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Effect of added mass on the interaction of bubbles in a low-Reynolds-number shear flow
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Equal size air bubbles that are entrapped by a Taylor vortex of the secondary flow in a Couette device, thereby
defying buoyancy, slowly form a stable ordered ring with equal separation distances between all neighbors. We
present two models of the process dynamics based on force balance on a bubble in the presence of other bubbles
positioned on the same streamline in a simple shear flow. The forces taken into account are the viscous resistance,
the added mass force, and the inertia-induced repulsing force between two bubbles in a low-Reynolds-number
shear flow obtained in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)]. The first model of the
process assumes that each bubble interacts solely with its nearest neighbors. The second model takes into account
pairwise interactions among all the bubbles in the ring. The performed dynamic simulations were compared to
the experimental results reported in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)] and to the
results of quasistationary models (ignoring the added mass effect) suggested in that paper. It is demonstrated
that taking into account the effect of added mass, the models describe the major effect of the bubbles’ ordering,
provide good estimation of the relaxation time, and also predict nonmonotonic behavior of the separation distance
between the bubbles, which exhibit over- and undershooting of equilibrium separations. The latter effects were
observed in experiments, but are not predicted by the quasistationary models.

DOI: 10.1103/PhysRevE.93.023105

I. INTRODUCTION

In recent years, there has been an ever increasing interest
in multiphase flow in Couette-Taylor (CT) devices, which is
stimulated by industrial applications such as water purification
[1], emulsion polymerization [2,3], liquid-liquid extraction
[4], pigment preparation [5], photocatalysis [6], culture of
animal cells [7], and cultivation of microalgae [8–12]. Also,
bubbly CT flow was used to study the effect of drug reduction
caused by bubble injection [13–18]. Experimental and theo-
retical studies revealed a variety of spatial and spatiotemporal
hydrodynamic structures that arise in Couette-Taylor devices
[19,20], as well as nontrivial gas bubble spatial distribution
[21]. Some recent studies have demonstrated that gas bubbles
arrangement may influence the hydrodynamics of the flow
considerably. For example, in some cases bubble injection can
lead to the increase of the viscous torque in the CT flow [22,23].

Experimental studies of the behavior of individual bubbles
embedded in a Couette-Taylor flow at Reynolds numbers
corresponding to the first classical instability (Deng et al. [24],
Byk et al. [25]) revealed that equal size bubbles trapped in
the vortex core eventually assume an ordered ring with equal
separation distances between all neighbors. This phenomenon
is attributed to the interaction of bubbles in shear flow.
Prakash et al. [26] suggested simplified models of multiple
bubbles dynamics in the vortex core, assuming small but
finite Reynolds number, Re. These models were based on the
assumption that the interaction is due mostly to the primary
simple shear flow that is considered unbounded in all directions
and differs in the assumed mode of interaction, i.e., whether
each bubble interacts with its nearest neighbors or with all
the bubbles that are present in the device. There exists an
inertia-induced force exerted on each bubble in the shear flow,
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due to the presence of other ones, which is balanced by the
Stokes drag. This procedure results in systems of nonlinear
ordinary differential equations describing the evolution of the
separations between the bubbles. Solutions of these systems
were compared to experimental measurements. The Reynolds
numbers (at the bubble scale) in the experiments were of the
order 1, while the developed theory assumes small values of
Re. Nevertheless, the results of computations proved to be
in good agreement with the experimental observations; i.e.,
they describe the main effect of approaching the equilibrium
position and provide a good measure of the evolution of
relaxation time. However, several interesting phenomena that
were observed in several experimental runs at various rotation
velocities with two bubbles, such as the overshooting of
the equilibrium separation or the reversal of the relative
bubble motion and their collision (see [26]), were not
reproduced.

Prakash et al. [27] studied the case opposite to that consid-
ered in [26], i.e., the interaction of bubbles in Couette-Taylor
flow at high Reynolds numbers and reported a nonmonotonic
behavior of bubbles interaction similar to that observed in
several experimental runs reported in [26]. However, this
nonmonotonic behavior was found at Re � O(10), while in
the experiments Re at the bubble scale was of the O(1)
and thus, for the nonmonotonic dynamics, only qualitative
similarity between theory and experiments was observed. In
this paper we demonstrate that taking into account the effect of
added mass in the low-Re models may result in nonmonotonic
evolution of separation distances at O(1) values of Reynolds
number.

II. MODELS OF DYNAMIC INTERACTION OF BUBBLES

Consider a stationary outer cylinder of radius Rout and a
concentric inner cylinder of radius Rin rotating with an angular
velocity �. The gap between cylinders is filled with a viscous
fluid of viscosity η and density ρ. We define the Reynolds
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number as

Redevice = �ρRin(Rout − Rin)/η.

For Redevice smaller than the critical Reynolds number
corresponding to the first instability, the flow is purely
azimuthal with the angular velocity

uθ = �R2
in

R2
out − R2

in

(
R2

out

r
− r

)
. (1)

When Redevice exceeds the critical value, the fluid flow forms
counter-rotating cells in the (r , z) plane that are invariant in
the azimuthal direction (toroidal vortices). Bubbles introduced
in such a flow are trapped either near the wall, at stagnation
points, or in the vortex core [24]. We are interested in the
interaction and dynamics of these core bubbles.

Consider N spherical bubbles of equal radius a positioned
along a center streamline in a Taylor vortex. In the follow-
ing analysis, length, velocity, time, and stress are rendered
nondimensional using a, Ga, 1/G, and ηG, respectively.
Here G is a characteristic shear rate of the primary flow,
G = duθ/dr at r = (Rin + Rout)/2. Let l = π (Rin + Rout)/a
be the dimensionless length of this streamline and ln be the
distance between bubbles n and n + 1. It may be noted that
the presence of N bubbles of unit radii implies that l>2N. The
distance between bubbles 1 and N can be written as

lN = l −
N−1∑
n=1

ln. (2)

The values ln change dynamically due to the repulsive force
experienced by bubbles embedded in the shear flow and the
drag felt by the bubbles during their translation relative to the
flow.

We make the following assumptions in accordance with the
assumptions in [26], in order to simplify the analysis:

The interaction is mostly due to the primary shear flow
that is considered unbounded in all directions. The effect of
the Taylor vortex, that keeps bubbles at a certain horizontal
position in the experiment, corresponds to the absence of
gravity in the model.

The primary flow is modeled by a unidirectional simple
shear, neglecting nonzero curvature of the streamlines. This
follows from the diminishingly small ratio of bubble to
streamline radii.

The dynamics of translation of bubbles along the streamline
connecting their centers results from a balance between the
repulsive force induced by the inertia in the shear flow, the
viscous resistance to this translation, and the added mass force.

The distances between the bubbles are large compared to
their dimensions.

The inertia-induced force on two identical spherical bubbles
located along a streamline in a simple shear flow at small
Reynolds number, F sh, for the case when the bubbles are
within each other’s inner viscous region, d < O(Re−1/2), was
calculated in [26] as

F sh(d) = 2πRe

9

(
1 + 1

d

)
+ O

(
1

d2

)
, (3)

where d is the separation between the centers of the bubbles,
and the Reynolds number at the bubble scale is Re = Ga2ρ/η.

It was shown also in [26] that this force is repulsive (the force
exerted on a bubble in a pair is directed away from the second
one).

Consider a bubble translating with velocity V, in the
presence of M other bubbles located along a line of centers
at distances dn � 1 from the first one, and translating along
the same line with velocities Vn(n = 1, . . . ,M). The Stokes
drag on the first bubble is (see, e.g., Happel and Brenner [28])

FSt = −4π

(
V −

M∑
n=1

Vn

dn

)
e + O

(
1

d2

)
, (4)

with e denoting a unit vector along the line of centers. The
added mass force is

Fadd = −2πRe

3

dV

dt
e + O

(
1

d3

)
. (5)

Following [26] we propose further two simplified models
of the process that differ in the assumed mode of bubble
interaction:

(1) Nearest-neighbors interaction model.
(2) Pairwise interaction model.
Model (1) assumes that each bubble interacts solely with

its nearest neighbors on both sides and, thus, results in the
following dynamic equations:

dVn

dt
= − 1

3ln−1

+ 1

3ln
− 6

Re

(
Vn − Vn+1

ln
− Vn−1

ln−1

)
,

dln

dt
= Vn − Vn+1, n = 1, . . . ,N, (6)

VN+1 = V1, V0 = VN, l0 = lN .

Model (2) assumes the pairwise interaction, i.e., that each
bubble interacts with each other bubble in the ring as if the
others are not present, with the resulting shear-induced force
on each bubble being the sum of all forces resulting from these
pairwise interactions. The corresponding dynamic system is

dVn

dt
= 1

3

N−1∑
k=1

(
1

ln,n+k

− 1

l − ln,n+k

)

− 6

Re

[
Vn −

N−1∑
k=1

(
Vn+k

|ln,n+k| + Vn−k

|ln,n−k|
)]

,

dln

dt
= Vn − Vn+1, n = 1, . . . ,N, (7)

where

ln,k =
k∑

j=n�k

lj ,

n∑
j=k

lj = −
k∑

j=n

lj , n,k = 1, . . . ,N,

VN+k = Vk, V−k = VN−k, V0 = VN,

lN+k = lk, l−k = lN−k, l0 = lN .

It follows from the equations above, that
∑N

n=1 ln = l is an
integral of these systems. In cases of two and three bubbles
considered below, (2) will be used to reduce the order of the
system by 1. Also, one can see that both systems (6) and (7)
have stationary solutions ln = l/N , Vn = 0, n = 1, . . . ,N.

Following [27], we first linearize the equations in the vicinity
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of these stationary solutions and study the obtained linear
systems. The nonlinear effects are then studied via numerical
simulations of systems (6) and (7).

III. RESULTS

A. Linearized equations

Linearization of (6) in the vicinity of the stationary solution
results in

dVn

dt
= N2

3l2
(ξn−1 − ξn)

− 6

Re

(
Vn − NVn+1

l
− NVn−1

l

)
,

dξn

dt
= Vn − Vn+1, n = 1, . . . ,N,

VN+1 = V1, V0 = VN, ξ0 = ξN, (8)

where ln = l/N + ξn, ξn, Vn = 1, n = 1, . . . ,N.

Similarly, linearization of (7) leads to

dVn

dt
= N2

3l2

N∑
k=1

1

k2

⎛
⎝ n−1∑

j=n−k

ξj −
n+k−1∑
j=n

ξj

⎞
⎠

− 6

Re

(
Vn − N

l

N−1∑
k=1

Vn+k + Vn−k

k

)
,

dξn

dt
= Vn − Vn+1, n = 1, . . . ,N,

ξN+k = ξk, ξ−k = ξN−k, ξ0 = ξN . (9)

Both systems are of the order 2N. However, it is easy to see
that

V (t) =
N∑

n=1

Vn(t) = V (0) exp

[
− 6

Re

(
1 − 2N

l

)
t

]

for solutions of (8), while for solution of (9),

V (t) =
N∑

n=1

Vn(t) = V (0) exp

[
− 6

Re

(
1 − 2N

l

N−1∑
k=1

1

k

)
t

]
.

Also,
∑N

n=1 ξn = const = 0 for both systems. Thus, their
order can be reduced by 2. Introduction of new variables,
Un = Vn+1 − Vn, n = 1, . . . ,N − 1, simplifies the systems
(8) and (9) to the forms

dUn

dt
= N2

3l2
(ξn−1 − 2ξn + ξn+1)

− 6

Re

(
Un − NUn+1

l
− NUn−1

l

)
,

dξn

dt
= Un, n = 1,K,N − 1,

UN = U0 = −
N−1∑
n=1

Un, ξ0 = ξN = −
N−1∑
n=1

ξn, (10)

and

dUn

dt
= N2

3l2

N−1∑
k=1

ξn−k − 2ξn + ξn+k

k2

− 6

Re

(
Un − N

l

N−1∑
k=1

Un−k + Un+k

k

)
,

dξn

dt
= Un, n = 1,K,N − 1, UN+k = Uk,

U−k = UN−k, UN = U0 = −
N−1∑
n=1

Un,

ξN+k = ξk, ξ−k = ξN−k, ξ0 = ξN = −
N−1∑
n=1

ξn, (11)

respectively.
When only two bubbles are trapped by the vortex, the two

models coincide and result in the following dynamic equations:

dξ1

dt
= U1,

dU1

dt
= − 16

3l2
ξ1 − 6

Re

(
1 + 4

l

)
U1 . (12)

The general solution of (12) is

ξ1 = c1 exp(λ 1t) + c2 exp(λ2t),

U1 = c1λ 1 exp(λ 1t) + c2λ2 exp(λ2t), (13)

λ 1,2 = − 3

Re

(
1 + 4

l

)⎡
⎣1 ±

√
1 − 16Re2

27(l + 4)2

⎤
⎦.

In the last expression, indices 1 and 2 correspond to signs
“–” and “+,” respectively.

It follows from (13) that there exists a critical Reynolds
number, Recr = 3

√
3(1 + l/4). If Re > Recr, the eigenvalues

are complex and the solution exhibits an oscillatory behavior
with exponentially decaying amplitude, while for subcritical
Reynolds number, Re < Recr, the eigenvalues are real and,
at asymptotically large time, relative distances between the
bubbles change monotonically.

We define the relaxation time Trel to be the time in
which the deviations from equilibrium decrease tenfold. In
the framework of the linear theory, the relaxation time is
determined by an eigenvalue λ = λre + iλim having real part
with minimal absolute value (i.e., corresponding to the slowest
decaying disturbances), Trel = 3/|λre|. In the case of two
bubbles, obviously, λ = λ 1. The dependence of the relaxation
time on the Reynolds number for various l is illustrated
in Fig. 1. We chose the values of l corresponding to the
experiments with two (l = 263.4) and more (l = 209) bubbles
reported in [26]. l = 100 was used in our previous paper [27],
where the case of large Re was studied.

It is evident in Fig. 1 that Trel(Re) decays fast at subcritical
Re. It reaches a minimum at Re = Recr, and slowly grows
at supercritical Re. Also, as can be expected, the relaxation
time increases with the length of the closed streamline l.
Qualitatively, similar behavior was found for the high-Re
asymptotic model (see [27], Fig. 7), but for that case, the
linear theory predicts much higher values of the critical Re of
O(104).
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FIG. 1. Relaxation time in the case of two bubbles.

Note that in the experimental devices, l � O(102) and Re �
O(10), see, e.g., [26], while Recr = 3

√
3(1 + l/4) � O(102).

Thus, as far as these experimental results are concerned,
subcritical Reynolds numbers are of interest. The constants
c1 and c2 in (13) are determined from the initial conditions

ξ (0) = ξ0, U (0) = U0. (14)

It is easy to show that, in the framework of the linear theory,
if λ 2 � U0/ξ0 � 0, the initially shorter (longer) separation
between the bubbles monotonically increases (decreases) and
tends to its equilibrium value l/2. In the case U0/ξ0 > 0, the
initially shorter (longer) separation first decreases (increases),
reaches a minimum (maximum) and then approaches the
equilibrium value. Finally, if the initial conditions satisfy
U0/ξ0 < λ 2 < 0, the initially shorter (longer) separation ex-
hibits over- (under-) shooting of the equilibrium value. The
latter effect was observed in experiments reported in [24–
26] but was not predicted by the models suggested there.
The experimental run with an overshooting, demonstrated
in Fig. 12 of [26], corresponds to l = 263.4 and Re = 0.7,
which leads to λ1 = −1.31 × 10−5, λ 2 = −8.74. Following
[27] we define a relaxation time as Trel = 3/|λ 1| � 2.29 × 105

corresponding to the dimensional time of 57 min, that agrees
with the experimental observation. On the other hand, if the
initial relative velocity is negative, the bubbles first approach
each other and, if the initial separation is small, they may
collide. This effect was also observed in several experimental
runs and no explanation was found in the framework of the
model suggested in [26].

In the case of three bubbles, the two models lead to different
ordinary differential equation (ODE) systems. Namely, the
nearest-neighbor interaction model results in

dU
(1)
i

dt
= −9ξ

(1)
i

l2
− 6

Re

(
1 + 3

l

)
U

(1)
i ,

(15)
dξ

(1)
i

dt
= U

(1)
i , i = 1,2,

and the pairwise interaction model leads to

dU
(2)
i

dt
= −45

4

ξ
(2)
i

l2
− 6

Re

(
1 + 9

2l

)
U

(2)
i ,

(16)
dξ

(2)
i

dt
= U

(2)
i , i = 1,2.

Here and below, upper indices (1) and (2) correspond
to the nearest neighbors and pairwise interaction models,
respectively.

The general solutions of these equations are

U
(j )
1 = c

(j )
1 λ

(j )
1 exp

(
λ

(j )
1 t

) + c
(j )
2 λ

(j )
2 exp

(
λ

(j )
2 t

)
,

ξ
(j )
1 = c

(j )
1 exp

(
λ

(j )
1 t

) + c
(j )
2 exp

(
λ

(j )
2 t

)
,

U
(j )
2 = c

(j )
3 λ

(j )
2 exp

(
λ

(j )
2 t

) + c
(j )
4 λ

(j )
2 exp

(
λ

(j )
2 t

)
,

ξ
(j )
2 = c

(j )
3 exp

(
λ

(j )
2 t

) + c
(j )
4 exp

(
λ

(j )
2 t

)
, j = 1, 2, (17)

λ
(1)
1,2 = − 3

Re

(
1 + 3

l

)⎡
⎣1 ±

√
1 − Re2

(l + 3)2

⎤
⎦,

λ
(2)
1,2 = − 3

Re

(
1 + 9

2l

)⎡
⎣1 ±

√
1 − 5Re2

(2l + 9)2

⎤
⎦.

One can see that both models predict critical Reynolds
numbers, beyond which eigenvalues are complex and the
solution oscillates at large time: Recr, (1) = l + 3 and Recr,(2) =
(2l + 9)/

√
5. Both values are smaller than the critical Re for

the two-bubble configuration and Recr, (2) < Recr,(1) for l>10.
In Fig. 2, the relaxation time of the three-bubble system

calculated according to models (1) and (2) is plotted versus
the Reynolds number for l = 209 (as in [26]) and l = 100
(as in [27]). It is evident that the pairwise interaction model
predicts faster relaxation than the nearest-neighbors one and
that Trel increases with increase of the length l.

In the case of four bubbles the eigenvalues of systems (10)
and (11) are

λ
(1)
1, 2 = − 3

Re

[
1 ±

√
1 − 32

27l2
Re2

]
,

(18)

λ
(1)
3,4 = − 3

Re

(
1 + 8

l

)⎡
⎣1 ±

√
1 − 64Re2

27(l + 8)2

⎤
⎦,

and

λ
(2)
1, 2 = − 3

Re

(
1 + 4

l

)⎡
⎣1 ±

√
1 − 16 × 29Re2

243(l + 4)2

⎤
⎦,

(19)

λ
(2)
3, 4 = − 1

Re

(
3 + 20

l

)⎡
⎣1 ±

√
1 − 640Re2

27(3l + 20)2

⎤
⎦,

respectively. In Eqs. (18) and (19), the lower indices 1 and
3 correspond to “+” on the right-hand side, while 2 and 4
correspond to “–.” Again, as in systems with two and three
bubbles, oscillations take place beyond some critical Reynolds
number with Recr, (1) = 3

√
3(l/8 + 1)/8 � 0.65(l + 8), for the

nearest-neighbors model, and Recr, (2) = 3
√

30(3l + 20)/80 �
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FIG. 2. Relaxation time in the case of three bubbles.

0.62(l + 7) for the pairwise interaction one. Both values are
smaller than the critical Re for the three-bubble configuration
and Recr, (2) < Recr, (1) for l > 60.

In Fig. 3, the relaxation time of a four-bubble system,
calculated according to models (1) and (2), is plotted versus the
Reynolds number for l = 209 (as in [26]) and l = 100 (as in
[27]). One can see that the pairwise interaction model predicts
faster relaxation than the nearest-neighbors-interaction one,
and that Trel increases with the increase of the length l.
For conditions corresponding to the experiments with three
and four bubbles described in [26], l = 209 and Re = 1.23
correspond to subcritical values of the Reynolds numbers. In
this case, all the eigenvalues are real and negative, and the
relaxation time is close to the one obtained by the model
ignoring added mass effect used in [26]. However, as in the
case of two bubbles, the model of the present paper predicts
over- (under-) shooting of the initially minimal (maximal)
separation distance between the bubbles as well as bubble
collisions for certain initial conditions, effects that were
observed experimentally and were not explained by the model
of [26].

Studying linearized systems with more than four bubbles
reveals a complicated behavior with multiple modes of
oscillations and damping. However, several qualitative features
and trends remain similar: The solutions either exhibit collision

0 50 100 150 200 250 300 350 400

102

103

104

Re

Trel

 

 

l = 100, model (2)
l = 100, model (1) 
l = 209, model (2)
l = 209, model (1)

FIG. 3. Relaxation time in the case of four bubbles.

of two bubbles or tend to equilibrium. In the latter case, there
is a critical Reynolds number above which oscillations are
observed. The critical Re grows linearly with l and slowly
decreases with the number of bubbles N. The two models of
bubbles interaction predict close values of critical Re, with
the one obtained by the nearest-neighbors model being a little
lower at high enough values of l. Over- (under-) shooting of
the initially minimal (maximal) separation distance between
the bubbles is observed for certain initial conditions both in
sub- and supercritical regimes.

B. Numerical solutions of the nonlinear equations

The nonlinear effects were studied via numerical integration
of the systems (10) and (11). When only two bubbles are
trapped by the vortex, the two models coincide and result in
the following dynamic equations:

dV1

dt
= − 1

3(l − l1)
+ 1

3l1
− 6

Re

(
V1 − V2

l − l1
− V2

l1

)
,

dV2

dt
= − 1

3l1
+ 1

3(l − l1)
− 6

Re

(
V2 − V1

l − l1
− V1

l1

)
(20)

dl1

dt
= V1 − V2.

Introduction of new variables U = V1 − V2, V = V1 + V2

simplifies Eq. (20) to

dU

dt
= − 2

3l1
+ 2

3(l − l1)
− 6U

Re

(
1 + 1

l − l1
+ 1

l1

)
,

(21)
dl1

dt
= U,

dV

dt
= −6V

Re

(
1 − 1

l − l1
− 1

l1

)
. (22)

It is evident that the system (21) can be solved inde-
pendently of (22), providing the evolution of the separation
between two bubbles l1 and the relative velocity U. As soon as
l1(t) is determined, the variable V can be found by integrating
(22) to give

V (t) = V (0) exp

{
− 6

Re

∫ t

0

[
1 − 1

l − l1(τ )
− 1

l1(τ )

]
dτ

}
.

(23)

The performed calculations demonstrated that, as antici-
pated and predicted by the linear analysis, either a pair of
neighboring bubbles collide, or, with the passage of time,
the system assumes an equilibrium configuration with equal
separations between the neighbors. In the latter case 3 different
regimes of system evolution are possible: Monotonic growth
of the initially minimal separation distance, overshooting of
equilibrium, and oscillations. Examples of such a behavior
are presented in Fig. 4, where the evolution of the initially
minimal separation distance is depicted for several initial
conditions and Reynolds numbers. In Fig. 4(a), the bubbles
are initially separated by ten radii and have equal velocity.
The repulsive force induces relative motion of the bubbles
and the separation distance increases. The presence of viscous
force causes a damping effect and, with the passage of time,
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FIG. 4. Evolution of the initially minimal separation distance between two bubbles scaled by bubbles radius. Time t is scaled by 1/G.
(a) l1(0) = 10, U (0) = 0; (b) l1(0) = 40, U (0) = 0; (c) l1(0) = 40, U (0) = 1; (d) l1(0) = 40, Re = 145. Equilibrium separation is shown by
dotted line.

the relative velocity of the bubbles decays and the bubbles
assume an equilibrium position. For relatively low Re, the
separation distance increases monotonically and approaches
the equilibrium value from below, while for higher Re,
overshooting of the equilibrium separation and oscillatory
behavior are observed. In Fig. 4(b), the bubbles are initially
separated by 40 radii and move with equal velocity. For each
value of Re, the behavior of the bubbles is qualitatively the
same as in the lower initial separation case, with somewhat
smaller overshooting and smaller amplitude of oscillations.
In Fig. 4(c), the bubbles are initially separated by 40 radii
and have a scaled relative velocity of 1. In this case, the
interaction patterns change considerably compared to the case
of equal initial velocities. For high Re = 300, the amplitude of
oscillations increases and the period decreases. For Re = 200,
oscillations are evident for U (0) = 1, while for U (0) = 0,
the separation distance exhibits a single maximum. For lower
value of Re = 80, the separation distance grows monotonically
when U (0) = 0, and it exhibits a single maximum if U (0) = 1.
Figure 4(d) demonstrates that all three evolution scenarios are
possible for the same value of Re and initial separation if the
initial relative velocity is changed.

For high enough initial relative velocity, the bubbles will
collide. Analysis of the computation results leads to the
conclusion that the scenario of the interaction is determined
by the Reynolds number and by the initial relative velocity
of the bubbles, while the initial separation affects solely the
amplitude of oscillations and the heights of overshooting. This
is valid also if a larger number of bubbles exists in the system.
In what follows, we focus on the effect of Re and initial velocity
on the evolution of separations between the bubbles.

In the case of more than two bubbles, the two models lead
to different ODE systems. For example, in the three bubbles
case the nearest-neighbor interaction models results in

dV1

dt
= − 1

3(l − l1 − l2)
+ 1

3l1

− 6

Re

(
V1 − V2

l1
− V3

l − l1 − l2

)
,

dV2

dt
= − 1

3l1
+ 1

3l2
− 6

Re

(
V2 − V3

l2
− V1

l1

)
,

dV3

dt
= − 1

3l2
+ 1

3(l − l1 − l2)

− 6

Re

(
V3 − V1

(l − l1 − l2)
− V2

l2

)
,

dl1

dt
= V1 − V2,

dl2

dt
= V2 − V3. (24)

Results of the numerical solution of (24) with l = 100,
l1(0) = 15, l2(0) = 25, and various Re and initial velocities
are presented in Fig. 5, where the separation distances l1, l2,
and l3 = l − l1 − l2 are plotted versus scaled time. The left and
right columns in Fig. 5 are computed with Re = 200 and 80,
respectively. In Figs. 5(a) and 5(b) all the initial velocities
equal zero. One can see that at lower Reynolds number,
all the separations monotonically approach the equilibrium
value of l/3, while for higher Re, oscillatory behavior is
evident. In Figs. 5(c) and 5(d), bubbles 2 and 3 are initially
stationary, while bubble 1 moves. As a result, the separation
l1(l3) increases (decreases) faster than in the previous case of
zero initial velocities, and exhibits an over- (under-) shooting
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FIG. 5. Evolution of separation distances in the case of three bubbles for l = 100, l1(0) = 15, l2(0) = 25, and various Reynolds numbers
and initial velocities. Separations are scaled by bubbles radius. Time t is scaled by 1/G. Nearest-neighbors interaction model. l1(t), l2(t), and
l3(t) are shown by dashed, solid, and dashed-dotted curves, respectively.

of the equilibrium values even for low Re. For higher values
of Re, the amplitude of oscillations is higher and the period
is shorter. The repulsive force induces a relative motion of the
bubbles and the separation distance increases.

In Figs. 5(e) and 5(f), bubbles 1 and 3 are initially
stationary, while bubble 2 moves. As a result, the initially
shortest separation l1 decreases, achieves a minimum, and
then increases. The separation l2 grows faster than in the
previous cases and exhibits overshooting of the equilibrium
value. In this case, again, one can see oscillations at high
Re, and monotonic approach to equilibrium for lower Re at
relatively large t . The pairwise interaction model in the case
of three bubbles leads to

dV1

dt
= − 1

3(l − l1 − l2)
+ 1

3l1
− 1

3(l − l1)
+ 1

3(l1 + l2)

− 6

Re

[
V1 − V2

(
1

l1
+ 1

l − l1

)

−V3

(
1

l1 + l2
+ 1

l − l1 − l2

)]
,

dV2

dt
= − 1

3l1
+ 1

3(l − l1)
− 1

3(l − l2)
+ 1

3l2

− 6

Re

[
V2 − V3

(
1

l2
+ 1

l − l2

)
− V1

(
1

l1
+ 1

l − l1

)]
,

dV3

dt
= − 1

3l2
+ 1

3(l − l2)
− 1

3(l1 + l2)
+ 1

3(l − l1 − l2)

− 6

Re

[
V3 − V1

(
1

l1 + l2
+ 1

l − l1 − l2

)

−V2

(
1

l2
+ 1

l − l2

)]
,

dl1

dt
= V1 − V2,

dl2

dt
= V2 − V3. (25)

An example of numerical solution of (25) and a comparison
with the solution of (24) with l = 100, l1(0) = 15, l2(0) =
25, U1(0) = 1, U2(0) = U3(0) = 0 are presented in Fig. 6. In
Figs. 6(a) and 6(c) Re = 200, while in Figs. 6(b) and 6(d)
Re = 80. In Figs. 6(a) and 6(b), the separation distances l1, l2,
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FIG. 6. Separation distances in the case of three bubbles for l = 100, l1(0) = 15, l2(0) = 25, and various Reynolds numbers and initial
velocities. l1(t), l2(t), and l3(t) are shown by dashed, solid, and dashed-dotted curves, respectively. (a,b) present the evolution of separation
distances computed with pairwise interaction model (25). (c,d) show the differences of separation distances computed with Eqs. (24) and (25).

and l3 = l − l1 − l2 are plotted versus time. In Figs 6(c) and
6(d), the differences of separation distances computed with
Eqs. (24) and (25) are presented. One can see that the results of
the two models depicted in Figs. 5 and 6 give similar interaction
patterns, with somewhat smaller amplitude of oscillations and
faster damping observed in model (2).

On the right-hand column of Figs. 5 and 6 one can observe
that two separation distances become very close well before
they approach equilibrium values. Thus, it can be anticipated
that systems (24) and (25) obtain solutions with two equal
separations, say l1 = l2, that serve as intermediate asymptotics
for some classes of solutions. Indeed, if l1(0) = l2(0) and
U2(0) = 0, U1(0) + U3(0) = 0, the analogous equalities are
valid at any moment of time and systems (24) and (25) can be
simplified to

dU1

dt
= 1

3l1
− 1

3(l − 2l1)
− 6U1

Re

(
1 + 1

l − 2l1

)
,

(26)
dl1

dt
= U1,

and

dU1

dt
= 1

2l1
− 1

3(l − 2l1)
− 1

3(l − l1)

− 6U1

Re

(
1 + 1

2l1
+ 1

l − 2l1

)
, (27)

dl1

dt
= U1,

respectively.

Numerical simulations of systems with more than three
bubbles reveal several qualitative features and trends of
the process that take place for N = 2 and 3 as well: The
solutions either exhibit collision of two bubbles or tend to
equilibrium. In the latter case, there is a critical Reynolds
number, above which the oscillations are an observed behavior.
The critical Re grows with l and slowly decreases with the
number of bubbles N. In contrast to the linearized model,
this critical Re depends also on the initial relative velocities
of the bubbles. The latter effect was observed in [27] for
the low-viscosity models of interaction, where it was found
that the critical Reynolds number drastically decreases with
the growth of the initial velocity of the bubbles relative
to that of the ambient fluid, from O(105) for the bubbles
initially moving with the flow to O(102) for the case when
quiescent bubbles are introduced into a moving fluid, and the
initial relative velocity equals that of the fluid at the center
streamline in the Couette-Taylor device described in [24–26].
In contrast to this, for high-viscosity models considered in
the present paper, the critical value of Re remains of the
same order of magnitude of O(10 − 102) for all the initial
conditions.

Note that in the experiments reported in [24–26], the
Reynolds numbers at the bubble scale are of the order 1. Thus,
subcritical regimes, where no oscillations are anticipated, are
of interest. However, taking into account the effect of added
mass results in a prediction of over- (under-) shooting of
the equilibrium values for the initially minimal (maximal)
separation also in the subcritical regime, if the parameters l, Re,
l1(0), U1(0) are located in a certain subdomain of physically
relevant parameters {l,Re,2 < l1(0) < l/2,0 < U1(0) < 10}
in R4 space. l1(0) > 2 means that the bubbles’ boundaries
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FIG. 7. Domains above the curves in the phase planes correspond to overshooting of initially minimal separation between bubbles l1.
(a,b) two bubbles; (c,d) three bubbles.

do not intersect, l1(0) < l/2 means that l1 is initially min-
imal separation, U1(0) ∼ 10 correspond to introduction of
stationary bubble into the flow, and U1(0) > 0 is considered
because we are interested in overshooting of the equi-
librium value. Figures 7(a) and 7(b) show cross sections
of this domain by the planes l = 100, l1(0) = const and
l = 100, U1(0) = const, respectively, for solutions of (21)
that correspond to the two-bubble case. One can see that
the overshooting is possible at Re < 10, U1(0) < 10 if
l1(0) > 35.

To illustrate the critical behavior of a system with three
bubbles, we chose the solutions of (26) and (27) for which
the number of governing parameters is reduced. Figures 7(c)
and 7(d) show cross sections of this domain by the planes l =
100, l1(0) = const and l = 100, U1(0) = const, respectively.
Marked curves are calculated with the pairwise interaction
model (2). Again, one can see that the overshooting is possible
at Re < 10. At relatively small Re, the domains of overshooting
predicted by the two models of interaction are very close,
while for higher Reynolds numbers, model (2) predicts a wider
domain.

Examples of the evolution of the separation distance at
Re = 2 with and without overshooting are given in Fig. 8. In
Fig. 8(a) the initial period of a two-bubble system dynamics
for U (0) = 10 is presented. When l1(0) = 47 an overshooting
takes place (see the dashed curves). However, when the
initial separation is a little smaller, l1(0) = 46.5, viscous
damping overcomes the inertia and the separation approaches
equilibrium monotonically. Similarly in the three-bubble case
shown in Fig. 8(c), when U1(0) = 5, overshooting takes place
for l1(0) = 32 (see the dashed and dotted curves). When
the initial separation is a little smaller, l1(0) = 31.5, viscous
damping overcomes the inertia and the separation approaches
equilibrium monotonically. This regime is shown by solid and
dashed dotted lines. The developed stages of the processes
are shown in Figs. 8(b) and 8(d), where approaching the
equilibrium value is evident. Solid and dashed lines are
calculated with nearest-neighbors interaction model (1), while
dashed-dotted and dotted lines present the results obtained
in the framework of model (2). One can see that model (2)
predicts a little higher overshooting and faster approach to the
equilibrium for both regimes.
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FIG. 8. Evolution of initially minimal separation distance between bubbles. (a) U (0) = 10 two-bubble case, initial period t < 5;
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IV. CONCLUSIONS AND DISCUSSION

In this paper, we studied the effect of added mass on
the evolution of separation between interacting bubbles in
a Couette-Taylor device. Two simplified models of such
dynamics are suggested based on the interaction force found
in our previous work [26]. One model assumes that each
bubble interacts solely with its nearest neighbors, while the
second one takes into account pairwise interactions of all the
bubbles in the system. The application of the models results in
systems of nonlinear ordinary differential equations describing
the evolution of the separations between the bubbles.

The resulting systems of ordinary differential equations
were studied first by linearization in the vicinity of the
equilibrium. The existence of a critical Reynolds number was
reported. Below the critical Reynolds number no oscillations
were observed and the relaxation time decreases with an
increase in the number of bubbles. Beyond the critical
Reynolds number the separations between the bubbles start
oscillating until the bubbles reach equilibrium position. The
linear theory predicts that the critical Reynolds number grows
fast with the ratio of the length of streamline to the bubble
radius, and at l = O(100) that is typical for the experiments
described in [24–26], Recr = O(10 − 102).

Nonlinear effects were studied via numerical integration
of governing equations for various initial conditions in the
cases of two and three bubbles. It is demonstrated that
the critical Reynolds number is lower than that predicted
by linearized equations, and remains at O(10 − 102). Thus
for the experimental conditions, the theory predicts only
subcritical regimes. However, in contrast to the theory of [26],

where initially the shortest separation distance between the
bubbles remained the shortest and approached equilibrium
value monotonically from below, the models of the present
paper predict overshooting of the equilibrium value for certain
initial conditions even for subcritical values of Re, typical for
the experiments.

We conclude that the effects taken into account by our
model can result in a nonmonotonic behavior of the separation
distances between bubbles in a Couette-Taylor flow similar
to those observed in several experimental runs reported in
[26], that were not explained with the model suggested
there. Note that qualitatively similar behavior was predicted
by a low-viscosity model of [27] for Reynolds numbers of
O(10 − 102). Since in the experiments described in [24–26]
Re were typically of O(1) the direct comparison of those
results with the experiments was not possible. In contrast to
this, the model developed in this paper predicts nonmonotonic
behavior of separation distance also for experimental values of
Re ∼ O(1).

The forces acting on an individual bubble in the system,
that are taken into account by the models, are as follows:

The inertia-induced force exerted on a bubble interacting
between other bubbles in shear flow. This force is proportional
to the Reynolds number and, at the leading order, depends
solely on the geometry of the system (the distances between
bubbles). Thus it is somewhat analogous to mass forces.

Added mass force induced by the inertia of a volume of
fluid that is moved by an accelerating bubble while translating
through it. This force depends on the accelerations of the
bubbles.
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Damping viscous drag that, under low-Re assumption of
this paper, is close to the Stokes drag.

The three regimes of bubbles dynamics found in the
paper can be related to the relative importance of these
forces. When viscous drag dominates, a monotonic approach
to the equilibrium takes place. However, for high enough
initial relative velocity, the inertia of fluid moved by bubble
translation is not damped fast enough and overshooting of
equilibrium occurs. If the Stokes drag is low compared to
the inertia-induced forces, i.e., at high supercritical Reynolds
numbers, oscillations that are typical for the systems without
damping are observed.

Note also that both low- and high-viscosity models pre-
dict the same order of magnitude for the critical value
of the Reynolds number (at the bubble scale) beyond
which oscillations are anticipated. These values cannot be

achieved at Couette-Taylor devices used in experiments of
[24–26] with a stationary outer cylinder. However, for the
devices with two rotating cylinders, stable Taylor vortices
exist for much higher Re (at the device scale), proba-
bly allowing at least values of Re of O(10). It would
be interesting to check if supercritical regimes of bub-
ble interaction predicted by the theory can be observed
experimentally.
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