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Surface waves in granular phononic crystals
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The existence of surface elastic waves at a mechanically free surface of granular phononic crystals is studied.
The granular phononic crystals are made of spherical particles distributed periodically on a simple cubic lattice.
It is assumed that the particles are interacting by means of normal, shear, and bending contact rigidities. First,
Rayleigh-type surface acoustic waves, where the displacement of the particles takes place in the sagittal plane
while the particles possess one rotational and two translational degrees of freedom, are analyzed. Second, shear-
horizontal-type waves, where the displacement of the particles is normal to the sagittal plane while the particles
possess one translational and two rotational degrees of freedom are studied. The existence of zero-group-velocity
surface acoustic waves of Rayleigh type is theoretically predicted and interpreted. A comparison with surface
waves predicted by the reduced Cosserat theory is performed, and some limitations of the latter are established.

DOI: 10.1103/PhysRevE.93.023008

I. INTRODUCTION

The study of surface elastic or acoustic waves (SAWs)
associated with the surface of a semi-infinite phononic crystal
has attracted a lot of attention in recent years. The control
of evanescent waves in periodic composites, both in photonic
and phononic crystals, is promising for the design of new
electromagnetic and acoustic materials for various applica-
tions [1]. To understand the effect of a free surface on the
normal vibration modes of a crystal, continuous and discrete
models have been applied to structures in one (chain), two
(membrane), and three (half-space) dimensions, possessing
different types of interatomic interactions. Investigations of
surface modes of vibration using the continuum point of
view have been reported for cubic crystals by Stoneley [2]
and by Gazis, Herman, and Wallis [3]. A description of
surface waves for discrete lattices has been given by Lifshitz
and Pekar [4]. Calculations based on specific lattice models
have been given by Gazis et al. [3] for diatomic one-, two-,
and three-dimensional (1D, 2D, and 3D) NaCl-type lattices
with nearest-neighbor interactions only and by Kaplan [5]
for the monatomic one-dimensional lattice with nearest-
and next-nearest-neighbor interactions. Gazis, Herman, and
Wallis treated the semi-infinite three-dimensional monatomic
cubic lattice with nearest- and next-nearest-neighbor central
forces and with angular stiffness forces. For long wavelengths
compared to the interatomic distance, the discrete particle
theory, as to be expected, yields identical results to those of the
continuum theory. When the wavelength becomes comparable
to the interatomic distance the particle theory leads to disper-
sion, while the continuum results remain nondispersive for all
wavelengths.

After the seminal publication in the early 1990s by
Schwartz, Johnson, and Feng [6], researchers started only
recently to apply the discrete lattice models to describe the
phononic band structure of granular crystals. These discrete
models do not only apply in the long-wavelength limit but
provide elastic eigenmodes for all possible wavelength, which
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can be used to predict, in particular, the frequency-forbidden
bands for wave propagation [7–18]. The revival of interest
in discrete lattice models has been largely stimulated by
the recent progresses in the manufacturing of new materials
made of periodically arranged micro- and nanograins, such as
colloidal crystals [19–21], nanoparticle superlattices [22–24],
and nanoparticle membranes [25,26]. These discrete lattice
models have also been developed to describe the phononic
band structure of granular crystals. Granular crystals consist
of close-packed, ordered arrays of elastic particles that interact
via Hertzian contacts [7,27]. These discrete models provide
elastic eigenmodes for all possible wavelengths. Experimental
studies on granular crystals typically involve macroscopic
particles [18,28–32], and few recent works concern contact-
based vibrations of microparticles of dimensions of (or
under) ∼1 μm [33]. Recently surface-localized modes in the
GHz frequency range were optically generated and detected
in three-dimensional hypersonic granular crystals of high-
quality silica opals [34]. Among some of these works, the
importance of the rotational degrees of freedom (DOF) of the
grains constituting the granular phononic crystals has been
highlighted [14,16–18,32,35–37]. A two-dimensional (2D)
discrete lattice model with particles possessing one trans-
lational and two rotational DOF has been applied to the
analysis of a monolayer granular phononic membrane [17].
It was demonstrated theoretically that the interaction between
translational and rotational motions could lead to the opening
of the gaps forbidden for wave propagation, the creation of
Dirac cone, the existence of zero-energy soft modes, and zero-
group-velocity bulk modes [35]. The dispersion properties
of elastic waves in hexagonal and honeycomb monolayer
granular membranes with either out-of-plane or in-plane
particle motion have been recently studied. The formation and
manipulation of Dirac cones, zero-group-velocity modes, and
multiple degenerated modes have been described [37]. The
existence of localized modes have been demonstrated theoreti-
cally in a one-dimensional (1D) monatomic granular phononic
crystal composed of infinitely long cylinders with equal masses
and possessing one translational and one rotational DOF [36].
Each of the localized coupled transversal and rotational mode
existing in this studied chain is composed of two evanescent
modes and is analyzed for different conditions applied at
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the boundary of the semi-infinite chain. The experimental
observation of the coupled rotational-translational bulk modes
in a noncohesive granular phononic crystal was reported
in Ref. [18]. It was demonstrated that the Cosserat theory
generally fails to correctly predict the dispersion relations
of the bulk elastic modes in granular crystals even in the
long-wavelength limit because it does not account for all the
effects of the material inhomogeneity. It should be combined
with higher gradient elasticity theories [38–40].

This work focuses on the existence of SAWs at mechan-
ically free surface of granular phononic crystals made of
spherical particles. Two types of surfaces and propagation
directions on the surfaces are chosen, such that due to the
symmetry of the problem the crystal motion of generally six
degrees of freedom could be decoupled into two independent
motions of three degrees of freedom each. When considering
the motions implused to the surface, there are two kind of
motions: one with translational displacement vector of the
particles localized in the sagittal plane (Rayleigh-type SAWs)
and another with the translational displacement of the particles
localized in the surface plane of the granular crystal (shear-
horizontal (SH) type SAWs). Practically, this can be realized by
adaptating the external loading to initiate the desired motions
of the beads. These two types of SAWs are studied in this
paper. Our analysis shows that the existence of SAWs depends
on the relative strength of the different interparticle forces,
which are due to normal, shear, and bending rigidities at the
contacts. Interesting features of these SAWs are revealed, such
as possible existence of the zero-group-velocity (ZGV) SAWs.
The nature and discrete displacement profiles of the SAWs
are described as a function of the parameters controlling the
dispersion curves. In particular, the importance of bending
rigidity is demonstrated, as the evolution of ZGV SAWs as well
as the existence of SH-type SAWs strongly depend on bending
interaction between beads. These analytical descriptions of
SAWs dependence on the contact parameters yield a possible
comparison of the derived theoretical predictions with those
of the simplest case of reduced Cosserat theory. The obtained
results confirm that all effects of the material inhomogeneity
are not correctly modeled in Cosserat theory because the
spatial scale of the inhomogeneity, and, consequently, multiple
scattering of the waves, are not accounted for. On the other
hand our theoretical results indicate the usefulness of some
simplified Cosserat theories, such as the reduced Cosserat the-
ory, in revealing some surface wave phenomena which could
be deeply hidden in the frame of the general Cosserat theory.

This article is constructed as follows. In Sec. II Rayleigh-
type waves are studied. SH waves are analyzed in Sec. III.
In both cases, the theoretical analysis shows the existence of
SAWs propagating at the (010) surface along [100] direction
and at the (110) surface along [11̄0] direction. Finally,
comparison of SAWs in the granular crystals with those known
predicted by the reduced Cosserat theory is performed in
Sec. IV.

FIG. 1. (a) Schematic representation of the granular phononic
crystal. u denotes the grain displacement along the x axis, w

denotes the grain displacement along the y axis, and ϕ denotes the
rotational motion around the z axis. (b) Illustration of the various
possible motions of the beads, which are activating different contact
springs or rigidities contributing to normal-, shear-, and bending-type
interactions. (c) Schematic representation of the bending rigidity.

II. RAYLEIGH-TYPE SURFACE WAVES

A. Dispersion curves of the propagating modes

The granular phononic crystal is made of spherical particles
distributed periodically on a cubic lattice with periodicity a.
The radius, mass, and momentum of inertia of the particles are
denoted by Rc, m, and I , respectively. The particles possess
two translational and one rotational DOF, Fig. 1. For the
analysis of the plane Rayleigh-type SAWs, which are 2D
motions of the crystal, the considered crystal is equivalent
to the 2D one studied in Ref. [35]. Normal and shear forces
at the contacts between two adjacent particles are described
with springs of constant rigidity ξn and ξ s , respectively. The
elongations of the springs introduce forces and momenta that
induce the motion of the particles: The displacements u along
the x axis, w along the y axis, and the rotation ϕ around the z

axis. Different possible motions of two neighboring particles
are illustrated in Fig. 1(b). The transversal, longitudinal,
rotational, and combined transversal-rotational motions are
denoted by T , L, R, and T R, respectively. Two spatially
distinct normal springs of half normal rigidity are introduced
in Fig. 1(c) to model the effect of bending rigidity at the
contact, i.e., of the interaction opposing the rotation of the two
contacting beads in opposite directions [17].

The complete derivation of the bulk dispersion relations for
acoustic waves can be found in Ref. [35]. The substitution of
the plane-wave solutions into the equations of motion leads to
the eigenvalue problem

Sv = 0, (1)

where v =
(

Au
Aw
A�

)
is the amplitude vector, with � = Rcϕ, and

S is the dynamical matrix defined by

S=

⎛
⎜⎝

−η sin2 qx − sin2 qy + �2 0 j sin qy cos qy

0 −η sin2 qy − sin2 qx + �2 −j sin qx cos qx

−jp sin qy cos qy jp sin qx cos qx −p(cos2 qx + cos2 qy) − 4pBp(sin2 qx + sin2 qy) + �2

⎞
⎟⎠, (2)
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wherein � = ω/ω0 is the reduced frequency with ω0 =
2
√

ξ s/m, j is the imaginary unit, qx,y = kx,ya/2 are the
normalized wave numbers, p = mR2

c /I is the parameter
characterizing the mass distribution inside a spherical grain,
η = ξn/ξ s is the ratio between normal and shear rigidity,
pB = ϑ2

2
ξn/2
ξ s denotes the influence of bending interaction

relative to the shear one, and ϑ is the angular contact dimension
[Fig. 1(c)].

The granular crystal dynamic behavior is controlled by the
three parameters p, η, and pB . From classical mechanics, since
mR2

c � I , p � 1. In the case of a homogeneously filled and
hollow sphere where all the mass is at the sphere periphery,
p is equal to 2.5 and 1.5, respectively. The parameter η,
which is defined as η = ξn/ξ s = (2 − ν)/[2(1 − ν)] [41], is
larger than 1 when the Poisson coefficient is positive. For
instance, for beads made of steel: η ≈ 1.2. Concerning the
bending parameter pB , generally the bending interaction is
weak compared to the normal and shear interactions, thus
pB < 1. However, as discussed in Ref. [37], by linking the
beads with chemical ligands at the micro- or nanoscale or by
elastic rods at the macroscale [42–44], it is possible to get
pB � 1. Thus, the granular crystals with pB � 1 could not
be a priori excluded from the theoretical analysis. Further
presentation of the different modeling of the contacts in these
structures can be found in Ref. [37].

At any point x and y in the crystal, the displacement and
rotation components of the modes are assumed to be in the
form⎛
⎝u

w

�

⎞
⎠

l,n

=
⎛
⎝Au

Aw

A�

⎞
⎠ejωt−2jqx l−2jqy n =A�

⎛
⎝α

β

1

⎞
⎠ejωt−2jqx l−2jqy n,

(3)

where α = j sin qy cos qy

η sin2 qx+sin2 qy−�2 is the ratio between the longitudi-

nal Au and rotational A� amplitudes, β = − j sin qx cos qx

η sin2 qy+sin2 qx−�2

is the ratio between the transversal Aw and rotational A�

amplitudes, and l, n refers to the particle position along the x

axis and y axis, respectively, measured in integer numbers of
interparticle distances.

Nontrivial solutions of Eq. (1) require that

|Sj,i | = 0 , with j,i = 1,2,3. (4)

For a given set of parameters p, η, pB , and wave number qx ,
Eq. (4) constitutes a relationship between the frequency � and
the wave number qy . It can be written in the form of a cubic
equation either for Y = sin2 qy or for �2, see Appendix A. As
described by Eq. (A1), for a given frequency �, correspond
three pairs of wave numbers qy . Each pair of wave numbers
describes either two waves propagating in opposite directions
or two evanescent waves with opposite directions of the
amplitude decay. Figure 2 presents the dispersion curves of
the propagating modes obtained with η = 1.2, p = 1, and
pB = 0.01. Each of the eigenmodes of the granular phononic
crystal motion consists of three components, the longitudinal
motion L, the transversal motion T , and the rotational motion
R. The plotted eigenvalues have been colored accordingly
to the eigenvectors that have been classified, and the nature
of the modes is labeled. The continuous red-orange lines
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FIG. 2. Dispersion curves for the plane bulk waves possessing
two translational and one rotational DOF, obtained for η = 1.2,
p = 1, and pB = 0.01. Solid curves correspond to coupled
displacement-rotation modes (with a predominance of rotation),
dashed curves correspond to coupled displacement-rotation modes
(with a predominance of displacement), and dotted curves correspond
to pure displacement modes.

correspond to coupled displacement-rotation modes with a
predominance of rotation (RT , RLT ), the dashed blue lines
correspond to coupled displacement-rotation modes with a
predominance of displacement (TR, LT R), and the dotted
green lines correspond to pure displacement modes (L,
T L). Reference [35] provides a complete description of the
dispersion curves as a function of the parameters p, η, and pB .
A remarkable feature of the lowest transversal-rotational mode
along the �M direction is the existence of two group velocity
regions separated by a zero-group-velocity point (ZGVP, see
Fig. 2), resulting in the birefraction phenomenon. The position
and existence of this ZGVP strongly depends on parameters p,
η, and pB . The developed theory explains the physical origin
of these modes, which are due to interaction (repulsion) of
the transversal and rotational motions, leading to hybridized
rotational-transversal modes. The description of the ZGVP and
of these nonmonotonous modes as well as their dependence
on the bending rigidity parameter pB is presented in details
in Ref. [35].

B. Boundary conditions for Rayleigh-type SAWs propagating
at the (010) free surface along the [100] direction

In this section we study the Rayleigh-type SAWs at the
mechanically free surface of the granular crystal, which is
normal to the y axis, i.e., on the (010) surface (see Fig. 3).
Waves propagating along x axis, i.e., in the [100] direction,

u

ϕ
w

x

y

z
0
4

1
2

3

FIG. 3. Schematic representation of the (010) surface and the
propagation direction (x direction) for the Rayleigh-type SAWs.
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are sought. The boundary conditions are derived from the
removal of all particles on one side of the boundary layer.
In this configuration, the surface modes, whose amplitudes
decrease away from the boundary, i.e., along the y axis, have an
attenuation defined by the imaginary part of the wave number
qy . Mechanically free boundary conditions are the absence of
forces and of momentum between 0-th and 4-th beads, Fig. 3.
These conditions are satisfied if the contact between the 0-th
and 4-th beads is not strained, i.e., the normal and shear springs
are not deformed or elongated while the beads 0 and 4 are rotat-
ing in opposite directions, preventing activation of the bending
rigidity of the contact. Thus the mechanically free boundary
conditions can be formulated mathematically as follows:

No longitudinal spring elongation:

w0 − w4 = 0. (5)

No shear spring elongation:

u4 − u0 + (�4 + �0) = 0. (6)

No rotation, which can activate bending rigidity:

�4 − �0 = 0. (7)

The boundary conditions should be satisfied by the bulk
modes whose amplitudes decrease as n increases. Therefore,
the localization of surface waves should be operated by
complex wave numbers with a negative imaginary part, i.e.,
by three of the six wave numbers given by Eq. (4). When
the solutions for the wave number qy are purely real, the
waves are bulk waves propagating (skimming) along the
surface. Three evanescent modes, the frequency of which
lies in the forbidden band for propagating waves, and
characterized by a complex-valued wave number in such a
way that the amplitude of the mode decays with increasing y

coordinate, should be coupled to satisfy the derived boundary
conditions.

If A�i
are the amplitudes of � for the 3 modes, then the

displacement and rotation components of the modes can be
written in the following form:

ul,n =
3∑

i=1

A�i
αi e

jωte−2jlqx e−2jnqyi , (8a)

wl,n =
3∑

i=1

A�i
βi e

jωte−2jlqx e−2jnqyi , (8b)

�l,n =
3∑

i=1

A�i
ejωte−2jlqx e−2jnqyi , (8c)

with αi = j sin qyi
cos qyi

η sin2 qx+sin2 qyi
−�2 and βi = − j sin qx cos qx

η sin2 qyi
+sin2 qx−�2 , with

i = 1,2,3 for the first, second, and third modes, respectively,
while qx has the physical meaning of a surface wave number.

The substitution of these amplitudes, Eqs. (8), into the
boundary conditions, Eqs. (5)–(7), leads to

3∑
i=1

A�i
βi(1 − e2jqyi ) = 0, (9a)

3∑
i=1

[A�i
αi(e

2jqyi − 1) + A�i
(1 + e2jqyi )] = 0, (9b)

3∑
i=1

A�i
(e2jqyi − 1) = 0, (9c)

which can be rewritten in the following form:

S2v2 = 0, (10)

with v2 =
(

A�1
A�2
A�3

)
and

S2 =

⎛
⎜⎝

β1(1 − e2jqy1 ) β2(1 − e2jqy2 ) β3(1 − e2jqy3 )

α1(e2jqy1 − 1) + 1 + e2jqy1 α2(e2jqy2 − 1) + 1 + e2jqy2 α3(e2jqy3 − 1) + 1 + e2jqy3

e2jqy1 − 1 e2jqy2 − 1 e2jqy3 − 1

⎞
⎟⎠. (11)

In order to have nontrivial solutions of Eq. (10), the following
equation must be satisfied:

∣∣S2j,i

∣∣ = 0 j,i = 1,2,3. (12)

For a set of parameters p, pB , η, and for a propagation wave
number specified by qx , the solutions � and the corresponding
qyi

of the surface modes are obtained from the simultaneous
solutions of Eqs. (4) and (12). These surface modes are
discussed in the following section.

According to Eqs. (8), the amplitudes of the longitudinal
ul,n, transversal wl,n, and rotational �l,n discrete displace-
ments of the modes as a function of the particle position (l,n)
in the crystal can be determined by combining the bulk modes
with projections of the wave vector along the y axis, qy1 , qy2 ,

and qy3 ⎛
⎝ui

wi

�i

⎞
⎠

l,n

= A�3

⎡
⎣Z1

⎛
⎝α1

β1

1

⎞
⎠ejωte−2jlqx e−2jnqy1

+Z2

⎛
⎝α2

β2

1

⎞
⎠ejωte−2jlqx e−2jnqy2

+
⎛
⎝α3

β3

1

⎞
⎠ejωte−2jlqx e−2jnqy3

⎤
⎦, (13)

with Z1 = A�1
A�3

= −1 − Z2 and Z2 = A�2
A�3

= (β1−β3)(1−e
2jqy3 )

(β1−β2)(e2jqy2 −1)
.

The domain of the admissible wave numbers and frequen-
cies where SAWs could be sought, through the solution of
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FIG. 4. (a) 3D dispersion curves of the crystal for η = 2, p = 2, and pB = 0.4. (b) Projected bulk bands along [100] direction, i.e., the x

direction.

Eqs. (4) and (12), could be importantly reduced by presenting
the dispersion curves of the bulk modes in the granular crystal
in projected band diagram [45]. As illustrated in Fig. 4, to
construct a band diagram projected onto the qx direction,
i.e., on the direction of SAWs propagation, the value of qx

is fixed and the frequencies corresponding to all possible real
projections of the wave number qy , i.e., of the bulk modes on
the y axis, are plotted in the same graph. For example, the
obtained projected band diagram in the case of p = 2, η = 2,
and pB = 0.4 is represented in Fig. 4(b). In this band diagram,
gray shaded regions define allowed (propagating) phononic
bands, while empty regions define band gaps. Note that the
reprensentation along the �XM� directions involves only
the solutions for bulk modes on the edge of an irreductible
Brillouin zone (1D calculation), while the band diagram of
Fig. 4(b) requires computation of all the solutions inside
an irreductible Brillouin zone (2D calculation). Although
the �XM� representation gives consistent definitions of
complete band gaps the projected band diagram in Fig. 4(b) is
preferred when detailed information is required. To determine
the regions allowed for SAWs, the projected bands diagram
along the qx direction are chosen in the following analyses.
In fact, it is necessary to use the projected diagram for the
analysis of the possible SAWs, because the SAWs cannot lie
in the propagative bands and should be located between them.
Otherwise SAWs emit bulk modes and are evanescent, i.e.,
decay along their propagation path, the x axis.

C. Pure longitudinal mode

From the development of Eq. (12), it follows that a
pure longitudinal mode �2 = η sin2 qx propagating along the
x axis satisfies the boundary conditions at the considered
mechanically free surface of the cubic crystal (the development
can be found in Appendix B). The dispersion curve of this
mode is shown with a black dotted curve in Fig. 5. This
is a pure longitudinal mode skimming along the surface
(A� = Aw = 0), which exhibits the same dispersion than the
pure longitudinal mode propagating along the �X direction of

the crystal [35]. This mode is not coupled with the rotational
and transverse waves because the same relative motion of the
neighbor particles along the x axis at all distances from the sur-
face does not lead to deformation of shear springs. Physically,
this corresponds to a wave propagating in a material with a
zero Poisson coefficient, showing no expansion or contraction
in the direction orthogonal to the axis of its compression.

D. Surface modes description

Surface waves are calculated for fixed sets of parameters qx ,
p, pB , and η by simultaneous solutions of Eqs. (4) and (12).
Figure 6 presents the evolution of the obtained surface modes
for p = η = 2 by increasing the bending rigidity parameter
pB . Examples of discrete displacement profiles of the surface
modes along the y axis are given in Fig. 7 for two fixed
wave numbers qx . The projected bulk bands along [100],
i.e., the x direction, are represented by shaded areas. The
surface modes are represented in dashed orange curves, and
the pure longitudinal mode �2 = η sin2 qx propagating along
the surface is drawn in a dotted black curve.

0 0.5 1 1.50

0.5

1

1.5

2

π/2

FIG. 5. Dispersion curves along the qx direction of the crystal
for η = 1.2, p = 1, and pB = 0.01. The shaded areas represent the
projected bulk bands along [100], i.e., the x direction. The dotted
black curve represents the mode �2 = η sin2 qx .

023008-5



PICHARD, DUCLOS, GROBY, TOURNAT, ZHENG, AND GUSEV PHYSICAL REVIEW E 93, 023008 (2016)

0

0.5

1

1.5

2

2.5

3

π/20 0.5 1 1.50

0.5

1

1.5

2

π/2

0 0.5 1 1.50

0.5

1

1.5

2

π/200

0.5

1

1.5

2

π/2

x

(a) (b)

(c) (d)

0

FIG. 6. Dispersion curves along the qx direction of the crystal for η = 2, p = 2 and (a) pB = 0, (b) pB = 0.02, (c) pB = 0.05, and (d)
pB = 0.4. The shaded areas represent the projected bulk bands along [100], i.e., the x direction. The dashed orange curves represent the surface
modes and the dotted black curve represents the longitudinal bulk mode propagating along the surface.

0 0.5 1 1.50

0.5

1

1.5

2

π/2

x
y w

u
z xx

y

Aw Au

+

+

+
+

0
5

10
15

20
25

30
−

20

−
15

−
10

−
5 0 5

0

5

10

15

20

25

30

-20 -15 -10 -5 0 5

0
1

2
3

4
5

6
−

0.5 0

0.5 1

1.5 2

2

21.510.50-0.5
0

1

2

3

4

5

6

Normalized amplitudes

B
ea

d 
po

si
ti

on
 a

lo
ng

 t
he

 y
-a

xi
s

0
5

10
−

6

−
4

−
2 0 2 4 66420-2-4-6

0

5

10

0
5

10
15

20
25

30
−

4

−
3

−
2

−
1 0 1 2

0
+

210-1-2-3-4
0

10

20

30

40

50

Normalized amplitudes

B
ea

d 
po

si
ti

on
 a

lo
ng

 t
he

 y
-a

xi
s

AΦ

Φ

FIG. 7. Discrete displacement and rotation profiles along the y axis, i.e., perpendicular to the surface, for two distinct surface modes
corresponding to each of the two different wave numbers qx .

023008-6



SURFACE WAVES IN GRANULAR PHONONIC CRYSTALS PHYSICAL REVIEW E 93, 023008 (2016)

One surface mode propagates below the first propagating
band while one or two surface modes can exist between the
upper propagating bands of bulk modes depending on the
parameters values. In absence of bending rigidity, Fig. 6(a),
the mode at low frequencies has a nonmonotonous behavior. It
presents a ZGVP and its frequency is zero both at qx = 0 and
qx = π/2. At the ZGVP the energy that could be pumped
into this mode does not propagate away from the region
of excitation on the surface. Since at a ZGVP the phase
velocity and so the wavelength remains finite, while the group
velocity is zero, the energy can be locally trapped in the
source area without any transfer to the adjacent medium.
The ZGVP was investigated earlier in the case of Lamb
waves [46], i.e., in finite thickness structures. Here this type
of singularity is theoretically predicted for a semi-infinite
medium, i.e., in the case of Rayleigh-type surface waves.
When increasing the bending rigidity parameter pB , the
frequency value of this mode increases at qx = π/2, Figs. 6(b)
and 6(c), and then, for a sufficiently large value of pB ,
the ZGVP disappears, Fig. 6(d). The physical origin of the
predicted ZGV surface acoustic wave is in the existence
of bulk modes where coupling (hybridization) of rotational
and transverse motion of the beads produces nonmonotonous
TR-RT modes with ZGVP, Fig. 2. For classical surface
Rayleigh waves in isotropic solids the bulk longitudinal and
transverse waves, constituting the SAWs, are coupled by the
mechanically free surface. On the mechanically free surface
of the granular crystal the longitudinal wave is coupled to
TR-RT mode and the nonmonotonous character of the latter
can be transformed in the nonmonotonous dispersion relation
for the Rayleigh-type SAW and the existence of the ZGV
SAWs. It could be expected that ZGVPs for SAWs, similarly

FIG. 8. Schematic representation of the surface.

to the ZGVPs in Lamb modes, could find application in
nondestructive testing of the materials [47].

E. Rayleigh-type SAWs propagating at the (110) surface
along [11̄0] direction

Rayleigh-type SAWs propagating at the (110) surface along
[11̄0] direction are analyzed here. Figure 8 illustrates the
position of the surface, which is parallel to the diagonal of the
cubic crystal and introduces new axes x ′ and y ′. The complete
derivation of the bulk dispersion is not given in details here,
but the reasoning is the same as in Sec. II B. In this case, the
eigenvalue problem arising from the substitution of the plane
wave solutions into the equations of motion is

Sdiagv = 0, (14)

with v =
(

Au
Aw
A�

)
and

Sdiag =

⎛
⎜⎜⎝
−1

2 (η + 1)(1−cos q ′
x cos q ′

y) + �2 −1
2 (η−1) sin q ′

x sin q ′
y

1√
2
j cos q ′

x sin q ′
y

−1
2 (η−1) sin q ′

x sin q ′
y −1

2 (η + 1)(1−cos q ′
x cos q ′

y) + �2 − 1√
2
j sin q ′

x cos q ′
y

− p√
2
j cos q ′

x sin q ′
y

p√
2
j sin q ′

x cos q ′
y −(p + 4pBp)−(p−4pBp) cos q ′

x cos q ′
y +�2

⎞
⎟⎟⎠,

(15)

with q ′
x and q ′

y the normalized wave numbers along x ′ and y ′ axes, respectively.
Mechanically free boundary conditions are applied at the surface, i.e., the total forces of beads 1 and 4 acting on bead 0 are

zero. The amplitudes Aui
, Awi

, and A�i
corresponding to one q ′

yi
can be determined by

Aui

χi

= Awi

εi

= A�i

ζi

= �i, (16)

where χi , εi , and ζi are the cofactors of any row of the determinant of the dynamical matrix (15) associated with q ′
yi

(i = 1,2,3)
and where the �i are determined from the boundary conditions. Hence, the general solution is⎛

⎝u

w

�

⎞
⎠ =

3∑
i=1

(χi,εi,ζi) �i e
jωt−jq ′

x x ′−jq ′
y y ′

. (17)

Substituting Eq. (17) into the boundary condition system leads to

3∑
i=1

S2diagj,i
�i = 0 (i,j = 1,2,3), (18)
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FIG. 9. Dispersion curves along the diagonal direction of the crystal for η = 2 in the case of hollow and filled spheres, (a) p = 1.5 and
pB = 0.1, (b) p = 1.5 and pB = 1, (c) p = 2.5 and pB = 0.1, and (d) p = 2.5 and pB = 1. The shaded areas represent the projected bulk
bands along [11̄0] and the dashed orange curves represent the surface modes.

where

S2diag1,i
= χi

η + 1√
2

(
1 − cos q ′

xe
jq ′

yi

)− jεi

η − 1√
2

sin q ′
xe

jq ′
yi − ζi

(
1 + cos q ′

xe
jq ′

yi

)
,

S2diag2,i
= −jχi

η − 1√
2

sin q ′
xe

jq ′
yi + εi

η + 1√
2

(
1 − cos q ′

xe
jq ′

yi

)+ jζi sin q ′
xe

jq ′
yi ,

S2diag3,i
= χi

1√
2

(−1 + cos q ′
xe

jq ′
yi

)+ jεi

1√
2

sin q ′
xe

jq ′
yi + ζi

[
(−4pB + 1) cos q ′

xe
jq ′

yi + 1 + 4pB

]
. (19)

The solutions � of the surface modes are then obtained
from the simultaneous solutions of Eqs. (14) and (18).
Figure 9 presents the obtained dispersion curves for η = 2
and increasing bending rigidity in the case of a crystal made
of hollow (p = 1.5) or filled (p = 2.5) spheres. The shaded
areas represent the projected bulk bands along [11̄0] and the
dashed orange curves represent the surface modes. For all
parameter values, two surface modes are found below the first
propagative band and several branches lie in the gap between
the upper propagative bands. Along this direction, the SAWs
present a monotonous behavior.

III. SHEAR-HORIZONTAL- (SH) TYPE SURFACE WAVES

A. Dispersion curves of the propagating modes

The studied granular phononic crystal is composed of
spheres distributed periodically on a cubic lattice and pos-
sessing two rotational and one translational DOF, Fig. 10. The
shear force at the contact between two adjacent particles is de-
scribed by a spring of constant rigidity ξ s . The elongation of the
springs introduces forces and momenta that induce the motion
of the particles: the rotation ϕ around the x axis, the rotation
ψ around the y axis, and the displacement w along the z axis.

023008-8



SURFACE WAVES IN GRANULAR PHONONIC CRYSTALS PHYSICAL REVIEW E 93, 023008 (2016)

The derivation of the bulk dispersion relations for bulk acoustic waves is presented in Appendix C. The substitution of the
plane-wave solutions into the equations of motion leads to the eigenvalue problem,

SSHvSH = 0, (20)

where SSH is the dynamical matrix defined by

SSH =

⎡
⎢⎣

−p(cos2 qy + 1 + pB sin2 qy) + �2 0 −jp sin qy cos qy

0 −p(cos2 qx + 1 + pB sin2 qx) + �2 jp sin qx cos qx

j sin qy cos qy −j sin qx cos qx − sin2 qx − sin2 qy + �2

⎤
⎥⎦. (21)

Nontrivial solutions of Eq. (C5) require that ∣∣SSH
j,i

∣∣ = 0. (22)

For a given set of parameters p, η, and pB and wave number
qx , Eq. (22) relates the frequency � and the wave number
qy . Equation (22) can be written in the form of a quadratic
equation for Y = sin2 qy or of a cubic equation for �2, see
Appendix C. Note that for this particular structure, three
modes exist, but only two distinct wave numbers qy with a
negative imaginary part correspond to a given frequency. This
particularity results from the absence of qy in the second line
of the dynamical matrix SSH, Eq. (21). From this second line,
the following relation between the rotational amplitude A�

and the translational amplitude Aw is derived:

A� = jp sin qx cos qx

p(cos2 qx + 1 + pB sin2 qx − �2)
Aw. (23)

Equation (23) does not depend on qy , so the rotational
amplitude A� has the same distribution along the y axis as the
translational amplitude Aw. From the physics point of view,
the similar distribution of modes � and w in depth results from
the fact that their interaction, described by Eq. (C1c), includes
only the beads of the same horizontal plane at a particular depth
y and not the beads of different horizontal layers. At all points x

and y in the crystal, the transversal and rotational components
of the modes are assumed to be of the following form:(

�
�
w

)
l,n

=
(

A�

A�

Aw

)
ejωt−2jqx l−2jqy n = Aw

(
α
β
1

)
ejωt−2jqx l−2jqy n,

(24)
with α = −jp sin qy cos qy

p(cos2 qy+1+pB sin2 qy )−�2 and β = jp sin qx cos qx

p(cos2 qx+1+pB sin2 qx )−�2 .

y

zw

ϕ

ψ

x

0 1

2

4

3 x

y

0 65 z
y

0
4

1
2

3

(a) (b)

FIG. 10. (a) Schematic representation of the granular crystal. w

denotes the translational displacement motion along the z axis and ϕ

(respectively ψ) the rotational motion around the x axis (respectively
y axis). (b) Definition of the bead numbering along the different axes.

Figure 11 presents the dispersion curves along the Brillouin
zone M�XM for a filled sphere (p = 2.5). Three modes
propagate in the structure. The eigenmodes of the granular
phononic crystal consist of three components, the translational
motion T , the rotational motion R� around the x axis, and the
rotational motion R� around the y axis. The blue dashed curves
correspond to coupled transverse-rotational modes with a pre-
dominance of translation, and orange dotted curves correspond
to coupled transverse-rotational modes with a predominance
of rotation. In the case of a propagative wave in the �X

(respectively XM) direction, a mode called the R� mode
(respectively R�-mode) and shown with a red line appears
uncoupled from the mixed modes (T + R�) [respectively
(T + R�)]. A coupled transverse-rotational (R� + R� + T )
mode, shown in red line, is propagating along the �M

direction.
Figures 12 and 13 present the evolution of the dispersion

curves as a function of the bending rigidity parameter for
hollow (p = 1.5) and filled (p = 2.5) spheres, respectively.
By increasing the bending rigidity parameter pB , the modes
with a predominance of rotation are shifted to high frequencies.
A complete band gap, i.e., a band gap in all the directions of
the Brillouin zone, exists when pB > 2/p − 1.

FIG. 11. Dispersion curves for a crystal made of filled spheres
(p = 2.5) and pB = 0.6. T represents the translational motion along
the z axis, and R� (respectively R� ) represents the rotational motion
around the x axis (respectively y axis).
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B. Boundary conditions for SH-type SAWs propagating
at the (010) surface along the [100] direction

We study here the SH-type SAWs on the mechanically
free surface of the granular crystal, which is normal to the y

axis, i.e., on the (010) surface. As developed in Sec. II B for
Rayleigh-type SAWs, the boundary conditions are formed by
removing all the particles on one side of the boundary layer.
For this crystal, the mechanically free boundary conditions
lead to the following equations:

No shear spring elongation:

w0 − w4 − (�0 + �4) = 0. (25)

No rotation, able to activate bending rigidity:

�4 − �0 = 0. (26)

As demonstrated in the previous section, only two wave
numbers exist for one frequency, noted qy1 and qy2 , because the
amplitude of the rotational component A� has the same distri-
bution as the amplitude of the transverse component Aw along
the y axis. The boundary conditions are then solved accounting
for these two wave numbers. If Awi

, with i = 1,2, are the

amplitude of the transversal component of these two modes,
then the amplitudes of the displacement and rotations can be
written in the form

�l,n =
2∑

i=1

Awi
αi e

jωte−2jlqx e−2jnqyi , (27a)

�l,n =
2∑

i=1

Awi
β ejωte−2jlqx e−2jnqyi , (27b)

wl,n =
2∑

i=1

Awi
ejωte−2jlqx e−2jnqyi . (27c)

The substitution of the amplitudes given in Eqs. (27) into the
boundary conditions (25) and (26) leads to

2∑
i=1

Awi
(1 − e2jqyi ) − Awi

αi(1 + e2jqyi ) = 0, (28a)

2∑
i=1

Awi
αi(e

2jqyi − 1) = 0, (28b)

which can be written in the following form:

SSH
2 vSH

2 = 0, (29)

with vSH
2 = (Aw1

Aw2

)
and

SSH
2 =

[
(1 − e2jqy1 ) − α1(1 + e2jqy1 ) (1 − e2jqy2 ) − α2(1 + e2jqy2 )

α1(e2jqy1 − 1) α2(e2jqy2 − 1)

]
, (30)

with αi = −jp sin qyi
cos qyi

p(cos2 qyi
+1+pB sin2 qx )−�2 with i = 1,2.

The following equation must be satisfied in order to have
nontrivial solutions of Eq. (29):∣∣SSH

2j,i

∣∣ = 0. (31)

C. Surface mode description

SAWs are calculated for fixed sets of parameters qx , p,
and pB by simultaneous fulfillment of Eqs. (22) and (31). In
the absence of bending rigidity (pB = 0), no SH-type surface
waves exist in the crystal, see Appendix D. When pB > 0, one
surface mode exists in this granular phononic crystal. After
some reduction of Eq. (31), the analytical form of the surface
mode frequency is found,

�2
S = p + pBp

2
− 1

2
pBp

cos(qy1 − qy2 )

cos(qy1 + qy2 )
, (32)

with qy1 and qy2 solutions of Eq. (C8) (Appendix C). This mode
is plotted with the orange dashed line in Fig. 14(a) in the case of
a filled sphere (p = 2.5) and with a bending rigidity parameter
pB = 0.3. This surface mode is weakly dispersive, Fig. 14(c).
For various values of the parameters, it is localized around
one frequency. The possible reason for this strong localization
in the frequency domain is the weak coupling of rotational
motion R� with the other motions. According to Eqs. (27), the

amplitudes of the discrete displacement and rotations of the
transversal wl,n, rotational �l,n and �l,n components of
the surface modes as a function of the particle position (l,n)
in the crystal can be determined by combining the two
evanescent modes,⎛

⎝wl,n

�l,n

�l,n

⎞
⎠ = Aw1

⎡
⎣
⎛
⎝ 1

α1

β

⎞
⎠ejωte−2jlqx e−2jnqy1

+ Z

⎛
⎝ 1

α2

β

⎞
⎠ejωte−2jlqx e−2jnqy2

⎤
⎦, (33)

with Z = Aw2
Aw1

= −α1(1−e−2jqy1 )
α2(1−e−2jqy2 )

. As illustrated in Fig. 14(b),
due to the symmetry and configuration of the crystal, this
particular mode has mainly a rotational A� component. The
decays of the amplitudes in depth are combinations of a
monotonously decaying function and a decaying function with
few oscillations.

D. SH-type SAWs propagating at the (110) surface
along the [11̄0] direction

SH-type SAWs propagating at the (110) surface along the
[11̄0] direction are investigated here. The surface position is
the same as the one presented in Fig. 8. The eigenvalue problem
resulting from the substitution of the plane-wave solutions into
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the equation of motions is

SSH
diagvSH = 0, (34)

with vSH =
(

A�
A�
Aw

)
and

SSH
diag =

⎛
⎜⎜⎝
−p

2 cos q ′
x cos q ′

y(1−pB )− pBp

2 − 3p

2 + �2 −j
2p sin q ′

x sin q ′
y − 1√

2
p cos q ′

x sin q ′
y

−1
2p sin q ′

x sin q ′
y −p

2 cos q ′
x cos q ′

y(1−pB )− pBp

2 − 3p

2 + �2 j√
2
p sin q ′

x cos q ′
y

j√
2

cos q ′
x sin q ′

y − j√
2

sin q ′
x cos q ′

y −1 + cos q ′
x cos q ′

y + �2

⎞
⎟⎟⎠. (35)

Mechanically free boundary conditions are applied at the surface, i.e., the total forces of beads 1 and 4 acting on bead 0 vanish.
The amplitudes A�i

, A�i
, and Awi

corresponding to a particular q ′
yi

can be determined by

A�i

χi

= A�i

εi

= Awi

ζi

= �i, (36)

where χi , εi , and ζi are the cofactors of all rows of the dynamical matrix (35) associated with q ′
yi

(i = 1,2,3) and where the �i

are to be determined from the boundary conditions.
Hence, the general solution is ⎛

⎝�

�

w

⎞
⎠ =

3∑
i=1

(χi,εi,ζi) �i e
jωt−jq ′

x x ′−jq ′
y y ′

. (37)

Substituting Eq. (37) into the boundary condition system leads to

3∑
i=1

SSH
2diagj,i

�i = 0 (i,j = 1,2,3), (38)
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where

SSH
2diag1,i

= χi

(
1 − cos q ′

xe
jq ′

yi

)− εi

1√
2

(
1 + cos q ′

xe
jq ′

yi

)+ j√
2
ζi sin q ′

xe
jq ′

yi ,

SSH
2diag2,i

= χi

(
1 − cos q ′

xe
jq ′

yi

)− εi

[
1√
2

(
1 + cos q ′

xe
jq ′

yi

)+
√

2pB

(
1 − cos q ′

xe
jq ′

yi

)]+ j√
2
ζi sin q ′

xe
jq ′

yi ,

SSH
2diag3,i

= jχi sin q ′
xe

jq ′
yi + j√

2
εi sin q ′

xe
jq ′

yi − ζi

[
1√
2

(
1 + cos q ′

xe
jq ′

yi

)+
√

2pB

(
1 − cos q ′

xe
jq ′

yi

)]
. (39)

Surface waves can then be obtained by simultaneous fulfill-
ment of Eqs. (34) and (38).

The required condition for the existence of surface waves
is the presence of bending rigidity (pB > 0). Figures 15(a)
and 15(b) illustrate the obtained surface modes in the case
of pB = 0.5 and hollow sphere (p = 1.5) and filled sphere
(p = 2.5), respectively. Two branches are found in the gap
between the two first propagation bands.

An important feature of the predicted SAW, which is
described by Eq. (32), is its existence only in the presence
of bending rigidity at the contacts. If the direct bending-type
interactions between the rotations of the beads are neglected,
then this surface mode becomes a purely vibrational mode
with frequency equal to

√
p and zero group velocity. A non-

negligible bending rigidity of the contact induces propagation
of this surface acoustic wave. It is worth noticing here that
in earlier studies [35,36] it was demonstrated that some
zero-energy, i.e., � = 0, modes of granular phononic crystals
become propagative due the the bending-type interactions
between the beads.

IV. COMPARISON WITH THE COSSERAT THEORY

A. Brief introduction to the Cosserat theory

There are situations when the medium behavior is still
elastic but the wave propagation cannot be described by the
classical continuum elasticity theory because this theory does
not properly account for all the possible mechanical motions

of the medium. To address this problem, polar (couple or
asymmetric stress) elastic theories introduce supplementary
and independent rotational DOF of material particles, which
are added to the translational DOF in classical continuum
elasticity. Various models of this kind are widely used in
continuum mechanics: Cosserat theory [48], micropolar model
of Eringen [38], reduced Cosserat continuum model [49], and
so on. However, the lack of information on the additionally
introduced physical parameters values for real materials
hinders the development of these theories and their practical
applications. In the Cosserat theory, each material element
possesses six DOF: three DOF for the translation and three
DOF for the rotation. The stress tensor is asymmetric and
an additional couple-stress tensor is introduced, which plays
the analogous role for torques than the stress tensor plays
for forces. The Cosserat continuum elasticity theory predicts
strong modification of the shear waves dispersion by the
rotational DOF. One of such effects is the dispersion of the
Rayleigh surface elastic wave at flat interface for long wave-
lengths, while the classical theory fails to explain it [38,49–51].
Furthermore, the Cosserat model predicts the propagation of
horizontally polarized transversal surface waves [52], which
are forbidden at the surface of the homogeneous classical
elastic continuum. More information on the Cosserat theory
can be found in the Supplemental Material [53].

The additional effects predicted by this theory have never
been observed experimentally and have been subjected to
criticism [38,54]. More recently, the rotational modes have
been revealed experimentally in a 3D granular phononic
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crystal [18]. A theoretical comparison of the bulk waves in
homogenized three-dimensional granular phononic crystals
with those in the Cosserat continuum has demonstrated that
the Cosserat theory does not account for all the influences
of the material inhomogeneity on its elastic behavior. To go
further in these previous conclusions, a theoretical comparison
of surface waves in the granular crystals with those in the
reduced Cosserat theory is performed below.

B. Comparison of SAWs in granular crystals
and in reduced Cosserat medium

In continuum elasticity, the Cosserat theory [55] and its
various extensions [38,56–59] introduce the rotational DOF
of an elementary volume for modeling wave propagation in
microinhomogeneous materials. In these theories the motion
of an elementary “point” is characterized, in addition to the
mechanical displacement vector �u, by the vector of mechanical
rotation (angle) �θ . In the simplest case of the so-called reduced
Cosserat continuum, in addition to Lamé moduli λ and μ, just a
single modulus, α, coupling the displacements and rotations is
introduced. For the harmonic waves of cyclic frequency ω with
wave vector �k the coupled equations of the reduced Cosserat
continuum are [52]

ρ ω2 �u = (λ + 2μ)�k(�k�u) − (μ + α)[�k[�k�u]] + j2α[�k �θ ], (40)

Jω2 �θ = 4α �θ + 2jα[�k�u], (41)

where ρ is the density and J denotes the density of the moment
of inertia.

From Eq. (41) it follows that the modulus α together with
J control the rotational resonance frequency ω0 of elementary
volumes,

�θ = j
ω2

0

2
(
ω2 − ω2

0

) [�k�u] with ω0 = 2

√
α

J
. (42)

Subsitution of Eq. (42) into Eq. (40) gives

ρ ω2 �u = (λ + 2μ)�k(�k�u) −
(

μ + α
ω2

ω2 − ω2
0

)
[�k[�k�u]]. (43)

Equation (43) demonstrates that the acoustic waves with
the longitudinal polarized displacement, [�k�u] = 0, are not
modified in comparison with classical elasticity theory, while
the modification of the waves with transverse polarization of
the displacement, (�k�u) = 0, takes place as in a metamaterial
with resonant inclusions [60,61]. Moreover, because local res-
onances of the reduced Cosserat metamaterial are rotational,
they modify the effective modulus of the “metamaterial” and
not its density (see Refs. [61,62] and references therein). In
accordance with Eq. (43), the dispersion relation of the coupled
transverse-rotational modes, (�k�u) = 0, can be presented in the
form

k2 = ω2

C2
T

1

1 + α
μ

ω2

ω2−ω2
0

. (44)

It describes two branches, the RT branch at frequencies above
ω0 and the TR branch at frequencies below ω1 = μ

μ+α
ω0 =

(CT R

CRT
)
2
ω0, separated by the band gap, ω1 � ω � ω0, where

there is no propagative mode because of the negative effective
modulus of the reduced Cosserat medium. In the above formula
CT R denotes the velocity of the lower mode when ω → 0
(k → 0), while CRT denotes the velocity of the upper mode
when the mode extends at ω → ∞ (k → ∞).

The SAWs in the reduced Cosserat continuum have been
studied in detail quite recently [52]. The theory predicted that
the coupling of the TR and RT bulk modes with longitudinal
bulk acoustic waves at the mechanically free surface leads
to the existence of two branches of Rayleigh-type SAWs.
The lower branch of SAWs is below the TR bulk branch.
The upper branch of the Rayleigh-type SAWs is below the
dispersion curves of the RT and L bulk branches and above
the low edge, ω = ω1, of the bulk band gap. Note that surface
waves can be propagative at frequencies forbidden for bulk TR

and RT wave propagation. Because of the above-formulated
requirements, the minimum possible wave number, k, for the
upper branch of the Rayleigh-type SAW cannot be smaller

than kmin = ω1/CL, where CL =
√

λ+2μ

ρ
is the velocity of

dispersionless bulk longitudinal waves. The theory of SAWs
in granular phononic crystals, which was presented above,
confirms the predictions of the reduced Cosserat theory on the
possible existence of multiple Rayleigh-type surface acoustic
modes (see Figs. 6 and 9). In comparison with the Cosserat
theory, some of the upper branches of the Rayleigh-type SAW
can start at finite ω from k = 0 (see Fig. 6), which is forbidden
in the Cosserat theory. This is related to the opening, in
phononic crystal, of band gaps for the propagation of bulk
longitudinal modes, which can be located near k = 0 for
finite ω. Thus the limiting condition kmin = ω1/CL is lifted.
However, the most important difference with the reduced
Cosserat theory, from the physics point of view, is related
to physical origins of wave dispersion. As it was pointed out
earlier in the comparison of bulk waves in granular phononic
crystal and in the Cosserat media [18], in the former the
dispersion comes both from the repulsion (hybridization) of
transverse and rotational motions and from multiple scattering
of the waves (induced by natural spatial inhomogeneity or
periodicity of phononic crystals), while in the latter the wave
dispersion is caused by hybridization phenomena only. The
situation with SAWs is similar. For example, in the dispersion
of the lower branch of Rayleigh-type SAW at ω → 0 there
are contributions due to both the interaction between different
modes and also to the explicit existence in phononic crystals
of a characteristic scale of spatial inhomogeneity, which is
absent in the reduced Cosserat medium. Thus our comparison
indicates that for the correct modeling of the wave phenomena
in microinhomogeneous media the Cosserat theories should
be at least combined with higher-order gradient theories of
elasticity, which explicitly contain the characteristic spatial
length of microinhomogeneity and, thus, account for wave
scattering by spatial inhomogeneities.

Our theoretical analysis of the SH-type SAWs in granular
crystals can be also compared with the theoretical predic-
tions of the reduced Cosserat continuum [52]. In fact, the
theory [52] has predicted the absence of energy transporting
SH-type SAWs in the reduced Cosserat continuum. It has
just predicted the existence of k-independent vibrations,
ω(k) = ω1 = constant, at frequency ω1 where the effective
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modulus of the reduced Cosserat medium is equal to zero.
These zero-group-velocity vibrational modes can be arbi-
trary distributed in depth [52]. The theory developed above
for the granular phononic crystal demonstrates that these
types of vibrational modes also exist and, moreover, they
transform into true localized in the vicinity of the surface
and energy carrying SAWs when bending rigidity of the
contacts between the beads is taken into account (see Figs. 14
and 15). Thus our theory highlights the crucial role of
bending-type interactions for some surface acoustic wave
phenomena. Earlier it was demonstrated [35,36] that these
types of interaction between beads induce real propagative
modes in granular phononic chains [36] and in bulk granular
phononic crystals [35], which are otherwise zero-energy,
i.e., ω = 0, modes. The theory developed above confirms
that neglecting in the reduced Cosserat theory, relative to
the general Cosserat theory, the direct interaction between
the rotations of elementary volumes, which mathematically
manifests itself in the absence of any terms containing
spatial derivatives of �θ in Eq. (41), can have large con-
sequences in terms of wave phenomena predicted by this
theory.

For the case of the SH-type surface acoustic waves the
predictions of the reduced Cosserat theory of localized vibra-
tions only, at a particular single frequency [52], drastically
differs from the prediction by the general Cosserat theory of
a true surface acoustic wave, existing in the complete domain
of frequencies and wave numbers [52]. The SH-type SAW
dispersion curve predicted by the general Cosserat theory
starts at ω = 0 (k = 0) and up to ω = ∞ (k = ∞) is located
below all the dispersion curves of bulk modes. In classical
terminology it is an acoustical-type surface phonon mode. Our
theory predicts possible existence of optical-type SH surface
acoustic mode, where the dispersion curve starts at k = 0 from
ω 	= 0 (Fig. 14). This slow mode is much closer to the surface
vibrational mode predicted by the reduced Cosserat model than
to the acoustical-type SH-type SAW predicted by the general
Cosserat theory. Thus our theory indicates that the reduced
Cosserat model can be a fruitful tool for the prediction of wave
phenomena in some particular granular crystals and microin-
homogeneous materials. The reduced Cosserat theory clearly
reveals some wave phenomena whose existence is so deeply
hidden in the general Cosserat theory that it could be easily
missed.

V. CONCLUSION

In summary, the propagation of surface waves has been ana-
lyzed at the mechanically free surface of two different granular
phononic crystals. A first case with the surface along the (010)
plane of a cubic crystal and surface waves propagating in the
[100] direction is investigated. In the first studied granular
phononic crystal, where the particles possess two translational
and one rotational DOF, generalized Rayleigh-type surface
waves and one pure longitudinal mode skimming along the
surface direction, i.e., in the [100] direction, are found. The
analysis shows a nonmonotonous behavior with a ZGVP
for the lower frequency Rayleigh surface mode. It could be

expected that ZGVP for SAWs, similarly to the ZGVP in
Lamb modes, could find application in nondestructive testing
of the materials [47]. The surface wave amplitude decay in
depth is a combination of an exponentially decaying function
and exponentially decaying function with few oscillations. In
addition, the existence of Rayleigh-type SAWs propagating at
the (110) surface along the [11̄0] direction is theoretically
revealed. For all parameter values, two surface modes are
found below the first propagative band and several branches
found in the gap between the upper propagative bands of bulk
acoustic modes. Along this direction, and in contrast to the case
of the surface waves propagating on the (010) surface in the
[100] direction, where ZGVPs are revealed, the frequency of
SAWs increases or decreases monotonously when increasing
the wavelength.

In the second granular phononic crystal studied, with
particles possessing two rotational and one translational DOF,
one shear-horizontal type surface wave propagating in [100]
direction is found on (010) surface. This mode is localized
around one particular frequency. We have demonstrated that
the existence of this mode is due to the bending-type interaction
between the rotating grains in contact and that the dispersion
of this mode can be tuned by modifying the ratio of the
bending and shear rigidities acting between the particles.
Concerning SH-type SAWs propagating at the (110) surface
along [11̄0] direction, two branches are found in the gap
between the two first propagation bands. Their existence is
due to non-negligible bending rigidity of the contacts. If
the direct bending-type interactions between the rotations of
the beads are neglected, then this surface mode transforms
into a purely vibrational mode of constant frequency

√
p and

zero group velocity for all possible wavelengths. The above
comparison of our theoretical results with the predictions of
the reduced Cosserat theory indicates the usefulness of some
simplified Cosserat theories in revealing some surface wave
phenomena which existence could be deeply hidden in the
frame of the general Cosserat theory.

Our findings are of interest in nondestructive testing of
materials and in the design of devices devoted to frequency
filtering or waveguiding. We have demonstrated that rotational
modes and their coupling to translational modes can provide
more flexibilities and additional functionalities in the control
of the elastic wave propagation. This could motivate variety of
potential applications in manipulating the contact rigidities in
granular phononic crystals. In this perspective, the experimen-
tal investigations of these surface modes should be realized.
In the same way as in Refs. [30,32], the granular crystals
could be made of magnetic beads. The attractive magnetic
force between the beads causes in this case the prestress of
the contacts, initiating their normal, shear and bending contact
rigidities [63]. Quite recently, the first experiments indicating
all-optical generation and detection of surface localized modes
in the GHz frequency range in three-dimensional hypersonic
granular crystals (high-quality silica opals) were reported [34].
In perspective, the extension of our analytical theory to
the case of the hcp hexagonal granular crystals could be
useful for the analysis of this type of laser hypersonics
experiments.
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APPENDIX A: DISPERSION RELATION IN THE GRANULAR PHONONIC CRYSTAL WITH PARTICLES POSSESSING
TWO TRANSLATIONAL AND ONE ROTATIONAL DOF

The determinant of the eigenvalue problem (1) leads to

[−η sin2 qx − sin2 qy + �2]{(−η sin2 qy − sin2 qx + �2)[−p(1 − sin2 qx + 1 − sin2 qy) − 4pBp(sin2 qx + sin2 qy) + �2]

−p sin2 qx(1 − sin2 qx)} − p sin2 qy(1 − sin2 qy)(−η sin2 qy − sin2 qx + �2) = 0, (A1)

which can be written as a cubic equation for Y = sin2 qy ,

Y 3[−4pBpη] + Y 2{p[η(−1 + sin2 qx + sin2 qxη) − 4pB sin2 qx(1 + η + η2)] + �2[η − pη + 4pBp(1 + η)]}
+Y (�4(−1 + p − 4pBp − η) + �2{sin2 qx(1 + η2) + p[1 + 2η + 2(−1 + 4pB) sin2 qx(1 + η)]})
+Y {p sin2 qx[η(sin2 qx − 2η + η sin2 qx) − 4pB sin2 qx(1 + η + η2)]}
−p sin4 qx(1 + 4pB sin2 qx)η + sin2 qx�

2{sin2 qxη + p[1 + 2η − sin2 qxη + 4pB sin2 qx(1 + η)]}
+�4[− sin qx(1 + η) + p(−2 + sin2 qx − 4pB sin2 qx)] + �6 = 0, (A2)

and as a cubic equation for �2,

(�2)3 + (�2)2{p[−2 + sin2 qx(1 − 4pB) + sin2 qy(1 − 4pB)] − (sin2 qx + sin2 qy)(1 + η)}
+�2 (sin4 qxη + sin4 qyη + sin2 qx sin2 qy(1 + η2) + p{sin4 qx[−η + 4pB(1 + η)]

+ sin2 qy[1 + 2η − η sin2 qy + 4pB sin2 qy(1 + η)] + sin2 qx[1 + 2η + 2(−1 + 4pB) sin2 qy(1 + η)]})
−p{η[sin4 qy − sin4 qx(−1 + sin2 qy + sin2 qyη) − sin2 qx sin2 qy(sin2 qy − 2η + sin2 qyη)]

+ 4pB (sin2 qx + sin2 qy)[sin4 qxη + sin4 qyη + sin2 qx sin2 qy(1 + η2)]} = 0. (A3)

Since it is a cubic equation in sin2 qy and in �2, for a given frequency �, there are six corresponding wave numbers qy . The
analysis is restricted to the displacement and rotational components of the surface waves of which amplitudes decrease as n

increases. Therefore, the attenuation of surface waves is provided by complex wave numbers with a negative imaginary part, i.e.,
by three of the six wave numbers given by Eq. (A2).

APPENDIX B: PURE LONGITUDINAL MODE

From the development of the boundary condition, the determinant Eq. (12) exhibits a pure longitudinal mode �2 = η sin2 qx .
As developed below the term �2 − η sin2 qx can be factorized in the determinant.

∣∣S2j,i

∣∣ = 0 ⇔

∣∣∣∣∣∣∣∣
−β1 −β2 −β3

α1+ cos qy1

j sin qy1

α2+ cos qy2

j sin qy2

α3+ cos qy3

j sin qy3

= 0

1 1 1

∣∣∣∣∣∣∣∣
= 0

⇔

∣∣∣∣∣∣∣∣∣∣∣

1

η sin2 qy1 +sin2 qx −�2

1

η sin2 qy2 +sin2 qx −�2

1

η sin2 qy3 +sin2 qx −�2

α1+ cos qy1

j sin qy1

α2+ cos qy2

j sin qy2

α3+ cos qy3

j sin qy3

1 1 1

∣∣∣∣∣∣∣∣∣∣∣
= 0

⇔ j(�2−η sin2 qx)

∣∣∣∣∣∣∣∣∣∣∣

1

η sin2 qy1 +sin2 qx −�2

1

η sin2 qy2 +sin2 qx −�2

1

η sin2 qy3 +sin2 qx −�2

cos qy1

sin qy1 (η sin2 qx +sin2 qy1 −�2)

cos qy2

sin qy2 (η sin2 qx +sin2 qy2 −�2)

cos qy3

sin qy3 (η sin2 qx +sin2 qy3 −�2)

1 1 1

∣∣∣∣∣∣∣∣∣∣∣
=0.

(B1)
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APPENDIX C: DISPERSION RELATION IN
THE GRANULAR PHONONIC CRYSTAL

WITH PARTICLES POSSESSING ONE
TRANSLATIONAL AND TWO ROTATIONAL DOF

The equations of motion of the central particle obtained by
applying the Lagrange principle are given by

mẅ0 = −ξ s[δs1+δs2+δs3+δs4], (C1a)

I ϕ̈0 = −ξ sRc[−δs4+δs2+δv5 − δv6]+M4+M2, (C1b)

I ψ̈0 = −ξ sRc[−δs1+δs3 − δh5+δh6]+M1+M3, (C1c)

where m is the mass of the particle and I is its momentum
of inertia. The spring elongation in the transversal direction
between the central and the i-th particle, i.e., the relative
displacement between the 0-th and the i-th particle at the
contact point, is denoted by δsi and the momenta due to
bending rigidity are denoted by Mi. The relative displacements
are explicitly given by

δs1 = w0 − w1 − Rc(ψ0 + ψ1),

δs2 = w0 − w2 + Rc(ϕ0 + ϕ2),

δs3 = w0 − w3 + Rc(ψ0 + ψ3),

δs4 = w0 − w4 − Rc(ϕ0 + ϕ4). (C2)

The springs oriented along the x axis and y axis for the
contact between the 0-th and 5-th beads and the 0-th and 6-th
beads are active in shearing (Fig. 10). The beads 5 and 6,
oriented along the z axis, rotate in the same direction and
same angle as the central particle, i.e., the bending rigidity
is not initiated because ϕ0 = ϕ5 = ϕ6 and ψ0 = ψ5 = ψ6.
Because of the study of SH surface waves, which are particular
2D motions of the crystal, there is no dependance on the z

coordinate, i.e., w0 = w5 = w6. Then the vertical δvi (along
y axis) and horizontal δhi (along x axis) spring elongations
between the central and the 5-th and 6-th beads are

δv5 = 2Rcϕ0,

δv6 = −2Rcϕ0,

δh5 = −2Rcψ0,

δh6 = 2Rcψ0. (C3)

The equations of motion are solved in the form of plane waves,

VSH
i =

⎡
⎣�i(x,y,t)

�i(x,y,t)
wi(x,y,t)

⎤
⎦ = vSHejωt−2jqxxi−2jqyyi , (C4)

with the new variable � = Rcϕ and � = Rcψ and vSH =(
A�
A�
Aw

)
the amplitude vector.

Equation (C4) is then developed around the equilibrium
position (x0, y0) of the central particle,

VSH
i = vSHejωt−2jqxx0−2jqyy0e−2jqx�xi−2jqy�yi ,

where �xi = xi − x0 and �yi = yi − y0 are the relative
coordinates between the central particle and the i-th particle,
and ω is the angular frequency.

Finally, the substitution of Eq. (C4) into the set of
Eqs. (C1), (C2), and (C3), leads to the eigenvalue problem,

SSHvSH = 0, (C5)

where SSH is the dynamical matrix defined by

SSH =

⎛
⎜⎝

−p(cos2 qy + 1 + pB sin2 qy) + �2 0 −jp sin qy cos qy

0 −p(cos2 qx + 1 + pB sin2 qx) + �2 jp sin qx cos qx

j sin qy cos qy −j sin qx cos qx − sin2 qx − sin2 qy + �2

⎞
⎟⎠. (C6)

The determinant of the eigenvalue problem (C5) leads to

−p cos2 qx sin2 qx(p − �2 + p cos2 qy + pBp sin2 qy) + (p − �2 + p cos2 qx + pBp sin2 qx)

× [−p cos2 qy sin2 qy + (−�2 + sin2 qx + sin2 qy)(p − �2 + p cos2 qy + pBp sin2 qy)] = 0, (C7)

which can be written in a characteristic equation for Y = sin2 qy ,

Y 2[pBp(p − �2 + p cos2 qx + pBp sin2 qx)] + Y {−(p − �2)(−p + �2 + pBp�2)

−p[�2 + p(−1 + pB�2)] cos2 qx − pBp(−2p + 2�2 + pBp�2) sin2 qx + p2p2
B sin4 qx}

− (p − �2 + p cos2 qy)[p �2 cos2 qx + (�2 − sin2 qx)(p − �2 + pBp sin2 qx)] = 0, (C8)

and in a cubic equation for �2,

− (�2)3 + (�2)2[pBp sin2 qx + pBp sin2 qy + p cos2 qx + p cos2 qy + 2p + sin2 qx + sin2 qy]

−�2p
(
p2

Bp sin2 qx sin2 qy + cos2 qy[(pBp + 1) sin2 qx + p] + cos2 qx[(ppB + 1) sin2 qy + p cos2 qy + p]

+pBp sin2 qx + ppB sin2 qy + p + 2pB sin2 qx sin2 qy + pB sin4 qx + pB sin4 qy + 2 sin2 qx + 2 sin2 qy

)
+p2{sin2 qx[(pB sin2 qy + 1)2 + cos2 qy] + (cos2 qx + 1) sin2 qy(pB sin2 qy + 1) + pB sin4 qx(pB sin2 qy + cos2 qy + 1)}

= 0. (C9)
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APPENDIX D: INEXISTENCE OF SH SURFACE WAVES IN THE ABSENCE OF BENDING RIGIDITY

When the bending rigidity parameter pB is zero, Eq. (C8) reduces to

Y [(p − �2)(−p sin2 qx + p�2 + p − �2) + p(p�2 + p − �2) cos2 qx]

+ (�2 − 2p)[(p − �2)(�2 − sin2 qx) + p�2 cos2 qx] = 0 , (D1)

which leads to the wave number qy1 ,

qy1 = arcsin

√
2(2p − �2)[(p − �2)(�2 − sin2 qx) + p�2 cos2 qx]

p2(3�2 + 2) + p(p(�2 + 2) − 2�2) cos(2qx) − 2p(�2 + 2)�2 + 2�4
. (D2)

To each frequency corresponds one wave number qy1 . In the absence of bending rigidity, only the boundary condition Eq. (25)
is applied, which leads to the equation

(1 − e2jqy1 ) − α1(1 + e2jqy1 ) = 0,

⇔ α1 = 2j sin qy1

2 cos qy1

,

⇔ −jp sin qy1 cos qy1

p(cos2 qy1 + 1) − �2
= j sin qy1

cos qy1

,

⇔ �2 = p. (D3)

This result is in accordance with the surface mode frequency Eq. (32) when pB = 0. Nevertheless, in this case, no surface mode
exists because the frequency � = √

p lies in a propagation band. In fact, according to Eq. (D2), the corresponding wave number
is purely real and equal to qy1 = π/2.
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