
PHYSICAL REVIEW E 93, 023006 (2016)
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The vibrational properties of model amorphous materials are studied by combining complete analysis of the
vibration modes, dynamical structure factor, and energy diffusivity with exact diagonalization of the dynamical
matrix and the kernel polynomial method, which allows a study of very large system sizes. Different materials
are studied that differ only by the bending rigidity of the interactions in a Stillinger-Weber modelization used
to describe amorphous silicon. The local bending rigidity can thus be used as a control parameter, to tune the
sound velocity together with local bonds directionality. It is shown that for all the systems studied, the upper
limit of the Boson peak corresponds to the Ioffe-Regel criterion for transverse waves, as well as to a minimum
of the diffusivity. The Boson peak is followed by a diffusivity’s increase supported by longitudinal phonons.
The Ioffe-Regel criterion for transverse waves corresponds to a common characteristic mean-free path of 5–7 Å
(which is slightly bigger for longitudinal phonons), while the fine structure of the vibrational density of states is
shown to be sensitive to the local bending rigidity.
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I. INTRODUCTION

Amorphous silicon is a model material studied for a
long time as a simple example of monoatomic amorphous
material with important possible applications to electronics
(as a semiconductor device) as well as for photovoltaic devices
[1]. It is thus important to understand, and if possible control,
heat conduction and energy diffusivity in this material. Allen
and Feldman studied its vibrational properties a long time ago
[2–4]. They have shown that the majority of the vibrations are
not plane waves: propagative modes, including plane waves,
being restricted to the low-frequency domain, and localized
modes occupying the high-frequency tail of the spectrum.
From an experimental point of view, amorphous silicon is
an ubiquitous disordered solid, and the existence of a glass
transition is still a matter of debate in this case [5–7]. Another
question concerns the existence of an excess of low-frequency
vibrations as compared to the Debye prediction, also called the
Boson peak and widely studied in amorphous materials [8–21].
The Boson peak is related to an increase and an anomalous
T dependence of the heat capacity of amorphous samples as
compared to crystalline samples [22–25]. The origin of the
Boson peak is still debated in amorphous silicon samples
[26–32] and a common interpretation of the detailed numerical
analysis of its vibrational properties is still lacking [30,33,34].
However, pure amorphous silicon can also be considered as a
simple paragon for amorphous materials, with a monoatomic

piling and local tetrahedral order. We will consider here
a Stillinger-Weber modelization of amorphous silicon as a
model amorphous material used to understand in a systematic
way the effect of the local bending rigidity, or bond’s direc-
tionality, on the vibrational properties at different frequencies.

In amorphous materials, vibrations differ from the usual
description in terms of transverse and longitudinal acoustic
plane waves and optic modes valid in crystalline materials
[35–38]. More precisely, due to structural disorder, plane
waves (also usually referred to as phonons with a well-defined
wave vector) are not the vibrational eigenmodes in amorphous
materials, contrary to crystalline materials. This results in an
apparent amplitude’s decay, or progressive scattering, when
they propagate through the samples [39,40]. Moreover, the
proximity to small energy barriers gives rise to low-frequency
soft modes with local quadrupolar shape [41–43] that can
be used as predictor for plastic deformation [40] and affects
the low-frequency part of the vibrational response [22]. At
higher frequencies, strong scattering gives rise to a diffusive
propagation of vibrational energy. Allen and Feldman have
proposed to call diffusons the eigenmodes in this regime
[3]. Diffusons are extended modes that are different from
plane waves and give rise to strong scattering and diffusive
propagation of vibrational energy. The crossover from weak
to strong scattering is usually determined by the Ioffe-Regel
criterion [44] that compares the inverse wave vector of the
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propagative phonon to its mean-free path. The connection
between Ioffe-Regel criterion and Boson peak was questioned
in previous studies [15,39,45–47]. At even higher frequencies,
the comparison of the vibrational density of states of the amor-
phous material with that of the crystal shows a reminiscence of
the crystals optic modes [26,48] and the existence of a mobility
edge [4,49]. Despite important numerical effort in the last years
to describe the vibrational response of amorphous materials
[30,33,50–53], many important questions are still open, such
as the identification of the frequency separating the different
regimes, the description of the scattering processes, and the
connection with quasimonochromatic wave packets propaga-
tion (diffusion of energy). A promising way was proposed
with the study of vibrational eigenmodes as eigenvectors of a
random matrix with specific properties [47,54]. We will follow
the same approach as detailed in Ref. [47] but with a dynamical
matrix resulting from molecular dynamics simulations of
large-scale amorphous siliconlike systems at equilibrium. We
will thus focus on the harmonic contribution of the disorder to
the vibrational response of our atomistic model.

The numerical study of the harmonic vibrational properties
of amorphous materials involves the dynamical matrix whose
inverse is simply the linear approximation of the Green’s
function relating the displacements to the forces at equilibrium.
One possible empirical description of the interactions in
amorphous siliconlike materials is due to Stillinger and Weber
[55] and involves a simple additive decomposition of the
interatomic interactions into two-body interactions (depending
only on the distance between atoms) and three-body interaction
(involving the relative angle between adjacent bonds). This last
term is a way to introduce the degree of covalent bonding. It
was shown that the amplitude of this term can affect strongly
the mechanical response, such as the yield stress [56], the
viscosity [57] or the toughness of the materials [58]. In this
paper, we will use this parameter to tune the sound waves
velocity and to show its effect on the anomalous vibrational
properties of the systems. We devoted a special attention to
the effect of the three-body interactions on the characteristic
length scales such as the Boson peak’s wavelength, and the
mean-free paths.

The paper is organized as follows: after a detailed pre-
sentation of the numerical model, we will first compute the
vibrational density of states (Sec. III) together with a detailed
analysis of the corresponding eigenmodes (Sec. IV). We
will then study the dynamical structure factor, the dispersion
laws, the corresponding phonon lifetimes, and mean-free
paths (Sec. V). Finally, we will compare the results to
the propagation of quasimonochromatic wave packets with
different frequencies allowing to measure the diffusivity of
vibration energy in the materials, as a function of the frequency
and of the bending rigidity (Sec. VI). This will allow us to
identify coherently well-defined vibrational domains, as it will
be summarized in the conclusion (Sec. VII).

II. NUMERICAL MODEL

We have studied the vibrational properties of a model
amorphous silicon (a-Si) system consisting of N = 32768
atoms contained in a cubic box of lengths Lx = Ly = Lz of

approximately 87 Å (smaller systems of N = 8000 have also
been studied to compare our results). The technical details of
the preparation of the a-Si model have already been presented
in Ref. [56]. The Si-Si interaction in the system studied here
is described by the Stillinger-Weber potential [55], where we
have tuned the prefactor � of the three-body term as already
done in previous work [56,57], to quantify here the effect of
local order on the vibrational properties. The Stillinger-Weber
potential is an empirical potential including two-body and
three-body interactions, such that the total potential energy
of the system is written as

U =
∑
i<j

f (rij ) + �
∑

i<j<k

[g(rij ,rik,θjik)

+ g(rji ,rjk,θijk) + g(rki,rkj ,θikj )] (1)

with

f (rij ) = A
(
B/r4

ij − 1
)

exp [σ (rij − a)−1] (2)

and

g(rij ,rik,θjik) = (cos θjik + 1/3)2

× exp [α(rij − a)−1 + α(rik − a)−1]

with the parameters proposed in Ref. [55] A = 7.05, B =
11.60, α = 2.51 Å, σ = 2.06 Å, and a = 3.77 Å. The param-
eter � gives a measure of the bond’s directionality: high values
of � favor local tetragonal order (� = 21 is the original value
proposed by Stillinger et al. [55] as an empirical model for a-
Si). The atomic configurations corresponding to a-Si structures
for different values of � have been obtained from the liquid
state, using the open source LAMMPS package [59] for classical
molecular dynamics simulations, and following the procedure
already described in Ref. [56]. Different configurations have
been obtained, either with a quenching in the NVT ensemble at
a fixed density ρ = 2.303 g/cm3, giving rise to different final
pressures as detailed in Table I, either after pressure relaxation
up to P ≈ 0 GPa.

In order to study the role of the local order on the vibrational
properties of a-Si we have calculated the dynamical matrices
for different values of �. The dynamical matrix has been
numerically computed by calculating the second-order spatial
derivative of the potential energy around the equilibrium

TABLE I. Transverse and longitudinal sound velocities obtained
from the elastic moduli for different values of the parameter � with
N = 32768.

� ρ, g/cm3 P , GPa cT , m/s cL, m/s

17 2.303 − 1.82 3334 7833
19 ” − 0.096 3570 7750
21 ” 0.638 3854 7965
23.5 ” 1.38 4133 8226
26.25 ” 2.1 4386 8484
40 ” 5.07 5305 9490

17 2.339 − 0.011 3312 8436
21 2.295 0.013 3714 8367
40 2.248 − 0.114 5118 9350
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atomic positions Ri :

Miα,jβ = 1√
mimj

∂2U

∂riα∂rjβ

. (3)

The Newton’s equations of motion can thus be written in the
harmonic approximation

üiα = −
∑
jβ

Miα,jβujβ (4)

with ui = √
mi(ri − Ri) where ri − Ri is the displacement

of atom i, Ri its equilibrium position, mi its mass, and
greek indices α or β indicate spatial directions. The elastic
constants (shear and bulk modulus) are obtained as in Ref. [56]
by measuring the quasi-static response of the system to a
small deformation of the box. The corresponding values of
the transverse cT and longitudinal cL sound velocities are
summarized in Table I for the different values of �.

III. DENSITY OF STATES

The dynamical matrix M has N = 3N eigenvalues that
are squares of the corresponding eigenfrequencies ωj . The
normalized vibrational density of states (VDOS) as a function
of ω = 2πν reads

g(ω) = 1

N

N∑
j=1

δ(ω − ωj ). (5)

The full set of eigenvalues for a small system (with N <

104) can be obtained by standard numerical routines. We used
the FEAST eigenvalue solver [60] for N = 8000 to get the
full set of eigenfrequencies together with the eigenvectors of
the dynamical matrix. However, this direct method requires
too much time as well as random access memory for large
enough systems (N > 104). For these purposes it is necessary
to use more powerful methods for the larger systems studied. In
Appendix A we discuss the kernel polynomial method (KPM)
and velocity autocorrelation method.

The numerical results for VDOS obtained using KPM are
presented in Fig. 1. They show the usual shape of VDOS
obtained for amorphous silicon [27], with a first peak related
to acoustic transverse modes and a second well-defined peak
at high frequencies that is reminiscent of optic modes in
the crystal [Fig. 1(a)]. The rescaling of the frequencies by
the transverse sound velocity [Fig. 1(b)] allows drawing the
density of states as a function of a reduced wave vector
q∗ ≡ ω/cT . In this case, the low q part of the spectra
superimpose whatever the value of �, confirming the dominant
transverse acoustic character of the low-frequency vibrations,
and suggesting the existence of a characteristic length at a
wave vector q∗ ≈ 10 nm−1 independent of �, above which
the rescaled VDOS split. The transverse sound velocities cT

shown in the inset of Fig. 1 have a �1/2 dependence at constant
density, showing that the shear modulus is proportional
to the three-body contribution to the total energy of the
system. This effect is not shown in the longitudinal sound
velocities cL because bending rigidity is not dominant for the
propagation of compressive waves, contrary to shear waves.
The parameter � thus allows tuning the transverse wave
velocities independently of the longitudinal one.
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FIG. 1. (a) The VDOS for different values of the parameter �.
(b) The VDOS as a function of the reduced wave vector q∗ = ω/cT .
Inset: � dependence of the sound velocities cT (open symbols) and
cL (filled symbols). Line shows fit with cT ∝ √

� dependence.

The boson peak is visible after dividing the VDOS g(ν) by
ν2 (the Debye prediction) as shown in Fig. 2(a). The shape
of the boson peak [Fig. 2(a)] shows clearly a dependence
on the bonds directionality quantified by the parameter �.
The boson peak appears to be magnified when the three-body
interactions are low, and it decreases when the three-body
interactions get more and more important as compared to
the central interatomic forces. For � = 21 corresponding to
a-Si, the initial very low-frequency peak is no more marked,
but the boson peak is still visible with an excess of low-
frequency vibrations as compared to the Debye prediction.
As the value of � increases, the position of the peak is
shifted to higher frequencies. This effect is clearly dominated
by �. We have checked that pressure differences between
the samples induce only a small change in the boson peak
[dashed lines in Fig. 2(a)] as compared to the role of �. In
order to quantify the observed shift to higher frequencies, we
again rescale the frequencies by the transverse sound velocity,
as suggested in Ref. [61]. The resulting reduced density of
states is shown in Fig. 2(b). The position of the boson peak
as a function of the reduced wave vector q∗ appears now
independent of �, suggesting a universal process dominated by
transverse waves, that will be discussed later. Note, however,
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FIG. 2. (a) The VDOS divided by ν2, that shows the boson
peak for different �. Thick lines correspond to constant density
configurations as described in Table I. Dashed thin lines are relaxed
configurations with P ≈ 0 GPa. Solid horizontal thin lines on the left
show the low-frequency Debye predictions calculated from the static
shear and bulk modules. (b) Boson peak as a function of the reduced
wave vector q∗ = ω/cT . Vertical gray bands mark the position of
q∗

1 and q∗
2 . Arrows show the position of the transverse Ioffe-Regel

criteria (see Sec. V).

that the fine structure of the peak depends on the bonds
directionality �: at a very low frequency, a peak is visible
for low values of �, located at q∗

1 ≈ 2.7 nm−1 (corresponding
to a wavelength ξ ∗

1 ≈ 23 Å). This very low-frequency peak
disappears progressively and a secondary peak appears at
q∗

2 ≈ 7.0 nm−1 (ξ ∗
2 ≈ 9 Å) when � > 21. The significance

of these peaks will be discussed later.
Above we have shown that the low-frequency part of the

VDOS has presumably a dominant transverse character. It
would be very interesting to find a regular way to separate the
VDOS into the longitudinal and the transverse components
for the whole vibrational spectrum. In particular it gives
us a possibility to show more clearly that the boson peak
has a transverse nature [45]. In Appendix C we describe
a generalized decomposition method without the notion of
the wave vector, which is an ill-defined quantity in strongly
disordered systems. This method is based on the volume
variations of the Voronoi cells during the atomic motion. The
atomic displacement of each atom can be decomposed into

g(
ν)

(1
/T

H
z)

0

0.05

0.1

0.15

0.2

ν (THz)
0 5 10 15 20

Λ = 21

(a)

g(
ν)

/
ν2  

(T
H

z 
 

)
–3

0

0.001

0.002

0.003

0.004

0.005

0.006

ν (THz)
0 5 10

Λ = 21

(b)

g
(ν

)/
g(

ν)
L

0

0.5

1

ν, THz
0 5 10 15 20

T L T

Σ

T

L

Σ

T

L

FIG. 3. (a) The decomposition of the total vibrational density
of states (�) to longitudinal (L) and transverse (T) components
for � = 21. Vertical arrows show the transverse and longitudinal
Ioffe-Regel frequencies. Inset: the relative number of the longitudinal
modes gL(ω)/g(ω) (solid line between hatching regions). The relative
number of the transverse modes gT (ω)/g(ω) = 1 − gL(ω)/g(ω) is
shown by upper hatching between solid line and the value 1.
(b) The boson peak (�) and its longitudinal (L) and transverse
(T) components for � = 21. Thin horizontal lines show the low-
frequency Debye prediction calculated from the static shear and bulk
moduli. Dashed lines are estimations from Sec. V of the phononic
contribution, below the Ioffe-Regel limit. The vertical arrow shows
the transverse Ioffe-Regel frequency.

two components, one of them preserving the volume of the
Voronoi cells. The displacements preserving the volume of
each Voronoi cell are identified as transverse displacements,
and the other as longitudinal displacements.

The separate contribution of longitudinal and transverse
displacements to the total VDOS is shown in Fig. 3. In the low-
frequency region (below 7 THz for � = 21), the transverse
modes dominate the VDOS, thus confirming the transverse
character of the vibrations in the region of the boson peak
for amorphous siliconlike samples [Fig. 3(b)]. However, at
7 THz there is a sharp transition from mostly transverse modes
to mostly longitudinal ones. It corresponds to the maximum
frequency (7.5 THz) of TA modes in crystalline silicon [64].
The maximum frequency of LA modes is much large (11 THz)
due to the large difference between bulk and shear moduli. The
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elementary cell in the diamondlike crystalline silicon contains
two nonequivalent atoms whose out-of-phase motion results
in the three branches of high-frequency optic modes (one
LO and two TO modes) with very low group velocity [38].
In amorphous silicon out of phase motion of nearest atoms
is similar to crystalline optic modes. These modes form the
second peak of the VDOS, which is clearly seen in neutron
scattering measurements [27,63]. Thus, the predominance
of the longitudinal modes between 7 THz and 15 THz in
amorphous silicon [Fig. 3(a)] corresponds indeed to the gap
between the upper frequency of TA modes (7.5 THz) and the
lower frequency of TO modes (13.9 THz) in crystalline Si.
This frequency region in crystalline Si is totally occupied by
LA and LO modes (without a gap). In amorphous Si in the
same frequency region the vibrations have a small transverse
component (15–20 %), in agreement with the results obtained
in [34].

In order to complete this description, in the next section we
will calculate participation ratio and the correlation function
to describe the geometrical structure of the eigenmodes that
are obtained as eigenvectors of the dynamical matrix.

IV. PARTICIPATION RATIO AND SPATIAL
CORRELATION

The exact diagonalization of the dynamical matrix is
performed using FEAST eigenvalue solver [60] on a system
made with N = 8000 atoms. A series of N = 3N eigenmodes
ui(ωj ) is then obtained with the corresponding eigenvalues
ω2

j . These eigenmodes are the normal modes of the amor-
phous material but they are not simple plane waves with a
well-defined wave vector q. Examples of such eigenmodes
are shown in Fig. 4. The low-frequency eigenmodes are a
superposition of plane waves with softer regions supporting
highly strained isolated vibrations [Fig. 4(a)]. The modes
supporting additional isolated vibrations are precursors of
local plastic rearrangements when looking at the anharmonic
mechanical response [40]. We identify them as soft modes
because they occur only in the low-frequency part of the
spectrum (as will be proved later) with soft spots due to
very low local elastic stiffness. Other authors called the
low-frequency modes quasilocalized modes [45,65] in order
to distinguish them from plane waves. At higher frequencies,
the shape of the eigenmodes becomes more complex.

The amount of particles moving together in the vibrational
eigenmodes is usually quantified by the participation ratio
defined for each eigenmode j as

P (ωj ) ≡ 1

N

[∑
i u

2
i (ωj )

]2∑
i u

4
i (ωj )

. (6)

For an isolated particle P = 1/N , and for translational motion
P = 1. The participation ratio is shown in Fig. 5 as a function
of the reduced wave vector q∗. Similarly to the VDOS, the
low-frequency part of P superimposes for all � when plotted
as a function of the reduced wave vector q∗, suggesting the
existence of a common geometrical origin involving mainly
transverse vibrations. It can be schematized as follows: first
an initial decay due to the wavelengths decrease of acoustic
modes, together with very low values characteristic of soft

(a) ν = 0.59 THz (b) ν = 2.67 THz

(c) ν = 9.95 THz (d) ν = 17.39 THz

FIG. 4. Vibration modes corresponding to different frequency
range, for � = 21. Arrows are proportional to the displacements
of the particles (×100). The 2D representation corresponds to a cut
along the x-y plane (δz = 5 Å) that contains the particle supporting
the largest displacement.

modes. Then an increase up to a value close to P ∗ = 0.5 [an
example of such mode is shown in Fig. 4(b)]. The value of
P ∗ is close to 0.6 for uncorrelated Gaussian random noise
[66]. After a secondary minimum [mode shown in Fig. 4(c)]
the participation ratio decreases to zero at the mobility edge
[4] that follows the position of the high-frequency peak in the
VDOS (see Fig. 1). Typical mode in this frequency range is
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FIG. 5. Participation ratio as a function of the reduced wave
vector q∗ = ω/cT for different values of the parameter �. Vertical
gray bands show three characteristics reduced wave vectors q∗

1 , q∗
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and q∗
3 . Inset: zoom on the low-frequency range.
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shown in Fig. 4(d). Quite remarkably, the position of the first
minimum in the participation ratio corresponds for all � to the
first maximum in the rescaled VDOS divided by ν2 located
at q∗

1 , and the position of the common maximum P ∗ = 0.5
is located at q∗

2 corresponding to the second peak in the low-
frequency rescaled VDOS divided by ν2. The departure from
the plane waves participation ratio in this range, means that
in all our systems, the boson peak is located in a frequency
range were plane waves are no more the dominant contribution
to the eigenmodes. This frequency range is limited by two
characteristic distances ξ ∗

1 and ξ ∗
2 , that are independent on �.

There is also a third characteristic reduced wave vector q∗
3 =

11.7 nm−1, which corresponds to a secondary local minimum
of the participation ratio for all values of �. It coincide with the
sharp change of the nature of vibrations from almost transverse
to almost longitudinal ones (Fig. 3).

In order to detail the shape of the eigenmodes and compare
with these characteristic lengths, we have computed their
spatial correlation function C(r,ω). It is defined as in Ref. [51]
as

C(r,ω) = 1

N

N∑
j=1

〈u(r + r′,ωj ) · u(r′,ωj )〉r′δ(ω − ωj ), (7)

where u(r,ωj ) is coarse-grained displacement field of j th
eigenmode

u(r,ωj ) =
N∑

i=1

W(r − Ri)ui(ωj ) (8)

with W a coarse-graining function normalized by∫
W2(r)dr = 1. We used Gaussian coarse-graining function

of width wCG = 0.5 Å. This length is less than the typical
distance between atoms, so we can neglect the overlapping of
different grains. In this case, normalization of the eigenmodes
implies

〈u(r,ωj ) · u(r,ωj )〉r = 1, (9)

which results in the property C(0,ω) = g(ω). For convenience
we used the normalized correlation function

Cn(r,ω) = C(r,ω)

g(ω)
. (10)

In order to calculate C(r,ω) we used the KPM (Ap-
pendix B). The amplitude of Cn(r,ω) averaged over different
directions of r for all the frequencies is shown in Fig. 6(a)
for � = 21. Starting from Cn(0,ω) = 1, it shows oscillations
between positive and negative values characterizing a spatial
flipping of the displacement field. For a three-dimensional
(3D) plane wave with a given polarization (L or T) and the
wave vector q the normalized correlation function has a form

Cn(r,ω) = sin(qr)

qr
. (11)

The low-frequency behavior of the correlation function (Fig. 6)
is indeed dominated by the wavelength of the plane wave: when
plotted as a function of the reduced wave vector q∗ = ω/cT ,
it shows the characteristic behavior of transverse plane waves.
Indeed, Fig. 6(c) shows the position of the first minimum
r∗ of Cn as a function of the reduced wave vector. In the
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FIG. 6. (a) Spatial correlation function of the atomic displace-
ments Cn(r,ω) as a function of the frequency ν for � = 21. The
amplitude of the correlation function is indicated by color. Negative
correlation is marked by hatching. All amplitudes above 0.1 are shown
as 0.1. (b) The same correlation function for different frequencies
ν = ω/2π . (c) Position in the first minimum of the correlation
function as a function of the reduced wave vector q∗ for the different
values of �. The dashed line is r∗ = 0.449/q∗, which corresponds
to the first minimum of Eq. (11) for transverse modes. Vertical gray
bands mark the positions of q∗

1 , q∗
2 , and q∗

3 .

low-frequency regime, it decays like r∗ = 0.449/q∗ in exact
correspondence with the wavelength of the transverse plane
wave. This means that Cn is dominated by the collective
dynamics of plane waves even in the presence of soft modes.
However, the values of r∗ = ξ ∗

1 at q∗
1 and r∗ = ξ ∗

2 at q∗
2 ,
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confirm the signature of a characteristic wavelength in the
vibration modes. The origin of these lengths is not obvious.
It was obvious from P (ωj ) that the eigenmodes are not
simple plane waves at q∗

1 , but have a very small participation
ratio indicating the presence of isolated centers of enhanced
vibrations. These centers are sufficiently few to not affect the
long-range spatial correlations due to transverse plane waves
in Cn, but can affect the vibrational density of states through
small frequency shifts. This description supports the fact
that transverse plane waves and isolated centers of enhanced
vibrations still coexist at q∗

1 . ξ ∗
1 could be the distance between

the isolated centers, that would correspond as well to the
wavelength at q∗

1 . It is not easy to perform a direct measurement
of such distance due to the lack of signature in the spatial
correlation function. We computed in Ref. [57] the distance
between local maxima in the nonaffine displacement field.
It confirms the existence of this characteristic length, but the
measurement of q∗

1 is more precise. At q∗
2 a clear-cut change of

behavior appears in Cn for all the systems studied indicating
departure from transverse plane waves. This effect will be
discussed again later. Finally a common change appears at
a larger reduced wave vector q∗

3 = 11.7nm−1 in Cn, which
was introduced in Fig. 5. It corresponds to the transition from
transverse modes to longitudinal ones with bigger correlation
radius.

The analysis of the geometrical structure of the eigen-
modes would not be complete without analyzing the scaling
dependence of the participation ratio. This kind of analysis
is especially important when looking at the signature of
localization in the Anderson interpretation [67]. For that, we
computed the generalized participation ratio Pk of order k

defined as

Pk(ωj ,wCG) ≡ 1

N

[∫
u2

CG(r,ωj )dr
]k∫

u2k
CG(r,ωj )dr

(12)

where uCG(r,ωj ) is the displacement field of mode j coarse
grained at different scales wCG as in Eq. (8).

The dependence of P2 as a function of wCG shown in
Fig. 7(a) reveals a size invariance (power-law behavior) only
for the largest frequency modes studied, that is above the
mobility edge (black curve). In opposite, the participation ratio
P2 of very low-frequency soft mode [curve for ν = 0.59 THz
in Fig. 7(a)] goes down for wCG < w∗

CG ≈ 9 Å, but saturates
at large wCG, confirming the coexistence of enhanced local
vibrations with large-scale plane waves in this frequency range.
Note that the corresponding size of the soft spot w∗

CG ≈ ξ ∗
2 ,

and the upper saturation occurs at w∗∗
CG = 2π/q∗ ≈ ξ ∗

1 . In the
mobility edge [Fig. 7(b)] scale invariance manifests through
the power-law behavior

Pk(ωj ,wCG) ∝ w
τj (k)
CG

for large wCG. We measured the exponent τj (k) as a function
of k [dashed lines in Fig. 7(b)] for a mode n in the mobility
edge. It is shown in Fig. 7(c) and it confirms the localized and
multifractal [68–70] hallmark of this mode, with

τj (k) ≈ γ k(k − 1) and γ = 0.2. (13)

We have shown in this section, that the eigenmodes
have characteristic features depending on the corresponding
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FIG. 7. (a) Coarse-grained participation ratio P2(ωj ,wCG) as a
function of the coarse-graining scale wCG for different frequencies
ωj including those of the vibration modes shown in Fig. 4, with
� = 21. (b) Generalized participation ratio Pk(ωj ,wCG) for νj =
17.39 THz and k in {0.5,1, . . . ,5}. Dashed lines are power-law fits. (c)
Exponent τj (k) for νj = 17.39 THz in the mobility edge, compared
to the quadratic fit proposed in the context of localization theory [70].

frequency range. In the low-frequency part of the spectrum,
eigenmodes share common features independent on the bend-
ing rigidity of the modes: for example, the boson peak is
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bounded by two characteristic length scales ξ ∗
1 and ξ ∗

2 with
a very low participation ratio in the first case, and a local
maximum in the participation ratio in the second case. These
two length scales have a signature in the spatial correlation
analysis of the modes. It is shown as well, that in the very
low-frequency range, transverse plane waves coexist with local
enhanced vibrations, while the plane wave character of the
vibrations is questioned in the higher limit of the boson peak.
In the mobility edge, at higher frequencies, eigenmodes have
a multifractal shape characteristic of a localized behavior. We
will now study the dynamical structure factor, in order to relate
these observations to the study of density-density correlation
functions, as can be tracked in neutron diffraction experiments
for example [12,13]. The analysis of the dynamical structure
factor allows also to discuss the Ioffe-Regel criterion for waves
scattering.

V. DYNAMICAL STRUCTURE FACTOR

In this section we show that low-frequency vibrations can
be considered as phonons with a finite mean-free path l

(therefore, with the uncertainty in wave vector �q ∼ 1/l). We
analyze the dynamical structure factor in order to determine
the dispersion law and the mean free path for longitudinal and
transverse phonons. We prove that it is an accurate method
in the frequency range below the Ioffe-Regel criterion, where
mean-free path is still bigger than the half wavelength, and the
notion of phonon dispersion is well defined.

The dynamical structure factor is the self-correlation
function of the mass currents [46] in the system at thermal
equilibrium with some temperature T . The structure factor
can be calculated by normal mode analysis. Using a small
displacement expansion of the density correlation function,
combined with the projection of the displacements on the
normal modes, and the classical approximation kBT � �ω

for the equipartition of energy in the normal modes amplitude
[75], it reads

Sη(q,ω) = kBT

m

q2

ω2
Fη(q,ω), (14)

where η denotes longitudinal (L) or transverse (T) component.
In the above equation Fη(q,ω) is the longitudinal or transverse
component of the Fourier transform of the eigenmodes

FL(q,ω) =
N∑

j=1

∣∣∣∣∣
N∑

i=1

q̂ · ui(ωj )eiqRi

∣∣∣∣∣
2

δ(ω − ωj ), (15)

FT (q,ω) =
N∑

j=1

∣∣∣∣∣
N∑

i=1

q̂ × ui(ωj )eiqRi

∣∣∣∣∣
2

δ(ω − ωj ). (16)

Here q̂ = q/|q| is a unit vector along q and ui(ωj ) is the
displacement of the ith atom for j th eigenmode.

In order to calculate Fη(q,ω) we also used the KPM
(Appendix B). Figure 8 shows the structure of eigenmodes
Fη(q,ω) in the reciprocal space averaged over all possible
directions of q. For a better visual effect we divide Fη(q,ω) by
the magnitude of its maximum for each fixed value of ω. All
color maps in Fig. 8 have two evident regions: a low-frequency
region with thin phonon branch, and a high-frequency region
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FIG. 8. The longitudinal (L) and transverse (T) components of
eigenmodes in the reciprocal space as a function of the wave number
q and the frequency ν for the parameter � = 21 and � = 40.

without a certain relationship between the wave number q and
the frequency ω.

In order to extract information about phonons in the low-
frequency region we fit the structure factor Sη(q,ω) using the
DHO model (Fig. 9)

Sη(q,ω) = A[
ω2 − ω2

η(q)
]2 + ω2�2

, η = L,T . (17)

We extract phonon dispersion ωη(q), the phonon inverse
lifetime �(q) and a coefficient A from this fit.

The numerical results obtained by this method for phonon
dispersion ωη(q) as well as the group velocity v

η
g = ∂ωη/∂q

S
L
(q

, 
ω
)

0

0.1

0.2

ν (THz)
0 5 10 15

0

0.5

ν (THz)
1.6 1.8 2

FIG. 9. Fits of the dynamical structure factor SL(q,ω) to Eq. (17)
for � = 21 and various values of the wave number q (from left to
right: 1.44, 2.89, 4.33, 5.77, 7.21, 8.66, 10.10, and 11.54 nm−1). The
inset shows a full curve for q = 1.44nm−1.
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FIG. 10. (a) Phonon dispersion curve obtained from the fitting
(17) for the parameter � = 21 (full line) and � = 40 (dashed line).
(b) Group velocity for the parameter � = 21 (full line) and � = 40
(dashed line). All curves are shown up to the corresponding Ioffe-
Regel frequency. Longitudinal and transverse phonons are denoted
by L and T respectively.

are presented in Fig. 10. With a known value of � and vg ,
the phonon mean-free path l(ω) can now be calculated as
l(ω) = vg/�. The phonons are well-defined excitations if their
mean-free path l(ω) exceeds the phonon half wavelength π/q

(Ioffe-Regel criterion for phonons [47]). Figure 11 shows the
value of � for all the samples with different bending rigidities
� and Fig. 12 shows the position of the Ioffe-Regel frequency
for longitudinal and transverse phonons for the parameter � =
21. From the similar figures for other values of the parameter
� we find the remaining Ioffe-Regel frequencies (Table II).

Different comments are raised by these measurements.
First, the sound wave velocities [Fig. 10(b)] are well defined
below the Ioffe-Regel criterion. It is not constant, but it varies
with q. Transverse sound velocities show a small decay with
q, starting at the low-frequency limit of the boson peak, as
already measured in experiments [13]. Longitudinal sound
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FIG. 11. Width � obtained from the DHO fit of the structure
factor, as a function of the wave vector q obtained from the dispersion
relation Fig. 10 for the different values of �. Left: transverse modes;
right: longitudinal modes. Arrows mark the Ioffe-Regel criterion for
all values of �. Transverse modes show the � ∝ q2 law near the
Ioffe-Regel criterion.
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FIG. 12. The mean-free path l as a function of the frequency
(points), compared to the half wavelength π/q given by DHO fit
(solid lines). The crossing points determine the Ioffe-Regel criterion
(shown by arrows). Inset: the Ioffe-Regel frequencies for longitudinal
(filled symbols) and transverse (open symbols) phonons for different
values of the parameter �. The solid line shows the trend νT

IR = cT /ξ2.

velocities decay faster with a sudden increase at q ≈ 10 nm−1

(ν = 12.5 THz for � = 21), after transverse waves became
strongly scattered in the sample.

The density of states of longitudinal and transverse phonons
can be obtained from the dispersion laws qL(ω) and qT (ω)
respectively

gL(ω) = L3

6Nπ2

qL(ω)2

vL
g (ω)

, (18)

gT (ω) = L3

3Nπ2

qT (ω)2

vT
g (ω)

. (19)

and compared to the more general decomposition that was
already discussed in Sec. III. In the low-frequency limit the
ratio between them is

gL(ω)/gT (ω) = c3
T /2c3

L � 1. (20)

For � = 21 this ratio is equal to 0.057, which coincides well
with the low-frequency part of this ratio shown in the inset in
the Fig. 3(a). The very low-frequency modes are naturally
mainly transverse due to their lower sound velocity. The
two estimations of longitudinal and transversal contribution
to VDOS are compared in Fig. 3. The estimation from the

TABLE II. Transverse and longitudinal Ioffe-Regel criteria for
different values of the parameter �.

� νT
IR, THz νL

IR, THz qT
IR, nm−1 qL

IR, nm−1

17 3.3 12.1 6.2 9.7
19 4.1 12.4 7.2 10.1
21 4.5 12.7 7.3 10.0
23.5 5.1 12.8 7.8 9.8
26.25 5.7 13.0 8.2 9.6
40 7.0 13.8 8.3 9.1
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dispersion law is close to the general estimation, but slightly
lower. The main difference is on the boson peak Fig. 3(b): the
first low-frequency peak (attributed to soft modes in Sec. III)
is indeed completely absent in the dispersion law estimation of
the VDOS that stays close to the Debye one in this frequency
range. It means that this first peak results from a departure to
the phononlike behavior.

The inverse lifetime � (Fig. 11) is different for transverse
and for longitudinal waves. The inverse lifetime of transverse
waves varies approximately ∝ q2 as discussed extensively
in the literature [71], with a collapse for all � values at
q∗

2 . Longitudinal inverse lifetime is more sparse. It shows
a sudden increase at q ≈ 10 nm−1, that is after transverse
waves are strongly scattered in the system and do not interfere
anymore with longitudinal waves. The measurement of �

allows computing a mean-free path l (Fig. 12) but only
in the region where the sound velocity vg is well defined.
The computed longitudinal mean-free path is always larger
than the transverse mean-free path. The measured values
of l can overcome the size of the system, because it is
computed from an estimation of the inverse lifetime � that
does not result from a propagating process [48] but only
from a general fit of a geometrical function S(q,ω). The
Ioffe-Regel crossover occurs at a well-defined wave vector
qT

IR = 2πνT
IR/cT ≈ 7.5 ± 1.0 nm−1 for transverse waves, and

qL
IR = 2πνL

IR/cL ≈ 9.7 ± 0.4 nm−1 for longitudinal waves
(see Table II), slightly larger than the upper limit q∗

2 of
the boson peak for the transverse one. This relation is only
slightly sensitive to �, suggesting a universal mechanism for
strong scattering in amorphous materials, independent of the
specific interatomic interactions. We will now compare this
estimation of the Ioffe-Regel criterion to the description of
quasimonochromatic wave packet propagation.

VI. DIFFUSIVITY

In this section we consider the diffusion of the vibrational
energy. For this purpose we excite a quasimonochromatic wave
packet in the middle thin layer of the sample around x = 0 in a
small time interval around t = 0. This wave packet is similar to
a phonon for a homogeneous sample. As discussed in Sec. IV,
such vibrations (described with a well-defined wave vector q)
are not eigenmodes of the amorphous sample. They will thus
be scattered during their propagation along the sample. This
effect allows the measurement of a well-defined mean-free
path. To excite vibrations in the sample we used the excitation
force

f ext
iα (t) = sin(ωt + ϕiα) exp

(
− x2

i

2w2
− t2

2τ 2
exc

)
(21)

where the phase ϕiα is random for each atom i and each
Cartesian projection α. The width of the excited layer is
determined by the value of w = 3 nm and the duration of the
excitation is given by τexc = 1 ps. The latter determines the
frequency resolution �ν = 1 THz. We start our calculations
at time t0 = −5τexc when the external force is still negligible.

In order to have a sufficiently large system size, the central
sample with periodic boundary conditions and size L = 87 Å
is duplicated into four images along x direction and two along y

and z directions. As a result in volume size we obtain a 16 times

E
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FIG. 13. The spatial distribution of the vibrational energy for
different time t after the maximum of the exciting pulse for ν =
8 THz. Solid lines were calculated for the repeatedly extended sample
with 4 × 2 × 2 periodic blocks. Dashed lines show the spreading of
the energy in one periodic block only. Vertical thin black line shows
boundaries of one periodic block. The width of the extended sample
is larger than the horizontal plot range.

bigger sample. This allows a determination of large mean-free
paths for phonons and diffusion of energy on longer distances.
Indeed, the energy diffusion front reaches the boundaries of
the original sample at t ≈ 1 ps when the excitation force is
still active (see dashed lines in Fig. 13). The diffusivity of the
vibrational energy in this extended sample is the same as in
one big sample except a small region near the mobility edge:
localized modes with the localization length ξ > L look like
delocalized in the repeated sample. We have checked that this
explicit method of wave-packet propagation (in the extended

FIG. 14. Snapshot of rotons with wave packet for � = 21, ν =
4 THz, and t = 2 ps.

023006-10



BOSON PEAK AND IOFFE-REGEL CRITERION IN . . . PHYSICAL REVIEW E 93, 023006 (2016)

sample) gives the same diffusivity as a more complicated
method involving Kubo formula (in the small initial sample)
[72].

After applying the external force, the vibrational energy
spreads in both directions from the central layer x = 0. The
average radius squared of the energy diffusion front is defined
as in Ref. [47] as:

R2(t) = 1

Etot

∑
i

x2
i Ei(t). (22)

Here, xi is the x coordinate of the ith atom, Ei(t) is the total
energy of the ith atom, and sum is taken over all atoms in
the sample. Etot = ∑

i Ei(t) is the total vibrational energy of
the system. It is independent on time, after the external force
f ext

iα (t) became negligibly small (i.e., for t > 5τexc).
The energy of the ith atom Ei(t) is the sum of the kinetic

energy and a half of the potential energy of connected bonds
with ith atom:

Ei(t) = vi(t)2

2
− 1

2

∑
jαβ

Miα,jβuiα(t)ujβ(t). (23)

Here, vi(t) = u̇i(t) is the ith atom velocity with the same
notations as Eq. (4). The spatial vibrational energy distribution
along the x direction is shown in Fig. 13 at different times t .
Initial random phases ϕiα allow keeping the center of mass of
the energy in the central layer, while the energy is progressively
spread inside the sample.

To integrate the system with a given external force and
zero initial conditions we used the Verlet method with a small
enough time step δt = 0.6 fs, and get the dependence R2(t) for
different frequencies from ν = 2 THz up to ν = 20 THz. The
results are shown in Fig. 15. We clearly see a linear temporal
dependence in each curve. Their slope gives us the diffusivity
by the equation for one-dimensional diffusion

R2(t) = 2D(ω)t. (24)
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FIG. 15. Spreading of the vibrational energy in space R2(t) for
different frequencies for � = 21. Numbers near curves represent
frequencies in THz. Solid lines were calculated for the repeatedly
extended sample with 4 × 2 × 2 periodic blocks. Dashed line shows
the spreading of the energy in one periodic block only (for ν =
8 THz).
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Regel criteria respectively. (b) The rescaled diffusivity D/cT as a
function of the reduced wave vector q∗ = ω/cT for the same values
of �. Vertical gray bands mark the positions of q∗

2 and q∗
3 .

The resulting diffusivity is shown in Fig. 16(a) for different
values of the parameter �. All curves have the same structure:
(i) low-frequency modes with large diffusivity; (ii) a flat region
with relatively small diffusivity; (iii) a prominent peak of the
diffusivity; (iv) a gradual decreasing of the diffusivity; (v)
zero diffusivity for localized modes. The first two regions
coincide for all values of � if we plot the rescaled diffusivity
D/cT as a function of the reduced wave vector q∗ = ω/cT

[Fig. 16(b)]. After an initial decay, the diffusivity saturates
at a minimum value. Whatever �, the flat region in the
diffusivity occurs precisely between q∗

2 and q∗
3 , that is in the

region between the upper bound of the boson peak (close to
the Ioffe-Regel criterion for transverse waves) and transition
from mostly transverse modes to mostly longitudinal ones.
The lower boundary of the flat region is in perfect agreement
with those obtained in Ref. [47] for a completely different
random system, where it was shown that the minimum in
the diffusivity coincides with the boson peak, at a frequency
corresponding to the Ioffe-Regel criterion for transverse
waves. The relation between boson peak and Ioffe-Regel
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criterion was also suggested by experimental measurements
[71], and molecular dynamics simulations in Lennard-Jones
glasses [43]. It is shown here that the strong scattering gives
rise to a very low diffusivity, and that it is possible to measure
diffusivity in a purely harmonic model as soon as interactions
are random. Note that while soft modes are responsible for the
appearance of the boson peak at small frequency, they do not
affect the diffusivity in the low-frequency part of the spectrum.
In fact, thanks to their spatially isolated shape, as already
discussed in Sec. IV, these soft modes contribute to increase
the low-frequency density of vibrational states (nearly unstable
modes), but they do not influence either the wave propagation
or the wave spatial correlations. On the other hand, in the flat
diffusivity frequency range, the instantaneous velocity field
due to the propagation of the wave packet, shown in Fig. 14, is
characterized by rotational structures that are responsible for
the strong dephasing close to the Ioffe-Regel crossover.

The flat region in the diffusivity is followed by a peak
already discussed in Ref. [4]. The peak of the diffusivity is
large for almost all values of the parameter � (Fig. 16). We can
find alternatively the diffusivity of longitudinal and transverse
phonons up to the Ioffe-Regel criteria using the approximate
relation [38]

Dη(ω) = 1

3
lη(ω)vη(ω), η = L,T , (25)

where ω < ωL
IR for longitudinal phonons and ω < ωT

IR for
transverse phonons. We can see that the diffusivity of longi-
tudinal and transverse phonons has monotonically decreasing
behavior except the negligible peak for longitudinal phonons
(Fig. 17). Equation (25) cannot give the diffusivity beyond
the Ioffe-Regel criteria but we expect a small diffusivity
decreasing down to 0 at the mobility edge. Therefore the peak
in the diffusivity cannot be explained by the diffusivity of
longitudinal and transverse phonons separately. However, the
total diffusivity depends on the ratio of density of states of
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FIG. 17. Diffusivity of longitudinal phonons (L) and transverse
phonons (T). Dotted line (L + T) shows the estimation of phonon
contribution to the total diffusivity by Eq. (26). Solid black line is the
total measured diffusivity. The vertical arrows show the transverse
and longitudinal Ioffe-Regel frequencies.

longitudinal and transverse vibrations

D(ω) = gL(ω)

g(ω)
DL(ω) + gT (ω)

g(ω)
DT (ω). (26)

The resulting phononic diffusivity is shown in Fig. 17. It shows
that the main peak located at q∗ ≈ 13.5 nm−1 is due to the
large density of longitudinal modes gL(ω), enhancing the small
diffusivity increase due to the absence of transverse modes in
that frequency range. The rise of the diffusivity at 7 THz
in amorphous silicon thus corresponds to the sharp change
of the nature of vibrations from almost transverse to almost
longitudinal ones having high sound velocity.

VII. CONCLUSION

We have proposed in this article a coherent picture of
the vibrational properties in harmonic amorphous solids
with local tetrahedral order, by combining four independent
approaches: the detailed study of the normal modes (resonant
vibrational modes) and of the vibrational density of states,
dynamic structure factor calculation, and propagation of a
quasimonochromatic wave packet. The bending rigidity of
local interatomic bonds was used as a control parameter to tune
the sound velocity. This allowed us to get a coherent picture
of the vibrational response of our model systems. Different
regimes were highlighted. The results are summarized in
Fig. 18.

The low-frequency vibrational response is dominated by
transverse modes. In this region, the boson peak is visible
and bonded by two characteristic wave vectors: the first is
related to soft modes, and the second to the Ioffe-Regel
limit for transverse waves. Remarkably, these two wave
vectors are independent of the details of the interactions
in the different systems studied here, and they define two
characteristic mesoscopic length scales ξ ∗

1 and ξ ∗
2 having a
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FIG. 18. Schematic description of the different crossovers in the
vibrational properties of harmonic amorphous solids. VDOS and
diffusivity of vibrations of model amorphous silicon with � = 21
are shown in the background.
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signature in the spatial correlations of the normal modes. In
siliconlike samples, the large difference between the transverse
and longitudinal sound velocities yields a large gap between
the Ioffe-Regel limit for transverse waves, and the Ioffe-Regel
limit for longitudinal waves. In this gap, the vibrations sharply
change the transverse character to longitudinal one near q∗ ≈
q∗

3 , resulting in a deep increase of the diffusivity. As shown
already by Allen et al. [4], the mobility edge and the transition
to localized acoustic modes occur at higher frequencies and
were evidenced by multifractal analysis of the vibration modes.
This transition was obtained as well in other disordered model
materials, such as lattice models [73] and models of amorphous
silica [74], thus supporting its universal feature. The modes
in the boson peak range preceding the Ioffe-Regel crossover
for transverse waves have a characteristic random rotational
structure yielding a dephasing of the wave front. In this
frequency range, the participation ratio is at a maximum value,
but the diffusivity is at a minimum value, and the diffusive
inverse lifetime is proportional to q2. Similar results have
already been obtained with Brillouin scattering measurements
[71]. However, the precise sensitivity of the inverse life times
or of the vibrational density of states to the rescaled wave
vector (or equivalently to the frequency) is system dependent
[50]. Among other new results, our work shows the coherence
of this picture for different systems with local tetrahedral
order, thus supporting a universal geometrical process for
waves scattering in amorphous systems, with three different
mesoscopic characteristic wavelengths.

Among the evidence of universal features, the use of the
bending rigidity as a control parameter allows us, in contrast,
to identify its specific role on the vibrational response of the
material. Its main role is to affect strongly the shape of the
boson peak that is peaked on the largest wavelength ξ ∗

1 for
low bending rigidity, but then switches to the smaller length
scale ξ ∗

2 for higher bending rigidity � > 21. Consequently,
the boson peak is less visible for more rigid systems, and
the heat capacity becomes closer to the crystalline one, even if
disorder is still there. Increasing the local bending rigidity only
slightly affects the structural disorder, as previously discussed
in Ref. [56]. The attenuation of the boson peak with the local
bending rigidity is thus not due to the removal of disorder,
but to different kinds of dominant strain heterogeneities. A
second role of the bending rigidity is the increase of the
sound velocities (mostly the transverse one), yielding a general
increase of the various crossover frequencies (such as the
Ioffe-Regel frequency).

Prospects of this work include the possibility to enlarge
the boson peak region (and thus the heat capacity [38]) by
increasing the first characteristic length ξ ∗

1 related to the
distance between soft spots, or decreasing the characteristic
lengths ξ ∗

2 related to the size of the strongly scattering
structures, for example increasing the temperature. Another
perspective is to reduce the gap between transverse and
longitudinal Ioffe-Regel criteria by reducing the longitudinal
sound velocity (decreasing the bulk modulus for example), in
order to embed the diffusivity’s raise, and thus to decrease the
diffusivity in the gap (and consequently the heat conductivity
[38]). Finally, the characteristic length scales evidenced in this
article are related to the size and distance between soft spots,
and to the separation between longitudinal and transverse

vibrations. However, the understanding of the structural origin
of these sizes is still a challenging problem, which opens also
new perspectives.
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APPENDIX A: CALCULATION OF THE VDOS BY KPM

There are several methods for calculation of the VDOS
without exact diagonalization of the dynamical matrix. Follow-
ing standard statistical mechanics methods [75], one can make
a molecular dynamics simulation of a large system excited at
a small temperature T . Then assuming the equipartition of the
energy, we can compute VDOS as a Fourier transform of the
velocity autocorrelation function [76]

gCVV(ω) = 2

N
m

kT

∫ tmax

0

∑
i

vi(t)vi(0) cos ωt dt. (A1)

Here vi(t) is the instantaneous velocity of the ith atom and
m is the atomic mass (all atomic masses are supposed to
be the same). This method is much faster than a numerical
diagonalization of the matrix M . However, it requires accurate
integration of the equations of motion up to a large enough
time tmax with small enough time step δt � 1/ωmax and
low temperature kBT < �E. Here ωmax is the maximum
frequency in the system, and �E is the smallest energy barrier
surrounding the referred equilibrium position. The resulting
frequency resolution of the density of states gCVV(ω) in this
method is δω ∼ 1/tmax.

The kernel polynomial method [77] (KPM) is an alternative
way to compute the VDOS for large systems. It is a more
accurate and much faster method in comparison with the
previous one, as will be discussed below. It makes it possible
to find the VDOS using Eq. (5) with δ function replaced by
a series of polynomials. KPM was introduced in Ref. [78]
and detailed reviewed in Ref. [77]. Originally it was used
for finding electronic DOS in disordered systems. It allows
us, with controlled accuracy, to get directly the distribution
of the eigenvalues of some large matrix M , not calculating
numerically the eigenvalues itself. We will show how KPM
can be adopted to find the VDOS, i.e., the distribution of the
square roots of the eigenvalues of the dynamical matrix M

without its exact diagonalization. In this method we use only
moments of this matrix up to sufficiently high order, which
is controlled by the accuracy of the calculations. Below we
shortly describe the KPM for our problem.

All eigenvalues ω2
j of the matrix M are non-negative

due to mechanical stability of the system and lie in some
interval [0,ω2

max]. Usually the precise value of the maximum
frequency is unknown so ωmax is an estimation of the maximum
frequency, which guarantees that ωj < ωmax for all ωj . Let us
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introduce new dimensionless variable ε = 1 − 2ω2/ω2
max in

order to rescale all eigenfrequencies squared ω2
j to the interval

[−1,1] for variable εj . Thus, we can transform Eq. (5) as

g(ω) = 4ω

Nω2
max

N∑
j=1

δ(ε − εj ), (A2)

where εi = 1 − 2ω2
i /ω

2
max are eigenvalues of the matrix M̃ =

I − 2M/ω2
max where I is the unit matrix.

For −1 < ε < 1 and −1 < εj < 1 we can expand the δ

function in Eq. (A2) in second kind Chebyshev polynomial
series

δ(ε − εj ) = 2

π

√
1 − ε2

∞∑
k=0

Uk(ε)Uk(εj ). (A3)

Chebyshev polynomials of the second kind are defined by
recurrence relations

U0(ε) = 1, (A4)

U1(ε) = 2ε, (A5)

Uk(ε) = 2εUk−1(ε) − Uk−2(ε). (A6)

They have an equivalent trigonometric definition

Uk(ε) = sin[(k + 1) arccos ε]√
1 − ε2

. (A7)

From Eqs. (A2) and (A3) the density of states can be expressed
in terms of the sine Fourier transform

g(ω) = 8ω

πω2
max

∞∑
k=0

μk sin[(k + 1)ϕ], (A8)

where ϕ depends on ω as ϕ = 2 arcsin(ω/ωmax) and μk is the
kth Chebyshev moment

μk = 1

N

N∑
j=1

Uk(εj ). (A9)

It is not possible to calculate the infinite number of the
Chebyshev moments μk , so we can cut off the series (A3) and
(A8) at some Kth degree, which is controlled by the desired
accuracy of the calculations. For the δ function it gives the
following approximation

δ(ε − εj ) ≈ 2

π

√
1 − ε2

K∑
k=0

γkUk(εj )Uk(ε). (A10)

The damping factors γk were introduced to avoid Gibbs
oscillations. With increasing k these factors decrease gradually
from 1–0 (for k = K + 1). One of the best choices for γk are
Jackson damping factors [77]. The finite number of moments
leads to the finite-width approximation of the δ function [77]

2

π

√
1 − ε2

K∑
k=0

γkUk(εi)Uk(ε)

≈ 1√
2πδε2

exp

[
− (ε − εi)2

2 δε2

]
. (A11)

The width δε = π
√

1 − ε2/K corresponds to the frequency
resolution δω = π

√
ω2

max − ω2/2K . The greater the degree K

of the polynomial, the closer it is to the δ function. As a result,
we can approximately calculate the VDOS as

gKPM(ω) = 8ω

πω2
max

K∑
k=0

γkμk sin[(k + 1)ϕ]. (A12)

This sum can be calculated now by the fast Fourier transform
(FFT), which is implemented in many mathematical libraries.

We turned the calculation of the VDOS g(ω) into calcula-
tion of Chebyshev moments μk . Their definition (A9) can be
written as

μk = 1

N

N∑
j=1

〈j |Uk(M̃)|j 〉, (A13)

where we use ket notation |j 〉 for the j th eigenvector of the
matrix M̃ (the eigenvectors of the matrices M̃ and M are the
same). For a sufficiently large matrix M̃ the sum in Eq. (A13)
can be replaced by the averaging over several realizations of a
Gaussian random vector |u0〉 with unit norm

μk = 〈u0|Uk(M̃)|u0〉. (A14)

Indeed, let us expand a random unit vector |u0〉 over
eigenvectors |j 〉 of the matrix M̃

|u0〉 =
∑

j

βj |j 〉, βj = 〈j |u0〉. (A15)

Therefore,

〈u0|Uk(M̃)|u0〉 =
N∑

j=1

|βj |2Uk(εj ). (A16)

The random vector |u0〉 is normalized, so |βj |2 = 1/N . As a
result we have

〈u0|Uk(M̃)|u0〉 = 1

N

N∑
j=1

Uk(εj ) = μk. (A17)

Chebyshev moments μk for k = 0, . . . ,K can be easily
found by recurrence matrix-vector multiplications such as
(A4)–(A6)

|u1〉 = 2M̃|u0〉, (A18)

|uk〉 = 2M̃|uk−1〉 − |uk−2〉. (A19)

This gives |uk〉 = Uk(M̃)|u0〉. At each step we calculate
projection of |uk〉 to the initial random vector |u0〉

mk = 〈u0|uk〉. (A20)

After averaging these projections over several realizations R

we obtain Chebyshev moments μk = mk . Then the resulting
VDOS is calculated making use of Eq. (A12).

Figure 19 shows calculated VDOS for different number
of moments K taken into account. For test purposes we use
the dynamical matrix of our model of amorphous silicon
with N = 32768 atoms and parameter � = 21. The number
of realizations R is big enough to neglect the statistical
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FIG. 19. (a) The calculated VDOS for K = 30, R = 5 (dashed
line); K = 300, R = 40 (black line) and K = 3000, R = 2000 [red
(gray) line]. (b) The enlarged region 20–20.5 THz. Arrows show the
exact positions of the eigenfrequencies.

fluctuations [it is less then the linewidth in Fig. 19(a)]. We
can see that K = 30 is not enough because both peaks of
the resulting VDOS are sufficiently broadened. On the other
hand, the value of K = 3000 is unnecessarily big and we can
see peaks from distinct eigenfrequencies [Fig. 19(b)]. We have
found that the optimal value of K is around K = 300. For this
value the KPM takes about one minute on a modern computer
for calculation the VDOS.

Chebyshev polynomials of the first kind have similar
recurrence relations (A4)–(A6). So KPM can be implemented
with the first-kind polynomials as well as with the second-

g(
ν)

0

0.05

0.1

0.15

ν (THz)
0 5 10 15 20

CVV
KPM

FIG. 20. A comparison of KPM (black line) and CVV method
[red (gray) line].

kind polynomials. However, since usually g(0) = 0, the
second-kind polynomials give better approximation in the
low-frequency region.

We would like to emphasize here that the KPM has
interesting physical meaning. The recurrence relations (A19)
reveals indeed a connection between KPM and CVV method.
By definition, M̃ = I − 2M/ω2

max so

|uk+1〉 = 2|uk〉 − |uk−1〉 − δt2M|uk〉 (A21)

with δt = 2/ωmax and |uk〉 is the vector at step k in the KPM.
The Eq. (A21) has the same form as the first step Verlet
integration of equations for atomic displacements [79]

ui(t + δt) = 2ui(t) − ui(t − δt) + δt2üi(t), (A22)

where the acceleration üi(t) of the ith atom is defined by
the Newton’s law (4) and ui(t) is the atomic displacement.
Therefore, we can consider the integer variable k as a
discrete time t = k δt . Usually the time step δt should be
much less than 1/ωmax for reasonably small error in the
integration procedure. The KPM relaxes this requirement
to δt = 2/ωmax. The Chebyshev moments μk = 〈u0|uk〉 for
k = 0, . . . ,K can be considered as autocorrelation functions
of atomic displacements μ(t) = u(0)u(t) for 0 � t � tmax =
K δt . The resulting VDOS (A12) is the Fourier transform of
the Chebyshev moments. The finite frequency resolution δω

corresponds to the finite-time limit 1/tmax. Thus the KPM is
similar to the CVV method (A1), however, the remarkable
properties of the Chebyshev polynomials allows us to take a
big time step δt = 2/ωmax instead of much smaller time step
δt � 1/ωmax.

APPENDIX B: EIGENVECTOR ANALYSIS BY KPM

The correlation function (Sec. IV) and the dynamical
structure factor (Sec. V) are two of the main eigenvector
characteristics. The former shows the spatial correlations of
vibrations and the latter shows the structure in the reciprocal
space. The direct eigenvector analysis with full diagonalization
of the dynamical matrix takes too much computational time.
In this section we show how to properly modify the KPM
(Appendix A) for eigenvector analysis.

The definition of the correlation function (7) is similar to
the definition of VDOS (5), but it contains in addition (as
multiplier) the bilinear form of the eigenmodes, which depends
on the external parameter r. In this case we can the whole
evaluation procedure of the KPM (Appendix A) with modified
projection (A20) of the state |uk〉 to the initial state |u0〉

mk(r) = 〈u0(r + r′) · uk(r′)〉r′ . (B1)

Thus, for each fixed r we can efficiently calculate the
correlation function as a sum of Chebyshev polynomials.

The same idea is applicable to the dynamical structure
factor. It depends on the spatial Fourier transform of the
eigenmodes Fη(q,ω), which also contains the bilinear form of
the eigenmodes. Therefore we can use modified projections
(A20), which are slightly different for longitudinal and
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transverse components

mL
k (q) = N

(
N∑

i=1

q̂ · u0
i e

iqRi

)∗( N∑
i=1

q̂ · uk
i e

iqRi

)
, (B2)

mT
k (q) = N

(
N∑

i=1

q̂ × u0
i e

iqRi

)∗

·
(

N∑
i=1

q̂ × uk
i e

iqRi

)
. (B3)

More general and detailed information about the calculation of
eigenvector characteristics and Green’s function can be found
in the review [77].

APPENDIX C: A GENERAL DECOMPOSITION TO
TRANSVERSE AND LONGITUDINAL VIBRATIONS

Low-frequency vibrations below Ioffe-Regel criterion are
well-defined plane waves (see Sec. V for details). In contin-
uous medium approximation the displacement fields u(r) for
longitudinal (L) and transverse (T) waves have a form

uη(r) = u(0)
η exp(iqr), η = L,T (C1)

u(0)
L ‖ q, u(0)

T ⊥ q. (C2)

However, above the Ioffe-Regel criterion the wave vector q is
ill defined so we cannot use the definition (C2) in a general
case.

The transverse displacement field uT (r) has zero diver-
gence, therefore it conserves the local volume. A natural
analog of the local volumes in amorphous media are Voronoi
cells constructed around each atom. By definition the Voronoi
cell Vi associated with atom i is the set of all points in the
surrounding space whose distance to the atom i is not greater
than their distances to the other atoms j [80].

Displacements of atoms ui in amorphous media may (or
may not) change volumes of Voronoi cells. We will call the
displacement of atoms ui to be transverse if it does not change
the volumes of all Voronoi cells. For that let us introduce a
matrix A, which is responsible for the relative change of the
ith Voronoi cell volume Vi under j th atom displacement in the
direction α

Ai,jα = 1

Vi

∂Vi

∂rjα

. (C3)

The explicit formula for the matrix A can be derived from
geometry only [62]. Using this matrix the displacement of j th
atom in the direction α, ujα results in the following relative
change of the Voronoi cell volumes Ai,jαujα . Summing over
all j and α gives the relative change of the ith Voronoi cell

volume

εi =
∑
jα

Ai,jαujα. (C4)

In the bra-ket notation this equation reads |ε〉 = A|u〉 where
A is a rectangular N × 3N matrix (with N being the number
of atoms) and |u〉 is a displacement vector with 3N elements.
The matrix A is a discrete analog of the divergence operator.

By definition the transverse component |uT 〉 of the arbitrary
|u〉 satisfies to equation A|uT 〉 = 0, i.e., |uT 〉 is the projection
of the displacement |u〉 to the null space of the matrix A.
The longitudinal component |uL〉 is a remaining orthogonal
component of the displacement field and it is the projection of
|u〉 to the row space of the matrix A. These projections have
the following forms, Eqs. (5.13.3) and (5.13.6) in Ref. [81]

|uη〉 = Pη|u〉, (C5)

where

PL = AT (AAT )−1A, (C6)

PT = I − AT (AAT )−1A. (C7)

One can easy check that A|uT 〉 = 0 and 〈uL|uT 〉 = 0.
Thus PL|j 〉 and PT |j 〉 are projections of the eigenmode

|j 〉 to longitudinal and transverse components, respectively.
Therefore, the total VDOS g(ω) can be decomposed into
the longitudinal and transverse components in general case
independently on frequency ω

g(ω) = 1

N

N∑
j=1

δ(ω − ωj ) = gL(ω) + gT (ω), (C8)

gη(ω) = 1

N

N∑
j=1

〈j |Pη|j 〉δ(ω − ωj ), η = L,T , (C9)

where eigenfrequency ωj corresponds to the eigenvector
|j 〉. In three dimensions we have

∫
gL(ω)dω = 1/3 and∫

gT (ω)dω = 2/3.
The definition of longitudinal and transverse components of

the VDOS (C9) contains the bilinear form of the eigenmode [as
well as the correlation function (7) and the Fourier transform
(15), (16)]. Therefore, one can apply the KPM with the
modified projection (A20)

m
η

k = 〈u0|Pη|uk〉. (C10)

The results of this method are discussed in Sec. III.
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