1σ (φ2 − 1)2 represents
the bulk free energy density exhibiting minima at the two
stable components φ = ±1. The |∇φ|2 term inside the integral
represents the gradient free energy density, realized over the
interfacial zone only. Here, σ and ζ denote the coefficient of
surface tension and the characteristic thickness of the diffuse
interfacial region, respectively.

The energy principle requires dF /dt � 0, leading to
(δF /δφ)(dφ/dt) � 0. However, the participating phases for
the present situation should be conserved, so that dφ/dt =
−∇ · j, with j being the flux vector, for the transport of the
order parameter. These considerations lead to the celebrated
Cahn-Hilliard equation [28–32]:

∂φ

∂t
+ u · ∇φ = ∇ · (M∇μ). (1)

Here M = Mc(1 − φ2) denotes the interphase mobility
factor with Mc as the critical mobility parameter, and μ =
δF /δφ = σζ−1(φ3 − φ) − σζ∇2φ is the chemical potential.

The velocity field can be obtained from solving the
continuity equation

∇ · u = 0, (2)

along with the Navier-Stokes equation

∂

∂t
(ρu) + ∇ · (ρuu)

= −∇p + ∇ · [η{∇u + (∇u)T }]
−∇ · TS + G0 sin(ωt)êx, (3)

with p as the pressure field. The stress tensor TS is due to
the interaction between the participating phases [28–30,33].
It is defined as TS = [∂L /∂(∇φ)]∇φ − IL with I being the
identity tensor, and the Lagrangian L = f (φ) + σζ (∇φ)2/2
directly follows from the definition of the free energy func-
tional F and satisfies the Euler-Lagrange equation. For the
present consideration, the force of interaction between the
participating components eventually simplifies to −∇ · TS =
μ∇φ [28–30,33]. The body force G0 sin(ωt)êx in Eq. (3)
delineates the forcing required to maintain the oscillation in
the flow field, with G0 and ω being the amplitude and the
frequency, respectively, of the imposed forcing.
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Governing equations (1)–(3) are corroborated with the
following set of boundary conditions (please refer to Fig. 1
for reference):

At ST and SB (with n̂s denoting the unit vector normal to a
solid surface),

(a) u − (u · n̂s) n̂s = 0 (no slip),

(b) u · n̂s = 0 (no penetration), (4)

(c) n̂s · ∇φ = 0 and n̂s · ∇μ = 0 (no flux),

and periodic over SL and SR , so that

u(x) = u(x + L), p(x) = p(x + L), and φ(x) = φ(x + L).

(5)

B. Nondimensional equations and boundary conditions

We conduct the simulation studies over the parametric
space of governing nondimensional parameters, to present our
analysis in a broad perspective. To this end, we begin with
generic scales as follows:

x̄ = x
�
, ū = u

Uc

, t̄ = t

�/Uc

, p̄ = p

Pc

,

(6)

M̄ = M

Mc

, and μ̄ = μ

μc

,

where the quantities at the denominator denote the correspond-
ing scales and the overbar signifies the corresponding normal-
ized quantity. Following Eq. (6), the normalized governing
equations, after some arrangements, read as

(a) μ̄ =
(

σ

�μc

)
�

ζ
(φ3 − φ) −

(
σ

μc�

)(
ζ

�

)
∇̄2φ,

(b)
∂φ

∂t̄

(
�

Uctc

)
+ ū · ∇̄φ = Mcμc

Uc�
∇̄ · (M̄∇̄μ̄),

(c) ∇̄ · ū = 0,

(d)
ρUc�

η

[
∂ū
∂t̄

(
�

Uctc

)
+ ∇̄ · (ūū)

]

= − Pc�

ηUc

∇̄p̄ + ∇̄ · [{∇̄ū + (∇̄ū)
T }]

+ μc�

ηUc

μ̄∇̄φ + G0�
2

ηUc

sin(ωtct̄)êx, (7)

where ∇̄ = �∇. From Eq. (7a) we obtain a natural choice
for the scale of chemical potential μc = σ/�. For a phase
field based description of droplet dynamics in a given flow
field, temporal evolution of the order parameter is primarily
governed by the advection of φ. Starting from Eq. (7b), this
consideration pertains to O[∂φ/∂t̄(�/Uctc)] = O[ū · ∇̄φ] or
�/Uctc = 1 leading to a choice of time scale tc = �/Uc. It is
worth mentioning that this choice of tc is purely based on the
requirement from the simulation perspective. In an oscillating
flow field, various other times scales are of importance for
describing different features [24]. We shall delve into the
implications of different time scales, relevant to the present
study, a posteriori in Sec. IV.

The flow is imposed by a temporally harmonic body
force which is essentially acting as an effective pres-

sure gradient. Thus, starting from Eq. (7d), the perti-
nent balance O[(Pc�/ηUc)∇̄p] = O[(G0�

2/ηUc) sin(ωtct)êx]
or Pc�/ηUc = G0�

2/ηUc is expected to exist. However, a
microchannel flow environment is a highly viscous flow con-
dition. Thus, a viscous pressure scale Pc = ηUc/� is a relevant
choice. Following these two balance criteria simultaneously,
we have the choice of velocity scale Uc = G0�

2/η.
Now, if we have a flow through a parallel plate channel

driven by a constant pressure gradient of magnitude G0,
the maximum velocity realized at the channel centerline
would be umax = G0H

2/8η where H is the gap height of
the channel. The correspondence between these two velocity
scales reads as Uc/umax = 8(�/H )2 leading to O[Uc/umax] =
O[(�/H )2]. In a time periodic flow environment, the choice
of parameters needs to be based on the maximum possible
velocity in the domain, towards capturing the features within
the full spectrum of the forcing cycle. Thus, it is rational to
assume O[Uc/umax] = 1 leading to the modified choice of the
characteristic velocity scale Uc = umax = G0H

2/8η.
Following the arguments O[Uc/umax] = 1 and the crite-

rion O[Uc/umax] = O[(�/H )2], the characteristic length scale
appears to be � = H . In a droplet based system, the radius
a of the droplet at initial condition can be another potential
choice of length scale, as the characteristic changes occur over
this length scale [17,34]. We consider the confined droplet
situation where a/H ∈ (0,1). Under this circumstance, we can
assume O[a/H ] = 1. Thus, choice of either a or H as the
characteristic length scale is equivalent. In fact, in several
simulation studies [15,35,36], channel dimension is chosen
as a characteristic length scale where the simulation results
appears to corroborate well with experiment findings. Thus,
here we prefer to consider � = H .

With the above mentioned understanding in the back-
ground, the normalized governing equations starting from
Eq. (7) read as

(a) μ = 1

Cn
(φ3 − φ) − Cn∇2φ,

(b)
∂φ

∂t
+ u · ∇φ = 1

Pe
∇ · (M∇μ),

(c) ∇ · u = 0,

(d) Re

[
∂u
∂t

+ ∇ · (uu)

]
= −∇p + ∇ · [{∇u + (∇u)T }]

+ 1

Ca
μ∇φ + 8 sin(t St)êx. (8)

The overbars are dropped, for the sake of convenience;
thus the quantities denote their normalized form in Eq. (8).
The nondimensional parameters include Péclet number Pe =
H 2Uc/Mcσ , Reynolds number Re = ρUcH/η, capillary num-
ber Ca = ηUc/σ , Strouhal number St = ωH/Uc, Cahn number
Cn = ζ/H , and the relative drop size a/H . The characteristic
velocity scale is chosen as Uc = G0H

2/8η.
Here Pe denotes the relative importance of the advection

of φ over the diffusion, as defined through the Cahn-Hilliard
equation (1). The appearance of σ in Pe is due to the definition
of the free energy functional F and chemical potential μ

using ζ and σ . This is attributed to the connection between
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the surface tension with the excess free energy across the
interface [28–32]. Among all the parameters discussed above,
Cn and Pe are guided by the numerical constraints, to obtain
a feasible solution, sufficient to capture the essential features
of interest [37–41]. Regarding the remaining parameters, we
deliberately keep Re small, so as to mimic common microflu-
idic applications. We primarily focus on the deformation and
the subsequent dynamical features of the droplet, associated
with the oscillation in the flow field. Therefore, we vary St
(signifying the nondimensional frequency), in addition to Ca
and a/H .

C. Implementation

In reference to Fig. 1, we select a two-dimensional (2D)
rectangular domain of size (normalized by channel height H)
3 × 1 which is tessellated with uniform grids. The normalized
transport equations [Eq. (8)] are then discretized invoking
the finite volume formalism along with semi-implicit time
discretization policy. For estimation of the flux functions
across the faces of the control volume, we consider a second
order upwind scheme. For evaluating all other terms requiring
calculation of the values at the faces of the control volumes,
a central differencing scheme is employed. We consider
the SIMPLE [42] strategy for pressure-velocity coupling. The
discretized equations are then solved using the algebraic
multigrid (AMG) method [43].

In presenting the results, we consider the migration charac-
teristics given by the droplet position (xd,yd ) (both normalized
by H ) and the droplet velocity (udx,udy) (both normalized by
Uc), as measured along the x and y directions, respectively.
Hereinafter, whenever we refer to the mentioned parameters,
it should be interpreted as the normalized version, unless
otherwise specified. Time t will also be referred to as its
normalized version scaled with H/Uc.

III. PHENOMENOLOGICAL FEATURES

The essential physics of droplet migration is characterized
by its trajectory, and its longitudinal (axial) and transverse
velocity components. With respect to these features, 2D and
three-dimensional (3D) simulations at low Reynolds number
under steady pressure driven flow condition yield qualitatively
similar results. Though a 3D droplet exhibits a slightly higher
axial velocity than a 2D droplet, the functional nature of the
axial velocity as a function of the axial position remains the
same for both cases [15,44]. Thus, the essential physics of
droplet migration appears to remain the same for 2D and 3D
simulation setups.

It is the hydrodynamic interaction between the droplet and
the carrier fluid medium which governs the droplet migration
[44]. To this end, the characteristics of the incipient flow field in
the presence of the droplet eventually decides this interaction
[44,45]. The distribution of the streamlines in a plane passing
through the center of a 3D drop is shown to be reminiscent of
the flow features captured through 2D simulation. In fact, flow
characteristics so obtained from 2D simulations are shown
to describe the droplet migration characteristics satisfactorily
with respect to experimental observations [44].

A. Plane Poiseuille flow condition and comparison with
reported literature

During phase field simulation, spontaneous shrinkage of
drop mass or equivalently drop volume for an incompressible
fluid can be observed [41]. For a droplet based system, the
free energy of the system is concentrated across the two-fluid
interfacial region, with zero energy at the bulk. However, the
evolution of the participating fluid components in a phase
field framework occurs towards minimizing the free energy of
the system. Under this circumstance, a possible strategy for
energy reduction is by shrinkage of drop volume, tantamount
to reducing the interfacial energy. Though volume shrinkage
is permissible following the energy minimization principle, it
is not acceptable from a practical perspective for a volume
conserved system. To tackle this adverse effect of phase field
method, we follow the guidelines provided by Feng et al.
[39,40,38,41].

Volume loss becomes negligible for small interface thick-
ness or equivalently small Cn. Accordingly, we consider two
different Cn and the corresponding three different grid sizes
to obtain a reasonably small value of Cn, with a motive to
achieve minimal loss of volume at computationally affordable
expenses. Corresponding interfacial developments are shown
in Fig. 2. First, we investigate a parametric space where there
is no flow. For Cn = 0.02, we obtain a tanh variation in the
phase field order parameter φ with x, as shown in Fig. 2(a).
This observation is in accordance with fundamental theory of
phase field [28,46]. We then observe the drop shape evolution
under a steady pressure driven flow environment. Asymptotic
steady states of the droplet are shown in Figs. 2(b) and 2(c) for
Cn = 0.04 and 0.02 at different grid resolutions. Following
the figures, a large reduction of volume of the drop is noted for

FIG. 2. (a) Variations in the order parameter φ with x in the
absence of imposed flow compared with the tanh profile at steady state
for a/H = 0.375, Ca = 0.33, Cn = 0.02, and �x = 0.01. The inset
represents the contour of the order parameter. (b) Steady state shape of
drop in plane Poiseuille flow for a/H = 0.4375 and Ca = 0.286. (c)
Steady state shape of drop in plane Poiseuille flow for a/H = 0.375
and Ca = 0.33. Here we have considered Re = 1.
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Present Simulation
Theory (O(Ca) approximation)
Mortazavi and Tryggvason [15]

Ca = 0.10

Ca = 0.05

0.3 0.4 0.475a/H = 0.2

Ca = 0.15

a/H = 0.4375
Ca = 0.286

FIG. 3. Characteristic shapes of droplets at different a/H and Ca in plane Poiseuille flow condition, as obtained from the present simulations.
For small a/H and Ca, the comparisons are made against the O(Ca) theoretical approximation [Eq. (9)]. For larger droplet (a/H = 0.4375)
at higher Ca(= 0.286), the present simulation result is compared against the simulation result of Mortazavi and Tryggvason [15]. Note that
here the shapes are shown at 1:1 aspect ratio with axis-tight format. This makes droplets of all sizes to appear as almost the same size,
thereby allowing better visualization of the droplets with small a/H . However, the actual sizes of the droplets are in accordance with the
respective a/H .

Cn = 0.04. However, with Cn = 0.02, we find that the change
in drop volume is very small. Previously executed studies have
also reported that Cn � 0.02 is a reasonable choice [40,41].
In fact the results obtained from Cn = 0.02, as we shall see
later, match satisfactorily with previously reported results [15]
of front-tracking simulation.

In the low Re regime, the shape of a droplet in a plane
Poiseuille flow at a given lateral location depends on a/H and
Ca, keeping other parameters fixed [11,47–50]. Theoretically,
in the limit Ca � 1 and a/H � 1, the drop shape can be given
by [11,47–50]

r

a
= 1 + Ca

{
4

(
1 − yd

H

)
16 + 9λ

8 + 8λ

x ′y ′

r2

(
a

H

)

+ 4
10 + 11λ

40 + 40λ

(
x ′

r
− 5x ′y ′2

r3

)(
a

H

)2

+ O

[(
a

H

)3]}
+O(Ca2), (9)

where x ′ = x − xd , y ′ = y − yd , and λ denotes the viscosity
contrast, defined as the ratio of the dynamic viscosity of the
droplet to that of the carrier medium. We restrict our attention
to the case λ = 1. Evidently, the approximation r/a = 1 from
Eq. (9) is reminiscent of the leading order spherical shape in
a low Reynolds number flow. The remaining terms in Eq. (9)
demonstrate the deviation from sphericity. The deformation is
characterized by the nondimensional numbers Ca and a/H .

The former denotes the deformation due to viscous forcing
in comparison to the shape preserving capillary forcing. The
latter, on the other hand, signifies the contribution from the
bounding walls’ effect of confinement.

In Fig. 3, we compare our simulation prediction of drop
shape with the theoretical estimation through Eq. (9) and
with the numerical results of Mortazavi and Tryggvason [15].
From the figure it is evident that a close agreement with the
theoretical estimation in the small a/H and low Ca regime is
obtained with our simulation setup for grid size (normalized)
�x = 0.0075 in both x and y directions, with Cn = 0.015 and
Pe = 3 × 106. At higher a/H , the wall-induced deformation
produces a highly elongated droplet which deviates much from
the theoretical approximation in Eq. (9). For larger drops,
we find that �x = 0.01 with Cn = 0.02 and Pe = 106 being
sufficient to capture the droplet dynamics, taking both accuracy
and computational expenses into consideration. The setup
yields a satisfactorily matching with the shape prediction in
Ref. [15], as evident from Fig. 3. These predictions are also in
qualitative agreement with experimental findings.

The difference between the present simulation and the
theory is pronounced at higher a/H due to the strong
involvement of wall-induced deformation at higher a/H .
To describe the wall-induced deformation, we present the
drop shapes and the corresponding streamline patterns for
a/H = 0.4375 and Ca = 0.286 in Fig. 4. The streamlines
are shown with respect to the droplet reference frame. Two
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FIG. 4. The distribution of the streamlines, with respect to the
droplet reference frame, upon equilibrium settling. The results are
shown for a/H = 0.4375, with Re = 1 and Ca = 0.286, and the
direction of the flow is from left to right, with respect to the figure.

important flow characteristics can be identified: bypass flow
near the wall, and recirculating flow within the droplet where
the directions of these two flows are mutually opposite.
Evidently, with increasing a/H keeping all other parameters
fixed, the size of the bypass zone reduces, requiring higher flow
rate for bypassing the carrier fluid. Subsequently, to maintain
the flow rate balance across the channel cross section, a larger
recirculating zone within the droplet with higher flow rate
is required. As a result, an elongated droplet (as depicted in
Fig. 4) can be observed at higher a/H . In essence, this is the
physical aspect behind wall-induced deformation.

It is important to note that two limiting cases are tractable
from a theoretical perspective: (i) a/H � 1 where the drop
shape is approximated as a deformed sphere [11], and

(ii) a/H � 1 where the drop shape is approximated by a
deformed cylinder with spherical (or deformed spherical)
frontal and rear ends [51]. As a/H ∼ 1, an intermediate drop
shape can be observed [45,47,52], as we show in Fig. 4. This
intermediate regime is not yet well tractable theoretically, and
still poses open ended questions [53].We can only state that
the wall-induced deformation produces such elongated shape.

In Fig. 5, we present the temporal evolution of the droplet
position xd (t), yd (t), and the corresponding migration speeds
udx(t) and udy(t). Here the results are shown for a/H = 0.4375
and 0.375, with Re = 1 and 4, respectively, and Ca = 0.286.
This is in accordance with the setup in Ref. [15]. Essentially,
this setting gives us an idea about the dynamics of confined
droplets. To obtain grid independent results, we have used
�x = 0.01 with Cn = 0.02 and Pe = 106. Starting from the
initial position, a droplet always tends to assume a lateral
position, from where onwards there will be no acceleration
of the droplet, as evident from Fig. 5. This condition is the
so-called equilibrium settling of the droplet.

B. Droplet pathway under oscillatory flow condition

The primary knowledge of droplet migration can be
obtained from the characteristics of droplet trajectory under
the given flow environment. In Fig. 6, we show the trajectories
of a droplet under oscillatory flow conditions at different St.
The results depict the effect of oscillation, characterized by St,
in the background flow field, on the droplet trajectory. Please

0 2 4 6 8 10 12
0

2

4

6

8

10
xd(t)

0 2 4 6 8 10 12
0.48

0.5

0.52

0.54

0.56
yd(t)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8
udx(t)

0 2 4 6 8 10 12
−0.02

−0.01

0

0.01
udy(t)

 a/H = 0.4375

 a/H = 0.375

Present simulation

FIG. 5. The time course of the migration characteristics of a droplet in a plane Poiseuille flow condition, for a/H = 0.4375 and 0.375
(indicated by the open markers), with Re = 1 and 4, respectively, and Ca = 0.286. The parametric setup is in tune with the setup of Mortazavi
and Tryggvason [15]; their results are indicated by the corresponding solid lines. The adopted numerical setup consists of a 2D rectangular
domain of dimensionless size length × height = 3 × 1 with grid size �x = 0.01. The dimensionless parameters related to the phase field
method are taken as Cn = 0.02 and Pe = 106.
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y d

Poiseuille Flow
St=0.5
St=1
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FIG. 6. Trajectory of a confined droplet (a/H = 0.4375 and Ca =
0.286) in an oscillating flow field, for different St. The numerical
setup corresponds to Cn = 0.02, �x = 0.01, and Pe = 106, taking
accuracy and computational expenses into combined consideration.
Please refer to the movie in the Supplemental Material [54] for visual
appreciation of the pathway that the droplet follows.

refer to the movie in the Supplemental Material [54] for visual
appreciation of the pathway that the droplet follows. For the
sake of comparison, we also present the trajectory of the same
droplet under a plane Poiseuille flow condition. The window of
St presented in Fig. 6 depicts a small to significant contribution
of oscillation on the droplet trajectory.

In the limit of low St, a close approximation of the droplet
trajectory can be observed with that under plane Poiseuille
flow condition for a considerable transverse extent. In fact,
close matching of the trajectories at St = 0.5 and under plane
Poiseuille flow condition can be observed up to the channel
centerline, which is eventually the transverse equilibrium
location. However, a characteristic oscillatory motion parallel
to the channel walls is noteworthy under oscillatory flow
condition. From Fig. 6 it also appears that (at least for low)
the motion in the transverse direction mainly takes place when
the flow switches direction or udx is smallest in course of
sinusoidal variation.

With increasing St, we note from Fig. 6 that there is
a progressive deviation of the droplet trajectory from that
under plane Poiseuille flow condition. Subsequently, the
axial oscillation of the droplet trajectory commences prior to
reaching the channel centerline. At the same time, transverse
displacement of the droplet takes place without any consid-
erable displacement along the axial direction (cf. the case at
St = 5 in Fig. 6). This is of immense significance in practical
cases where one tries to move the droplet towards a particular
transverse location, but is constrained by the axial extent of
the channel. Interestingly, the transverse extent traversed by the
droplet progressively reduces with increasing St, even after a
considerable amount of the cycle of the imposed oscillation.
The observation signifies that oscillation impedes the motion
along both axial and transverse directions.

Appreciation of the above mentioned movement character-
istics can be obtained from the forcing history on the droplet.
Figure 7 shows the temporal and spatial variations in the net
force acting on the droplet. The results are shown with respect
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FIG. 7. Temporal and spatial variations in the net force acting on
the droplet at two different St. Here, we present the characteristics
with respect to θ = tSt, to have a common basis for analysis
for different St. Panels (a,b) show the variations in the x and y

components, respectively, Fx and Fy of the net force acting on the
droplet. Panel (c) describes the force magnitudes at different locations
(xd , yd ) of the droplet. The inset in (b) magnifies in the variations in
Fy at St = 0.5 for better visualization. The results are shown for the
same setup as in Fig. 6.

to θ = tSt, to have a common basis for analysis at different
St. Here we specifically show the cases for St = 0.5 and 2, to
highlight the comparisons and contrasts at the low and high
frequencies of the imposed forcing. Periodic oscillation in Fx

[Fig. 7(a)] can be conceptualized through the periodic variation
of the imposed forcing along x. However, an oscillatory
characteristic in Fy is also noteworthy [Fig. 7(b)]. This leads
to the transverse oscillation of the droplet. The oscillation in
Fy is more prominent at higher frequency [cf. case St = 2 in
Fig. 7(b)]. The Fy oscillation is also present in the case of low
frequency case, however, with lower magnitude [cf. inset in
Fig. 7(b)].

An interesting insight can be obtained from the spatial
variations in the magnitude of the net force at different
locations of the droplet (xd , yd ), as shown in Fig. 7(c). Here
the force magnitudes are demonstrated through the shades.
The lighter the shade, the higher is the force magnitude. For
both the cases, the droplet commences movement with higher
magnitude of the net force and progressively encounters forces
of low magnitudes. However, a strong forcing confluence is
noteworthy while the droplet switches direction of movement.
This is evident for both high and low St. This switching is in
accordance with the high magnitude situation of the imposed
harmonic forcing over the period of variation. It is interesting to
note that transverse movement is instigated mostly during these
switching instances. Furthermore, the movement of the droplet
is impeded at higher St, despite having higher magnitudes of
the forces along both directions. This issue will be discussed
at length in Sec. IV (Scaling arguments). Prior to that further
detailing on the movement characteristics of the droplet is
required.
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FIG. 8. Characteristics of the pathway of a droplet with a/H = 0.4375, Re = 1, and Ca = 0.286, in an oscillating flow field at different
St. Corresponding grid independent and Cn independent studies are presented in the Appendix. The inset in udy(θ ) magnifies the domain
θ = 10 to 25, for clarity.

To unveil the characteristics of the complex movement
in detail, it is imperative to consider the temporal evolution
characteristics xd (t), yd (t), udx(t), and udy(t) (the latter two are
the respective components of the droplet velocity). Figure 8
demonstrates those characteristics, for Ca = 0.286, Re = 1,
and a/H = 0.4375. From Fig. 8 it appears that unlike the plane
Poiseuille flow condition, here xd (θ ) and udx(θ ) both follow
an oscillating nature. This behavior seems intuitive, and can be
attributed to the change in momentum along the x direction due
to the oscillating body force acting along the same direction.
However, the oscillating pattern in the transverse migration
characteristics yd (θ ) and udy(θ ), as can be seen in Fig. 8, is
difficult to rationalize by such a simple argument.

From the udx(θ ) variations in Fig. 8, it appears that St has
little impact on udx , at least in the low St regime. However,
in the xd (θ ) characteristics, we note a decreasing trend of
the amplitude of xd with St. Additionally, in Fig. 8, we also
observe the oscillating nature of the transverse migration
characteristics yd (θ ) and udy(θ ) at all St values considered
here. Nevertheless, a net lateral migration from the initial
position is noteworthy.

The imposed oscillatory forcing exhibits sinusoidal vari-
ations in time as ψ = sin(tSt). Accordingly, udx and udy

are the response of the droplet. It is therefore prudent to
analyze the interrelationship between ψ , udx , and udy . The
interrelationships are shown in Fig. 9. The figures resemble
Lissajous-like figures, demonstrating the correlation between
two harmonic functions. Here we show the results for (a) St =
0.75, (b) St = 1, and (c) St = 3, reminiscent of low, moderate,
and high frequency regimes of imposed forcing, respectively.

From all the cases, an elliptical relationship between ψ

and udx can be identified. Following this elliptical pattern,
we can identify sinusoidal temporal variation of udx with
frequency St, similar to that of the imposed forcing. However,
a distortion in the elliptical pattern is noted at the high
frequency regime (cf. the case St = 3). This is attributed to
the faster change in the imposed oscillation in comparison to
the time scale of transportation (discussed in detail in Sec. IV).
However, the patterns depicted by the figures of ψ − udy and
udx − udy cannot be formalized by any simple functional form
of udy .

C. Morphological characteristics under oscillatory flow
condition

Deformability of a droplet is considered to be one of the
prime contributors to the cross-stream migration character-
istics. In Fig. 10, we show the migration characteristics for
St = 1 at different Ca [Fig. 10(a)] and a/H [Fig. 10(b)] values.
In the small a/H and low Ca limit, droplet deformation is
expected to be small. From Fig. 10 it is evident that under such
condition, transverse oscillation still persists. Thus, it appears
that oscillation in the yd (θ ) and udy(θ ) characteristics is an
inherent feature that is associated with the oscillation in the
imposed flow field.

Further elucidation on the droplet morphology can be
obtained from the temporal evolution of the droplet perimeter
� [55], for the 2D setup considered here. Figure 11(a) shows
the evolution of � (normalized by the initial perimeter of
the droplet) under oscillatory flow environment at St = 1.
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FIG. 9. Variations in drop velocities (udx,udy) with the imposed forcing (ψ) for (a) St = 0.75, (b) St = 1, and (c) St = 3. Other parameters
have the following values: a/H = 0.4375, Ca = 0.286, Re = 1, and yd = 0.525.

A comparative assessment of the same at different St is
shown in Fig. 11(b). To investigate the physical picture
in more detail, we show the drop shapes at different time
instants.

We observe the bulletlike shape of the drop in a few time
instances which is asymmetric with respect to the lateral
direction. As shown in Fig. 11(a), at time instant t = t1,t2,
the drop shape is bulletlike and the nose (narrow end) of the
bullet is in the backward direction (flow is from left to right
which is termed as forward direction). However, at time instant
t = t3 the drop shape becomes almost symmetric with respect
to the lateral direction. In later times, the drops deform to
bulletlike shapes but with the nose directing in the forward
direction (for t = t4,t5). With due course of time, the drop
shapes becomes asymmetric bulletlike (with backward nose),
symmetric with respect to the transverse plane, and asymmetric
bulletlike (with forward nose). The drop attains these three
shapes periodically.

IV. SCALING ARGUMENTS

We have already mentioned that in a time periodic flow,
different time scales have different physical implications. This
fact can be well understood from the force balance perspective.
To this end we begin with the scaled momentum balance
equation without any prior choice of �, Uc, and tc:

ρUc

tc

∂ū
∂t̄︸ ︷︷ ︸

K1

+ ρU 2
c

�
∇̄ · (ūū)︸ ︷︷ ︸
K2

= − Pc

�
∇̄p̄︸ ︷︷ ︸

K3

+ ηUc

�2
∇̄ · [{∇̄ū + (∇̄ū)

T }]︸ ︷︷ ︸
K4

+ σ

�2
μ̄∇̄φ︸ ︷︷ ︸
K5

+G0 sin(ωtct̄)êx︸ ︷︷ ︸
K6

. (10)
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FIG. 10. The migration characteristics of a droplet in an oscillat-
ing flow field, for St = 1 at different (a) Ca (keeping a/H = 0.4375)
and (b) a/H (keeping Ca = 0.286), with Re = 1 for both cases.

FIG. 11. (a) Variations in drop perimeter and drop shape with time
for St = 1. (b) Variation of drop perimeter with time for three different
values of St = 0.5,1, and 2. Other parameters have the following
values: a/H = 0.4375, Ca = 0.286, yd = 0.525, and Re = 1.

Here we only consider the scale for the chemical potential
of the order parameter as μc = σ/�. From Eq. (10) we can
have different choices of the time scale, based on different
balance criteria and important different physical aspects, as
follows:

(a) Advection:O(K1) = O(K2) ⇒ tc,A = �

Uc

,

(b) Viscous:O(K1) = O(K4) ⇒ tc,V = ρ�2

η
,

(c) Drop shape modification:O(K1) = O(K5) ⇒ tc,S

= ρ�2Uc

σ
. (11)

Evidently, the time scale of imposing the oscillatory forcing
is tF = 1/ω.

In a droplet based system, advection of the submerged
droplet is an important requirement. This issue in response
to the oscillatory forcing can be understood from the factor
tc,A/tF = ω�/Uc which is essentially St when � = H as per
present choice of scales. A droplet undergoes transportation
when the time scale of altering the imposed forcing tF is longer
(or almost the same, at the most) than the transportation time
scale tc,A so that the transportation can be adjusted at every
instant. This understanding leads to tc,A/tF � 1 or St � 1.
Thus, at very high St, droplet transportation is expected to
be impeded due to the rapid change in the magnitude of and
the direction of the oscillatory forcing. In response to the
observed trajectories of the droplet at high frequency, depicted
through Fig. 6, we note that at high frequency droplet motion
is impeded in both axial and transverse direction. The genesis
of such behavior can now be appreciated in perspective of the
time scale analysis as depicted above.

Towards estimating the drop shape change in response to the
imposed time periodic forcing, we need to consider the factor
tc,S/tF = ωρ�2Uc/σ = (ω�/Uc)(ρUc�/η)(ηUc/σ ) = StReCa.
It is evident that the droplet can have sufficient time to adjust
its shape in response to the temporally alternating forcing, if
tc,S/tF � 1, while the equality is the limiting case. Thus, drop
shape modification takes place when St � (ReCa)−1. It is
worth mentioning, as we shall see in the subsequent section,
that the O(ReCa) contribution is the indicator of droplet
deformation due to the combined influence of inertia, viscous,
and surface tension, encompassing the primary forcing factors
in a time periodic flow field.

V. AN ANALYTICAL DESCRIPTION OF DROPLET
MOTION

Here our primary goal is to unveil an estimation of the
time complexity of xd (t), yd (t), udx(t), and udy(t) due to the
imposed time-complex flow field, leading towards the complex
movement of a droplet within a confinement. To this end,
we proceed with the reciprocal identity based analysis. Our
problem can be generalized as the motion of a viscous droplet
of dynamic viscosity λη and density ρ in a unidirectional
time-complex flow field of an incompressible Newtonian fluid
of dynamic viscosity η and density ρ, in between two infinite
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parallel plates. Specifically, for the case studies presented in
this work, λ = 1. However, we proceed with the analysis of
arbitrary λ, for the sake of completeness.

For theoretical analysis, it is convenient to analyze the
situation with respect to the droplet reference frame. However,
the position (xd,yd ) and the velocity (ud ) (in vector form) of
the droplet are measured with respect to the fixed x-y reference
frame. Now, we define a Cartesian reference frame ξ -ψ fixed to
the droplet where its origin coincides with the droplet centroid,
with ξ and ψ aligning parallel to the x and y axes, respectively.
Hereinafter, the Cartesian reference frame ξ -ψ will be referred
to as the droplet reference frame, unless otherwise specified,
and the position vector with respect to this frame will be given
by r.

In our simulations, we consider that the oscillation in
the flow field is imposed by an oscillating body force. For

theoretical convenience, here we assume this to be incorpo-
rated into the pressure gradient term for the imposed flow field.
In accordance with our problem, we consider Re = ρUca/η �
1. Note that here the characteristic length scale for normaliza-
tion is a, instead of H (considered for normalization of our
simulation model). Other scales for normalization are the same
as in our simulation setup. Additionally, here we also consider
Ca = ηUc/σ � 1. The small Ca approximation essentially
allows analytical tractability, for droplet based problems [11].
Moreover, the theoretical understanding obtained from small
Ca based analysis can also be extended to moderate and even
sometimes high Ca cases, at least for unveiling the essential
features of interest.

Pertaining to the present situation under consideration, the
governing equations, in nondimensional form, with respect to
the droplet reference frame can be recast as

(a) ∇ · u = 0 and ∇ · T = Re

(
∂u
∂t

+ u · ∇u
)

with T = −pI + {∇u + (∇u)T },

(b) ∇ · ū = 0 and ∇ · T̄ = Re

(
∂ū
∂t

+ ū · ∇ū
)

with T̄ = −λp̄I + λ{∇ū + (∇ū)T }, (12)

(c) ∇ · u∞ = 0 and ∇ · T∞ = Re

(
∂u∞
∂t

+ u∞ · ∇u∞

)
with T∞ = −p∞I + {∇u∞ + (∇u∞)T },

for the region (a) outside and (b) inside the droplet, and
for the (c) imposed flow field. The velocity, pressure, and
stress distributions for the corresponding domains are denoted,
respectively, by (u,p,T), (ū,p̄,T̄), and (u∞,p∞,T∞). The
above equations are coupled with the boundary conditions:

(a) u → u∞ as r → ∞ (with r = |r|),
(b) u = −ud on the walls, (13)

and interfacial conditions at the surface of the droplet,

(a) u = ū,

(b) u · n̂ = ū · n̂ = 0, (14)

(c) T · n̂ − T̄ · n̂ = 1

Ca
κn̂.

Here κ denotes the local curvature of the surface of the
droplet with n̂ being the unit outward normal.

A. The reciprocal identity

Our theoretical estimation is centered on the reciprocal
identity based analysis. In this method, the analysis com-
mences with the consideration of a complementary problem
such that the shape of the droplet for the complementary
problem and the original problem are same. To this end,
we consider the motion of a Newtonian droplet in a density
and viscosity matched Newtonian fluid where the droplet is
translating perpendicular to the walls of the channel. Accord-
ingly, its flow characteristics outside and inside the droplet
are given by (uc,pc,Tc) and (ūc,p̄c,T̄c), respectively. The
governing equations, along with the boundary and interfacial
conditions, have standard forms, and adopted here as is
[11,17,23,49]. Thus, we prefer not to repeat them again. We

must note that the original problem can be reduced by means
of domain perturbation to an equivalent spherical droplet case,
for applying the interfacial conditions [11,17]. Thus, we may
conveniently proceed with the spherical droplet consideration
for the complementary problem.

Following the standard procedure of reciprocal based
analysis, we eventually end up with the identity of the form

∫
Sd

[(T − T̄) · uc − (Tc − T̄c) · u − T̄c · (u − ū)

− T∞ · uc + Tc · u∞] · êrdS

= −Re

{ ∫
�

[(
∂u
∂t

+ u · ∇u
)

−
(

∂u∞
∂t

+ u∞ · ∇u∞

)]
· ucd�

−
∫

�

[
∂ū
∂t

+ ū · ∇ū
]

· ūcd�

}
, (15)

where Sd denotes the surface of the droplet and � denotes
the volume of the entire problem domain. The procedure
to arrive at the reciprocal identity is similar to that outlined
in Refs. [11,17]. However, here the only difference is the
inclusion of the inertial volume integrals, attributable to the
time complexity involved with the problem. Similar volume
integrals can be observed in Refs. [22,23], dealing with the
inertial contribution in droplet dynamics.
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B. Asymptotic expansion

Owing to the consideration of small Re and Ca, it is possible
to proceed with the double asymptotic expansion [11],

A = A(0) + ReA(Re) + CaA(Ca) + Ca2A(CaCa)

+ ReCaA(ReCa) + Re2A(ReRe) + · · · , (16)

for any arbitrary function A which can be anything from
ud , (u,p,T), (ū,p̄,T̄), and (u∞,p∞,T∞). For p̄ and T̄,
additionally, we need to consider the O(Ca−1) contribution
towards satisfying the Laplace pressure jump [11].

Following the above mentioned approach, the shape of the
droplet can be approximated as

F ≡ r − 1 − (Caf (Ca) + ReCaf (ReCa) + Ca2f (CaCa) + · · ·)︸ ︷︷ ︸
Z (r,t)

= 0, (17)

where Z signifies the deviation from sphericity expressed in
terms of the yet unknown function f . Note that in expanding
Z , the first contribution of Re comes from the O(ReCa)
term. Actually, the droplet can deform even in the complete
absence of inertia, as signified by the O(Ca) contribution. In
the presence of inertia, however, the deformation is contributed
by the combined influence of Re and Ca. Using F , now we
can define

n̂ = ∇F

|∇F | = êr − Ca∇f (Ca) − ReCa∇f (ReCa)

− Ca2

[
∇f (CaCa) + (∇f (Ca) · ∇f (Ca))êr

2

]
− · · · , (18)

and

κ = ∇ · n̂ = 2 − Ca[2f (Ca) + ∇2f (Ca)]

− ReCa[2f (ReCa) + ∇2f (ReCa)]

− Ca2[2f (CaCa) − 2f (Ca)f (Ca) + ∇2f (CaCa)] − · · · ,

(19)

with êr as the unit vector along the radial direction.

C. The case of spherical droplet: the O(1) problem

The governing equations for the O(1) problem are

(a) ∇ · u(0) = 0 and ∇ · T(0) = 0,

(b) ∇ · ū(0) = 0 and ∇ · T̄(0) = 0,

(c) ∇ · u(0)
∞ = 0 and ∇ · T(0)

∞ = 0,

⎫⎬
⎭ (20)

with the boundary and interfacial conditions

(i) u(0) → u(0)
∞ as r → ∞,

(ii) u(0) = −u(0)
d on the walls,

(iii) u(0) = ū(0) at r = 1,

(iv) u(0) · êr = ū(0) · êr = 0 at r = 1, and

(v) T(0) · êr − T̄(0) · êr = −[2f (Ca) + ∇2f (Ca)]êr at

r = 1. (21)

Solution for the imposed flow field can be recast as

u(0)
∞ = (α + βψ + γψ2)�(t)êξ − u(0)

d . (22)

where α = 4yd (1 − yd ), β = 4(1 − 2yd )a/H , and γ =
−4(a/H )2. In Eq. (22) �(t) = ε1 + ε2 sin(t St) such that
ε1 = 1,ε2 = 0 represents the Poiseuille flow condition and
ε1 = 0,ε2 = 1 denotes the oscillating flow condition. It is
to be noted that for the spherical droplet problem, one can
directly adopt the solution proposed by Chan and Leal [11],
with the coefficients α, β, and γ of their paper be replaced by
α�(t), β�(t), and γ�(t). We must appreciate that at the O(1)
approximation it is possible to estimate u

(0)
dx = u(0)

d · êx = u(0)
d ·

êξ . Additionally, due to aft-fore symmetry, u
(0)
dy = u(0)

d · êy =
u(0)

d · êψ = 0. Now, proceeding with the notion that the net
force acting on the neutrally buoyant droplet is zero, one can
obtain

u
(0)
dx = �CL�(t), (23)

where �CL = α + γ λ/(2 + 3λ) + I1 + I4/2 represents the
same function as given in Ref. [11]. Now, we proceed with
the form of �(t) = ε1 + ε2 sin(tSt).

For the Poiseuille flow condition (ε1 = 1,ε2 = 0), Eq. (23)
degenerates to the form u

(0)
dx = �CL = α + γ λ/(2 + 3λ) +

I1 + I4/2. This is a very popular estimation of streamwise
migration speed of a droplet in plane Poiseuille flow. In Sec. III,
we have already presented the form udx = α + γ λ/(2 + 3λ) +
O[(a/H )3], with the note that the O[(a/H )3] contribution
emerges from the consideration of wall effects. Using the
method of reflection, theoretically it is possible to obtain
the wall effects which provide the correction I1 + I4/2 =
O[(a/H )3] [11].

Now, starting from Eq. (23), the oscillating flow condition
(ε1 = 0,ε2 = 1) implies

u
(0)
dx ∝ sin(t St). (24)
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FIG. 12. Comparison of the present simulation results on the
streamwise migration characteristics with the O(1) theoretical ap-
proximation. In the figure, the markers represent the simulation data
points while the solid lines represent the theoretical approximations.
Note that the light shaded band appearing in the udx characteristics
are the markers representing simulation data points over a wide range
of St. Here the simulation data are taken for a/H = 0.4375 and
Ca = 0.286.
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Subsequently, we have

xd ∝
∫

sin(t St)dt ⇒ xd ∝ 1

St
cos(t St). (25)

Figure 12(a) shows that the present scaling notion [Eqs. (24)
and (25)] gives fairly good agreement with the simulation
results, at least for describing the time complexity of udx .
Through the analysis of Lissajous-like patterns (cf. Fig. 9) we
predict the sinusoidal pattern of udx . The theoretical estimation
through Eq. (24) verifies the ansatz. In tune with Eq. (24), we
have Stdx = St [Fig. 12(b)], with Stdx being the frequency
of oscillation in udx . Subsequently, from Eq. (25) we obtain
the relation (xd )amp ∝ St−1 [Fig. 12(c)], with (xd )amp being the
amplitude of xd . This inverse relationship between (xd )amp and
St explains the difference in the xd − θ patterns at different St,
as already emphasized in Fig. 8. Note that here the simulation
data are taken for a/H = 0.4375 and Ca = 0.286, to highlight
the features for confined droplets.

However, from Fig. 12, we note the departure of the
simulation results from the present scaling notion [Eqs. (24)
and (25)]. This is attributed to the increased difference between
the droplet response time scale and the time scale of alteration
in the flow field, at higher St. From the time scale analysis
presented in Sec. IV, we note two important facts. First, at
St > 1, transportation is impeded as the time of alteration of the
time periodic frequency is much longer than the time required
to transport. Second, drop shape modification takes place
when St � (ReCa)−1, allowing time for shape adjustment in
response to the time scale of alteration of imposed forcing. In
Fig. 12, we indicate the limits St∗ = 1 and St∗∗ = (ReCa)−1.
From the figure it is evident that the difference between
simulation results and scaling theory is pronounced beyond
the limiting Strouhal numbers, as predicted by the scaling
arguments.

D. Effect of inertia due to imposed time complexity: the O(Re)
problem

The governing equations for the O(Re) problem are

(a) ∇ · u(Re) = 0 and ∇ · T(Re) = ∂u(0)

∂t
+ u(0) · ∇u(0)

with T(Re) = −p(Re)I + {∇u(Re) + (∇u(Re))
T },

(b) ∇ · ū(Re) = 0 and ∇ · T̄(Re) = ∂ū(0)

∂t
+ ū(0) · ∇ū(0)

with T̄(Re) = −λp̄(Re)I + λ{∇ū(Re) + (∇ū(Re))
T },

(c) ∇ · u(Re)
∞ = 0 and ∇ · T(Re)

∞ = ∂ū(0)
∞

∂t
+ ū(0)

∞ · ∇ū(0)
∞

with T(Re)
∞ = −p(Re)

∞ I + {∇u(Re)
∞ + (∇u(Re)

∞
)T }

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

with the boundary and interfacial conditions

(i) u(Re) → u(Re)
∞ as r → ∞,

(ii) u(Re) = −u(Re)
d on the walls,

(iii) u(Re) = ū(Re) at r = 1,

(iv) u(Re) · êr = ū(Re) · êr = 0 at r = 1, and
(v) T(Re) · êr − T̄(Re) · êr = −[2f (ReCa) + ∇2f (ReCa)]êr at r = 1.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(27)

Subsequently, the reciprocal identity [Eq. (15)] transforms to∫
Sd

[
(T(Re) − T̄(Re)) · uc − (Tc − T̄c) · u(Re) − T̄c · (u(Re) − ū(Re)) − T(Re)

∞ · uc + Tc · u(Re)
∞

] · êrdS

= −
{∫

�

[(
∂u(0)

∂t
+ u(0) · ∇u(0)

)
−

(
∂u(0)

∞
∂t

+ u(0)
∞ · ∇u(0)

∞

)]
· ucd� −

∫
�

[
∂ū(0)

∂t
+ ū(0) · ∇ū(0)

]
· ūcd�

}
. (28)

From the reciprocal identity [Eq. (28)], it is evident that we require the O(Re) solution of the imposed flow field. This
degenerates to the form

u(Re)
∞ =

[
α

2
(ψ2 + α′) + β

6
(ψ3 + β ′) + γ

12
(ψ4 + γ ′)

]
�̇(t)êξ − yd

2a/H
u̇(0)

d − u(Re)
d , (29)

with α′ = s[(a/H )−1 − yd ], β ′ = 2yd [(a/H )2 − y2
d ]/3, γ ′ = 6yd [(a/H )−3 − y3

d ], and the dots represent the time derivative.
Additionally, we require the solution of the complementary problem. Without any loss of generality, we can adopt the solution
from Ref. [11].

With the above mentioned arguments through Eqs. (26)–(29), we eventually end up with the relation

u
(Re)
dy = χ ′

1u
(Re)
dx + χ ′

2u
(0)
dx + χ ′

3u̇
(0)
dx + χ ′

4�̇(t) + χ ′
5, (30)
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where the coefficients χ ′ can be obtained from the reciprocal identity [Eq. (28)], using the O(1) solutions for the entire problem
and the O(Re) solution of the imposed flow field. Note that here we are interested in unveiling the time-complex features. Thus,
the exact forms of χ ′s are not important here. In expressing u

(Re)
dy through Eq. (30), all quantities are known except u

(Re)
dx . Without

any loss of generality, we may invoke the matching condition u(Re) → u(Re)
∞ as r → ∞ to approximate the temporal nature of

u(Re). The complete description of u(Re), however, requires the O(Re) level solution of the problem with proper accounting of the
overlapping of the outer and the inner region. Restricting our attention to the analysis of time complexity, thus, from the force
estimation we expect the nature of u

(Re)
dx is of the form

u
(Re)
dx = �1 + �2�̇(t) + �3u̇

(0)
dx , (31)

with �′s being the coefficients.
Now, using Eqs. (23) and (31) in Eq. (30), we obtain

u
(Re)
dy = χ1 + χ2�(t) + χ3�̇(t), (32)

with χ ′s being the new constants. Eq. (32) can be considered as the generic scaling estimation of u
(Re)
dy to describe its time

complexity.

E. Effect of deformation: the O(Ca) problem

The governing equations for the O(Ca) problem are

(a) ∇ · u(Ca) = 0 and ∇ · T(Ca) = 0 with T(Ca) = −p(Ca)I + {∇u(Ca) + (∇u(Ca))
T },

(b) ∇ · ū(Ca) = 0 and ∇ · T̄(Ca) = 0 with T̄(Ca) = −λp̄(Ca)I + λ{∇ū(Ca) + (∇ū(Ca))
T },

(c) ∇ · u(Ca)
∞ = 0 and ∇ · T(Ca)

∞ = 0 with T(Ca)
∞ = −p

(Ca)
∞ I + {∇u(Ca)

∞ + (∇u(Ca)
∞

)T }
,

⎫⎪⎬
⎪⎭ (33)

with the boundary and interfacial conditions

(i) u(Ca) → u(Ca)
∞ as r → ∞,

(ii) u(Ca) = −u(Ca)
d on the walls,

(iii) u(Ca) + f (Ca) ∂u(0)

∂r
= ū(Ca) + f (Ca) ∂ū(0)

∂r
at r = 1,

(iv)

[
u(Ca) + f (Ca) ∂u(0)

∂r

]
· êr − u(0) · ∇f (Ca) =

[
ū(Ca) + f (Ca) ∂ū(0)

∂r

]
· êr − ū(0) · ∇f (Ca)= 0 at r = 1, and

(v)

[
T(Ca) + f (Ca) ∂T(0)

∂r

]
· êr −

[
T̄(Ca) + f (Ca) ∂T̄(0)

∂r

]
· êr − [T(0) − T̄(0)] · ∇f (Ca)

= [2f (Ca) + ∇2f (Ca)]∇f (Ca) − [2f (CaCa) − 2f (Ca)f (Ca) + ∇2f (CaCa)]êr at r = 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(34)

Subsequently, the reciprocal identity [Eq. (15)] transforms to∫
Sd

[
(T(Ca) − T̄(Ca)) · uc − (Tc − T̄c) · u(Ca) − T̄c · (u(Ca) − ū(Ca)) − T(Ca)

∞ · uc + Tc · u(Ca)
∞

] · êrdS = 0. (35)

Now we approximate different integrals using the matching conditions from Eq. (34) [11]:

(i)
∫

Sd

[(T(Ca) − T̄(Ca)) · uc · êrdS =
∫

Sd

[
−f (Ca) ∂

∂r
(T(0) − T̄(0)) · êr + (T(0) − T̄(0)) · ∇f (Ca)

+ (2f (Ca) + ∇2f (Ca))∇f (Ca)

]
· ucdS

(ii) −
∫

Sd

(Tc − T̄c) · u(Ca) · êrdS =
∫

Sd

(Tc − T̄c) : êr êr

[
f (Ca) ∂u(0)

∂r
· êr − u(0) · ∇f (Ca)

]
dS

(iii) −
∫

Sd

T̄c · (u(Ca) − ū(Ca)) · êrdS =
∫

Sd

T̄c · êr ·
[
f (Ca) ∂

∂r
(u(0) − ū(0))

]
dS

(iv)
∫

Sd

[−T(Ca)
∞ · uc + Tc · u(Ca)

∞
] · êrdS = −2π

2 + 3λ

1 + λ
(1 + J1 + J4)u(Ca)

dy , (36)

where J1 and J4 have the same meaning as in Ref. [11].
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From Eq. (36), it is evident that for estimating u
(Ca)
dy , we need

to have the O(1) solution and estimation of f (Ca). The later
can be estimated using the matching condition from Eq. (21),

T(0) · êr − T̄(0) · êr = −[2f (Ca) + ∇2f (Ca)]êr at r = 1. (37)

Now, introducing the O(1) solution, it is sufficient to con-
sider (T(0) · êr − T̄(0) · êr ) ∝ �(t). In tune with the matching
condition [Eq. (37)], thus, we can approximate that f (Ca) ∝
�(t). If we consider the integrals in Eq. (36), they are of
the form

∫
Sd

f (Ca) · T(0) · êr or
∫
Sd

f (Ca) · u(0) · êr . Invoking the
estimation f (Ca) ∝ �(t), u(0) ∝ �(t), and T(0) ∝ �(t), thus, we
can represent u

(Ca)
dy as

u
(Ca)
dy = �1 + �2�(t)2, (38)

with �s being the coefficients.

F. Combined influence of inertia and deformation on the time
complexity of the lateral movement

To introduce the combined influence of inertia and defor-
mation, to the leading order approximation, it is sufficient to
recall the O(Re) and O(Ca) approximation of udy , as

udy = Reu(Re)
dy + Cau(Ca)

dy + · · ·
= Re[χ1 + χ2�(t) + χ3�̇(t)] + Ca[�1 + �2�(t)2] + · · · .

(39)

Introducing �(t) = ε1 + ε2 sin(tSt), Eq. (39) can be given
by

udy = Re[χ1 + χ2{ε1 + ε2 sin(tSt)} + χ3ε2St cos(tSt)]

+ Ca
[
�1 + �2

{
ε2

1 + ε2
2sin2(tSt)

+ 2ε1ε2 sin(tSt)
}] + · · · . (40)

For an oscillating flow condition (ε1 = 0,ε2 = 1), Eq. (40)
yields

udy = Re[χ1 + χ2 sin(tSt) + χ3St cos(tSt)]

+ Ca[�1 + �2sin2(tSt)] + · · · . (41)

Starting from Eq. (41), udy can be given by a scaling
relationship of the form

udy = c1 + c2 sin(tSt) + c3sin2(tSt) + c4St cos(tSt), (42)

with c′s being the coefficients. Equation (42) describes a
generic scaling estimation for the time complexity of the lateral
migration speed due to the imposed oscillation in the flow field.
Figure 13 compares the scaling relationship in Eq. (42) with
the present simulation results at different St. Note that here the
simulation data are taken for a/H = 0.4375 and Ca = 0.286,
to highlight the features for confined droplets. It needs to be
emphasized that Fig. 13 hints at the existence of a phase shift as
well as the difference between simulation results and scaling
theory. The theory is developed for a/H � 1, though the
droplet is in a confined environment. However, the simulation
results are presented for a/H = 0.4375 which is less than
unity but not much less, in a strict sense. Thus, a difference is

10 15 20 25 30 35 40
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5
x 10

−4 St=0.75

t

udy

20 22 24 26 28 30 32 34 36 38 40
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0

5
x 10

−4 St=1

30 31 32 33 34 35 36 37 38 39 40
−10

−5

0

5
x 10

−4 St=1.5

Simulation Scaling theory

FIG. 13. Comparison of the present scaling estimation of the time
complexity of udy with the simulation data points for different St.
Here, the simulation data are taken for a/H = 0.4375 and Ca =
0.286.

expected. Nevertheless, the comparison presented in Fig. 13
indicates that our theoretical analysis is sufficient to bring out
the time complexity of dynamical features of a confined droplet
in an oscillating flow field.

VI. SUGGESTED BENCHMARK FOR
EXPERIMENTATION PURPOSES

The findings from our study are based on theoretical
analysis (simulation, scaling, and analytical). A suggested
benchmark for experimentation purposes, therefore, seems
to be necessary. To this end, we would like to propose the
following benchmarks:

(i) Observation of the helical pathway of a droplet in
a time-complex flow field. For all practical purposes, the
prevalence of a “time-complex” flow field is more likely rather
than a harmonically oscillating flow, as we consider here.
However, the dominant harmonics can be extracted from the
time complexity. Subsequently, a helical pathway of the droplet
is expected with respect to the dominant mode. Deviations
from the expected pathway will portray the effects of other
modes.

(ii) The Lissajous-like plots (Fig. 9) serve as the signature
patterns for the interrelationships between the migration
velocities and the temporal harmonics of the imposed forcing
on the flow field. Estimation of the migration velocities of the
droplet is expected to be an obvious endeavor in experiment.
Using the results to construct Lissajous-like plots, as shown
here, will unveil the signature characteristics for the situation of
concern. These patterns will also help in developing an initial
ansatz for the time complexities of the migration velocities, as
we show here.
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Experimentation with moving droplets and bubbles through
a microchannel is common [44,53,56,57]. In addition to those
approaches, a temporally varying flow field needs to be applied
for observing the above mentioned features. To this end,
various mechanical, electrical, and magnetic pumping systems
can be favorable alternatives to generate harmonic unsteady
flows (cf. Refs. [58–63] for details on microchannel pumping
technologies). Furthermore, elastic-wave-induced secondary
oil recovery is shown to be a promising technology in terms
of enhanced recovery [24,63]. Thus, acoustic stimulation of
droplets within a microconfinement can also be a relevant
option. It is important to mention that most of the droplet based
microfluidic systems are integrated with droplet generation
units. A recent study shows the possibility of generating
droplet on demand by controlled pulsating inlet pressures
[62]. A microfluidic channel operating in conjunction with this
droplet generating unit would be of immense technological
significance with respect to which one can find a direct
correspondence with our study.

VII. CONCLUSIONS

A. Summary of the findings

We observe and analyze the dynamics of a droplet within a
parallel plate confinement subjected to a temporally oscillating
flow field parallel to the channel walls. The prime focus of
our study is to explore the pathway (along both axial and
transverse directions) that the droplet follows in response to
the time-complex flow field. We analyze the situation for a
density and viscosity matched system; thus, all the conclusions
are based on this criterion. Phase field simulations, scaling
analysis, and concurrent theoretical analysis using a reciprocal
identity based paradigm lead us to the following consensuses:

(a) The droplet follows a helical pathway in a sinusoidal
flow field, which is characterized by a dimensionless frequency
(St). The direction of the motion is towards the channel
centerline.

(b) At low St, the pathway closely approximates that under
a plane Poiseuille flow condition. However, an axial oscillation
can be noted upon reaching the channel centerline which is the
transverse equilibrium position.

(c) Upon increase in St, departure from the pathway
under a plane Poiseuille flow condition is noted, along with
the prevalence of a prominent helical pathway. Interestingly,
we observe a net transverse displacement with almost zero
net axial displacement at higher St. However, transverse
displacement is also impeded considerably at higher St.

(d) The incipient hydrodynamics depends on the multiple
time scales involved. In particular, their relative importance
sets in the guiding principles for the resulting phenomeno-
logical features. Corresponding scaling analysis shows that
transportation is impeded for St > 1, and shape adjustment of
the droplet is disrupted for St > (ReCa)−1.

(e) Analysis of the simulation results and the reciprocal
based theoretical analysis put our observations in a quan-
titative perspective. The time complexities of the migration
speed of the droplet are found to be of the forms (axial)
udx = �CL sin(tSt) and (transverse) udy = c1 + c2 sin(tSt) +
c3sin2(tSt) + c4St cos(tSt) [cf. Eqs. (23) and (42) for details].

These estimations further quantify the amplitudes and fre-
quencies of the time-complex axial and transverse migratory
characteristics of the droplet.

B. Remarks

Our observations and analyses are based on various
possible state-of-the-art fundamental approaches. Specifically,
we wish to develop an integrated consensus, supported
by possible fundamental doctrines. In this respect, as we
believe, our study adds to the fundamental understanding.
However, several issues need to be taken into consider-
ation while interpreting the results of the present study,
which also open up possible sources of future research
questions.

Though the numerical intricacies of the phase field model
have a corresponding thermodynamic genesis, several un-
avoidable issues, such as droplet mass shrinkage, divergence
from a sharp interface limit, require numerical management.
We adopt the previously established guidelines to validate
and assess our model setup. However, we need to endeavor
to make an extension of the established guidelines for time-
complex two-phase flows. Specifically, the hydrodynamics of
a time-complex flow field is guided by the multiple physics
occurring over multiple time scales. Overlapping of those
multiphysics with the inherent physics of the phase field
model is expected to insinuate various phenomenological and
numerical features which would be an interesting topic of
research.

We present a reciprocal identity based theoretical analysis
to unveil the time complexities of the droplet motion. A
comprehensive understanding, however, requires an estima-
tion of the spatiotemporal complexities of the droplet motion.
Furthermore, the theoretical analysis is based on a small
droplet approximation. Improvement of the theoretical model
considering larger size droplets within a confinement is
suggested as a scope of further study. Another important aspect
that can be considered in future studies is the effect of Re on
the drop dynamics. This brings in the contributions of inertia
on the droplet dynamics where the inertia is brought about by
the temporally varying flow field.

APPENDIX: GRID INDEPENDENT AND Cn
INDEPENDENT STUDY

To perform a grid independent study, we consider
the temporal evolution of the migration characteristics
[xd (t),yd (t),udx(t), and udy(t)] at St = 1,a/H = 0.4375,Ca =
0.286, and Re = 1 for different grid sizes, as shown in Fig. 14.
In diffuse interface methods like phase field, the numerical
results should be independent of the interfacial thickness which
is represented by the Cahn number (Cn). To make the results
Cn independent, we consider different values of Cn as well.
We find that the numerical setup with Cn = 0.02 and �x =
0.01 is sufficient for the present analysis, taking accuracy
and computational expenses into combined consideration.
Regarding the choice of Pe, we consider Pe = 106 which gives
constant interface thickness.
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FIG. 14. Grid and Cn independent test for the migration characteristics of a droplet with a/H = 0.4375, Re = 1, and Ca = 0.286, in
an oscillating flow field at St = 1. The figure also demonstrates a comparison between the different numerical setups, as decided by the
combinations of Cn and �x.
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