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Resonance vector soliton of the Rayleigh wave
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A theory of acoustic vector solitons of self-induced transparency of the Rayleigh wave is constructed. A
thin resonance transition layer on an elastic surface is considered using a model of a two-dimensional gas of
impurity paramagnetic atoms or quantum dots. Explicit analytical expressions for the profile and parameters of
the Rayleigh vector soliton with two different oscillation frequencies is obtained, as well as simulations of this
nonlinear surface acoustic wave with realistic parameters, which can be used in acoustic experiments. It is shown
that the properties of a surface vector soliton of the Rayleigh wave depend on the parameters of the resonance
layer, the elastic medium, and the transverse structure of the surface acoustic wave.
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I. INTRODUCTION

The spread of acoustic nonlinear waves of invariable profile
solitons and their different modifications (kinks, breathers,
vector solitons, etc.) is one of the most bright manifestations of
nonlinear acoustic effects in crystals and nanostructures. This
problem has attracted significant interest in both theoretical
and experimental studies (see, for instance, Ref. [1] and
references therein). The determination of the mechanisms
causing the excitation of the acoustic nonlinear waves and the
investigation of their properties are among the basic problems
of the physics of nonlinear acoustic waves. Depending on the
character of the acoustic nonlinearity, the nonresonance or
resonance mechanism of the generation of acoustic nonlinear
waves can be studied. In the case of nonresonance nonlinearity,
which is associated with anharmonic vibrations of the lattice,
its competition with the dispersion leads to the formation of
nonresonance acoustic nonlinear waves [2].

Nonlinear resonance acoustic waves can be excited with the
help of the McCall and Hahn mechanism, when a nonlinear
coherent interaction of an acoustic pulse with a small concen-
tration of paramagnetic impurities or quantum dots takes place
and the conditions of acoustic self-induced transparency (SIT)
ωT � 1 and T � T1,2 are fulfilled [3]. Here, ω and T are the
acoustic pulse frequency and width, respectively, while T1 and
T2 are the longitudinal and transverse relaxation times of the
resonant impurity atoms or quantum dots, respectively. When
the area of the acoustic pulse � > π , a soliton (2π pulse) is
generated, and for � � π , small-amplitude acoustic pulses
(0π pulses), for instance, breather or vector solitons, can be
excited. The acoustic soliton (or breather) is a one-component
single acoustic pulse which propagates in such a way that it
maintains its state. When these conditions are not fulfilled,
we must consider the interaction between two acoustic wave
components at different frequencies as a bound state. Under
this condition, an acoustic vector soliton can be formed [4].

Resonance acoustic nonlinear waves have been considered
for both bulk plane acoustic waves as well as surface acoustic
waves (see, for instance, Refs. [1,2,4–9] and references
therein). Characteristic peculiarities of surface acoustic waves
are strong enhancement and spatial confinement of the elastic

*guram_adamashvili@ymail.com

deformation energy of the acoustic wave near the surface for
the Rayleigh wave [10] and near the interface in multilayered
systems for the Stoneley wave or Love wave [11,12], while
they decay evanescently in the directions perpendicular to
the surface or interface. The properties of nonlinear surface
acoustic waves have attracted much interest in the context of
nanoacoustics and applications [5,13–15].

Nonlinear surface acoustic waves have been investigated in
many works (see, for instance, Refs. [2,5–15]). In particular,
resonance solitons and breathers of surface acoustic waves,
which are scalar (one-component) nonlinear waves have, been
considered in Ref. [16], but resonance surface acoustic vector
solitons, which are two-component nonlinear waves of SIT,
have not been considered up to now.

The purpose of the present work is to consider the condi-
tions of realization of resonance acoustic vector solitons of
SIT with the difference and sum of the oscillation frequencies
of the Rayleigh wave and the determination of the explicit
analytical and numerical expressions for the parameters of the
surface acoustic vector pulse.

II. BASIC EQUATIONS

We consider the formation of vector solitons of SIT for a
surface acoustic Rayleigh wave propagating along the surface
(at x = 0) of the dielectric or semiconductor crystal semispace
x � 0. We shall suppose that, on the surface of the crystal,
there is a thin homogeneous transition layer of thickness d � λ

containing a small concentration n0 of paramagnetic impurities
or quantum dots with electron spin S = 1

2 and nuclear spin
I = 1

2 , where λ is the length of the Rayleigh wave. We
assume that an external constant magnetic field H0 is applied
along the x axis. In this material, surface acoustic wave of
vertical polarization can propagate. We shall consider a surface
acoustic Rayleigh wave with width T � T1,2, frequency ω �
T −1, and wave vector �k, propagating along the positive z axis.

The Rayleigh wave is polarized elliptically in the sagittal
plane and has longitudinal and transverse deformation vector
components, which depend on the carrier wave frequency
can cause excitations in the spin system of the paramagnetic
impurities or quantum dots with the frequencies ωS + ωI

and ωS , where ωS and ωI are the Zeeman frequencies of
the electron and nuclear spins, respectively. To take into
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account the potential extension of the obtained results for
quantum dots, we consider the resonance interaction of the
wave with impurities with a carrier wave frequency of the
Rayleigh wave ω = ωS + ωI [17]. In this case the Rayleigh
wave is capable of causing simultaneous excitations of the
electron S and nuclear I spins of the paramagnetic impurities
or quantum dots. But this Rayleigh wave, along with the
resonance transitions, can at the same time also cause another
nonresonance transition of frequency ωS . Because solitary
pulses (among them vector solitons) have bell-like shapes of
the spectral line with a strong maximal peak at the resonance
frequency ωS + ωI , therefore for others, the nonresonance
frequencies (for instance, ωS), the amplitude, and consequently
the possibility of nonresonant transitions will be significantly
smaller. Besides this, the quantum dots used in the different
experiments are usually anisotropic in nature, and some have
an anisotropic g-factor [18], and therefore different transitions
will have different possibilities. The contribution from such
nonresonant transitions could be taken into account by means
of perturbation theory, but this is not the aim of the present
work.

The boundary conditions for the Rayleigh wave on the free
surface at x = 0 have the following form [19]:

σxx = σxy = σ̃xz = 0,

where

σ̃xz = σxz + σ ′
xz,

σxx, σxy , and σxz are the components of the stress tensor,
and σ ′

xz is the contribution to the quantity σ̃xz caused by the
presence of the transition layer with electron and nuclear spins
S and I , respectively.

From the boundary condition σxy = 0, it follows that
the y component of the Rayleigh wave deformation vector
�u(ux,uy,uz) is equal to zero and has vertical polarization.

We will consider a Fourier decomposition of the x and z

components of the deformation vector ux and uz, which is
given by

ux(x,z,t) =
∫

[ũt,x(�,Q)eæt (�,Q)x

+ ũl,x(�,Q)eæl (�,Q)x]ei(Qz−�t) d�dQ,

uz(x,z,t) =
∫

[ũt,z(�,Q)eæt (�,Q)x

+ ũl,z(�,Q)eæl (�,Q)x]ei(Qz−�t) d�dQ, (1)

where

æ2
l = Q2 − �2

c2
l

, æ2
t = Q2 − �2

c2
t

,

the functions ũl,x(�,Q), ũl,z(�,Q), ũt,x(�,Q), and ũt,z(�,Q)
have to be determined, cl and ct are the longitudinal and trans-
verse polarized sound velocity in the medium, respectively.

We can present the deformation vector �u as a sum of
two vectors �u = �ul + �ut , where the vectors �ul(ul,x,0,ul,z) and
�ut (ut,x,0,ut,z) satisfy well-known conditions [19]:

rot�ul = 0, div�ut = 0. (2)

Substituting Eqs. (1) into (2), the x and z components of the
deformation vector can be transformed in the following form:

ux(x,z,t) = −i

∫
[Qũt (�,Q)eæt (�,Q)x

+ æl(�,Q)ũl(�,Q)eæl (�,Q)x]ei(Qz−�t) d�dQ,

uz(x,z,t) =
∫

[æt (�,Q)ũt (�,Q)eæt (�,Q)x

+Qũl(�,Q)eæl (�,Q)x]ei(Qz−�t) d�dQ, (3)

Substituting Eqs. (3) into the boundary condition σxz = 0,
we obtain the connection between the functions ũl(�,Q) and
ũt (�,Q) in the form

ũt (�,Q) = α(�,Q)ũl(�,Q),

where

α(�,Q) = −2Q2c2
t + c2

l

[
æ2

l (�,Q) − Q2
]

2Qc2
t æt (�,Q)

.

The component of the deformation tensor εxx = ∂ux

∂x
can be

presented as

εxx =
∫

ε̃xx(�,Q)ei(Qz−�t) d�dQ, (4)

where

ε̃xx(�,Q) = −i
[
æ2

l (�,Q) + Qæt (�,Q)α(�,Q)
]
ũl(�,Q).

Substituting Eq. (3) into the boundary condition σ̃xx = 0,
and dividing the real and imaginary parts of this equation, we
obtain dispersion law for the Rayleigh wave [19]:

4kæl(ω,k)æt (ω,k) = [
k2 + æ2

t (ω,k)
]2

(5)

and the nonlinear wave equation for the εxx component of the
deformation tensor:∫

ε̃xx(�,Q)G(�,Q)ei(Qz−�t) d�dQ = −σ ′
xx

ρ
, (6)

where

G(�,Q) = 2c2
t −

�2
(
1 − 2c2

t

c2
l

)
æ2

l (�,Q) + Qæt (�,Q)α(�,Q)
;

ρ is the density of the medium.
In order to determine the dependence of the stress tensor

component σ ′
xx on the εxx component of the deformation

tensor at x = 0, we have to consider the magnetic Bloch
equations [1,17,20].

If we neglect nonresonant excitations of the impurities
and use the rotating-wave approximation, the Hamiltonian
of the spin system can be transformed into the following
form [10,16,17,21,22]:

Ĥ = �ωS

∑
i

Ŝz
i − �ωI

∑
i

Î z
i + A

∑
i

Ŝz
i Î

z
i

g
∑

i

(Ŝ+
i Î−

i ε− + Ŝ−
i Î z

+ε+), (7)

where

g = Aβ0H0Fxxxx

2�ω
,
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β0 is the Bohr magneton, � is Planck’s constant, εxx = ε+ +
ε−, Fxxxx is a component of the spin-phonon coupling tensor,
and A is the constant of the hyperfine interaction.

From the Hamiltonian (7), we obtain the system of
equations

∂

∂t
(S+

i I−
i ) = i(ωS + ωI )S+

i I−
i − ig(Sz

i − I z
i )ε−,

∂

∂t
(Sz

i − I z
i ) = 2ig(S+

i I−
i ε+ − S−

i I+
i ε−). (8)

Equations (8) are exact only in case that we assume that the
relaxation times T1 and T2 of the paramagnetic impurities are
infinite.

The system of Eqs. (8) can be transformed to the slowly
varying variables using the equations

εxx =
∑
l=±1

ÊlZl,

〈S±
i I∓

i 〉 = ±iρ±Z∓1,〈
Sz

i − I z
i

〉 = 2N, (9)

where

Zl = eil(kz−ωt);

< ... > are the average values of the spin operators.
Substituting Eqs. (9) into (8), we obtain the system of

equations for the slowly varying envelope functions Ê±1, ρ±,
and N :

∂ρ+

∂t
= i(ωS + ωI − ω)ρ+ − 2gNÊ−1,

∂N

∂t
= g(ρ+Ê+1 + ρ−Ê−1). (10)

The systems of Eqs. (6) and (10) are the equations for
acoustic SIT for a Rayleigh wave with the frequency ω ≈
ωS + ωI , which is capable of causing “forbidden” transitions
with simultaneous reorientation of electron S and nuclear spin
I of paramagnetic impurities, which are the main objects of
our investigation. This system of equations can describe a wide
class of nonlinear resonance phenomena for surface acoustic
waves.

In Ref. [16] the coherent state of the surface Reyleigh
modes has been used for the consideration of the resonance
soliton and breather, which are the scalar (one-component)
solutions of the surface wave equations. In the present work
we are using another approach for the derivation of the surface
wave equation, and we consider the vector soliton solution
of the systems of Eqs. (6) and (10) by using an approach
which we have not used for the solution of the resonance
surface acoustic wave equations in previous work [16]. In
particular, for the solution of Eqs. (6) and (10), we will use
reduced perturbation expansion to study the evolution of the
surface acoustic vector solitons with two different oscillation
frequencies for the Rayleigh wave. The surface vector soliton
is an object qualitatively different from the scalar soliton or
breather treated in Ref. [16].

III. SOLUTION OF THE WAVE EQUATION

We can simplify the wave equation (6) using a second order
Taylor series expansion of a function G(�,Q) about the point
(ω,k):

G(�,Q) = G(ω,k) + (� − ω)G′
� + (Q − k)G′

Q

+ 1
2 [(� − ω)2G′′

� + 2(� − ω)(Q − k)G′′
�,Q

+ (Q − k)2G′′
Q], (11)

where

G′
� = ∂G

∂�

∣∣∣∣
�=ω,Q=k

, G′
Q = ∂G

∂Q

∣∣∣∣
�=ω,Q=k

,

G′′
� = ∂2G

∂�2

∣∣∣∣
�=ω,Q=k

, G′′
�,Q = ∂2G

∂Q∂�

∣∣∣∣
�=ω,Q=k

,

G′′
Q = ∂2G

∂Q2

∣∣∣∣
�=ω,Q=k

;

ω and k are the frequency and wave number of the carrier
wave, respectively.

Substituting Eq. (11) into (6), we obtain the following
nonlinear acoustic wave equation:

∫
[G(ω,k) + (� − ω)G′

� + (Q − k)G′
Q +

(
�2

2
− ω� + ω2

2

)
G′′

� + (�Q − ωQ − k� + kω)G′′
�,Q

+
(

Q2

2
− kQ + k2

2

)
G′′

Q]ε̃xx(�,Q)ei(Qz−�t) d�dQ = −σ ′
xx

ρ
. (12)

Using Eq. (4), Eq. (12) will be transformed into the following form:

(
A + iB

∂

∂t
− iC

∂

∂z
− G′′

�

2

∂2

∂t2
+ G′′

�,Q

∂2

∂t∂z
− G′′

Q

2

∂2

∂z2

)
εxx = −σ ′

xx

ρ
, (13)

where

A = G(ω,k) − ωG′
� − kG′

Q + ω2

2
G′′

� + kωG′′
�,Q + k2

2
G′′

Q,

B = G′
� − ωG′′

� − kG′′
�,Q, C = G′

Q − ωG′′
�,Q − kG′′

Q.
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Substituting Eq. (9) into (13), we obtain

∑
l=±1

Zl

(
a

∂

∂t
+ ib

∂2

∂t2
− id

∂2

∂t∂z
+ G′′

�,Q

∂3

∂t2∂z
− G′′

�

2

∂3

∂t3
− G′′

Q

2

∂3

∂z2∂t

)
�l = −σ ′

xx

ρ
, (14)

where

a = A + l(Bω + Ck) + 1

2
G′′

�ω2 + G′′
�,Qωk + 1

2
G′′

Qk2,

b = B + l(G′′
�ω + G′′

�,Qk),

d = C + l(G′′
�,Qω + G′′

Qk),

Êl = ∂�l

∂t
.

As the next step for the solution of Eq. (14), we can use
the reduced perturbation expansion for nonlinear equations
considered in Ref. [23]. It is assumed that the area of the
acoustic nonlinear pulse envelope |�l| � 1 and is of the order
of a small parameter ε. This is the typical scaling for the
coupled nonlinear Schrodinger equations and consequently
can describe the acoustic vector soliton. In the considered
case, the function �l(z,t) has the following form:

�l =
∑
α=1

εα�l
(α) =

∞∑
α=1

+∞∑
n=−∞

εαYl,nf
(α)
l,n (ζ,τ ), (15)

where

Yl,n = ein(Ql,nz−�l,nt),

ζl,n = εQl,n(z − vgl,n
t),

τ = ε2t, vgl,n
= d�l,n

dQl,n

.

We must assume that the parameters �l,n, Ql,n, and f
(α)
l,n

satisfy the following conditions for any l and n indices:

ω � �, k � Q,∣∣∣∣∂f
(α)
l,n

∂t

∣∣∣∣ � �
∣∣f (α)

l,n

∣∣, ∣∣∣∣∂f
(α)
l,n

∂z

∣∣∣∣ � Q
∣∣f (α)

l,n

∣∣.
It is obvious that the parameters Q, �, ζ , and vg depend on the
indices l and n. But for simplicity, in the further considerations
we omit these indices in the equations where this will not lead
to confusion.

Substituting Eq. (15) into the system of Eqs. (10), we
can determine the explicit form of the envelope of the σ ′

xx

component of the stress tensor:

σ ′
xx = iRρ

∑
l=±1

lZl

[
ε1�l

(1) + ε2�l
(2) + ε3�l

(3)

− ε3 1

2

∫
∂�l

(1)

∂t
�−l

(1)�l
(1) dt ′

]
+ O(ε4), (16)

where

R = (Aβ0H0Fxxxx)2n0

8ρ�2ω2

∫
g(�) d�

1 + �2T 2
;

g(�) is the inhomogeneous broadening function of the spectral
line of the paramagnetic impurities, � = ωS + ωI − ω.

On substituting Eq. (15) into (14) and then taking into
account Eq. (16), we obtain the acoustic nonlinear wave
equation

∞∑
α=1

∑
l=±1

+∞∑
n=−∞

εαZlYl,n

(
Wl,n + εJl,n

∂

∂ζ
+ ε2hl,n

∂

∂τ
+ iε2Hl,n

∂2

∂ζ 2

)
f

(α)
l,n

= iε3 R

2

∑
l=±1

lZl

∫
∂�l

(1)

∂t
�−l

(1)�l
(1) dt ′ + O(ε4), (17)

where

Wl,n = −in

(
a� + nb�2 + G′′

�,Q�2Q + G′′
�

2
�3 + G′′

Q

2
Q2� + dnQ� + l

n
R

)
,

Jl,n = −Q[avg + 2bn�vg + dn(Qvg + �) + G′′
�,Q�(� + 2Qvg) + 3

2
G′′

��2vg + 1

2
G′′

QQ(Qvg + 2�)],

hl,n = a + 2bn� + dnQ + 2G′′
�,QQ� + 3

2
G′′

��2 + 1

2
G′′

QQ2,

Hl,n = Q2[bv2
g + dvg + G′′

�,Qnvg(2� + Qvg) + 3

2
G′′

�n�vg
2 + 1

2
G′′

Qn(2Qvg + �)].

According to the standard procedure (see, for instance,
Ref. [4] and references therein), we equate to each other the
terms corresponding to the same orders of ε. Consequently, we

obtain that only the components f
(1)
±1,±1 and f

(1)
±1,∓1 are nonzero.

From this, we determine the equations J±1,±1 = J±1,∓1 = 0.
The relation between the two characteristic parameters � and
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Q has the following form:

a� + nb�2 + G′′
�,Q�2Q + G′′

�

2
�3 + G′′

Q

2
Q2�

+ dnQ� + l

n
R = 0 (18)

and the expression for the quantity

vg = −dn� − G′′
QQ� − G′′

�,Q�2

a + dnQ + 2nb� + 2G′′
�,Q�Q + 3

2G′′
��2 + 1

2G′′
QQ2

.

(19)

Substituting Eq. (18) into (17), we obtain the coupled nonlinear
Schrödinger equations for the functions q1 = εf

(1)
+1,+1 and

q2 = εf
(1)
+1,−1 that describe the connection between the two

components of the acoustic nonlinear pulse:

i

(
∂q1

∂t
+ v1

∂q1

∂z

)
+ p1

∂2q1

∂z2
+ g1|q1|2q1 + r1|q2|2q1 = 0,

i

(
∂q2

∂t
+ v2

∂q2

∂z

)
+ p2

∂2q2

∂z2
+ g2|q2|2q2 + r2|q1|2q2 = 0,

(20)
where

v1 = vg(+1,+1) , v2 = vg(+1,−1) ,

p1 = H+1,+1

−h+1,+1Q2
, p2 = H+1,−1

−h+1,−1Q2
,

g1 = R

−2h+1,+1
, g2 = R

−2h+1,−1
,

r1 = R

−2h+1,+1

(
1 − �−1

�+1

)
,

r2 = R

−2h+1,−1

(
1 − �+1

�−1

)
,

�+1 = �l=±1,n=±1,

�−1 = �l=±1,n=∓1. (21)

The coupled nonlinear Schrödinger equations (20) describe
the functions q1 and q2 oscillating with the frequencies
ω + �+1 and ω − �−1, respectively. The nonlinear connection
between these two waves q1 and q2 are determined by the terms
r1|q2|2q1 and r2|q1|2q2.

An invariant profile solution of Eqs. (20) is an acoustic
vector soliton. Let us consider the solution of Eqs. (20) in the
following form:

qi(z,t) = Ai S(ξ )eiφi , (22)

where S(ξ ) is the slowly varying function of the acoustic pulse,
φi = kiz − ωit are the phase functions, Ai, ki , and ωi are
real constants, i = 1,2; ξ = t − z

V0
, where V0 is the surface

acoustic vector pulse velocity. The functions eiφi are slow in
comparison with the oscillations of the pulse and consequently,
the inequalities ki � Q±1, ωi � �±1 are satisfied.

Substituting Eqs. (22) into Eqs. (20), we obtain after
integration the steady-state solutions:

q1,2 = A1,2

bT
sech

(
t − z

V0

T

)
eiφ1,2 , (23)

where

T −2 = V 2
0

v1k1 + k2
1p1 − ω1

p1
,

b2 = V 2
0

A2
1g1 + A2

2r1

2p1
. (24)

Substituting Eq. (23) into (15) and (9), we obtain for the
εxx component of the deformation tensor the acoustic vector
soliton solution of the Rayleigh wave (at x = 0):

εxx = 1

bT
sech

(
t − z

V0

T

)
{(�+1 + ω+)A1

× sin[(k + Q+1 + k1)z − (ω + �+1 + ω1)t]

− (�−1 − ω2)A2 sin[(k − Q−1 + k2)z

− (ω − �−1 + ω2)t]}, (25)

where the relations between the parameters Ai, ωi , and ki have
the form

A2
1 = p1g2 − p2r1

p2g1 − p1r2
A2

2, ki = V0 − vi

2pi

,

ω1 = p1

p2
ω2 + V 2

0 (p2
2 − p2

1) + v2
2p

2
1 − v2

1p
2
2

4p1p
2
2

. (26)

Equation (25) is a two-component vector soliton solu-
tion for the εxx component of the deformation tensor of
the Rayleigh pulse at x = 0. In expression (25), the func-
tions sin[(k + Q+1 + k+)z − (ω + �+1 + ω+)t] and sin[(k −
Q−1 + k−)z − (ω − �−1 + ω−)t] indicate the two different
frequencies of oscillation. The Rayleigh wave is a two-
dimensional wave with transverse structure in the semispace
x < 0. Along the x axis, the vector soliton amplitude decays
exponentially as one moves away from the surface at x = 0,
which is determined by Eqs. (1).

IV. CONCLUSION

We have shown that during the propagation of the Rayleigh
wave on the surface of an elastic medium with a transition
resonance monolayer containing impurity paramagnetic atoms
under the condition of SIT, a vector soliton of the Rayleigh
wave can arise. We consider the situation when the surface
acoustic pulse exhibits “forbidden” transitions in the impurity
paramagnetic atoms.

The explicit profile and parameters of the acoustic two-
component vector solitons of the Rayleigh wave are given by
Eqs. (25), (19), (21), (24), and (26). The dispersion law and
the relations between the quantities �±1 and Q±1 are given by
Eqs. (5) and (18), respectively.

In the present work, we have used the reduction perturbation
expansion for the Rayleigh wave under the condition of acous-
tic SIT to obtain a resonance surface acoustic vector soliton
with two different oscillation frequencies (sum ω + �+1 and
difference ω − �−1). With this, we have also extended the
theory of acoustic SIT for surface solitons and breathers to
two-component resonance surface acoustic vector solitons,
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wherein it is essential to take into account the “forbidden”
transitions in the resonance impurity paramagnetic atoms. It
should be noted that the system of equations (10) also are
valid in the case when the εxx component of the Rayleigh
wave at the frequency ωS excites only “allowed” transitions
in paramagnetic impurities with an effective electron spin
S = 1 [24].

We consider here the properties of the vector soliton with
two different oscillation frequencies of the Rayleigh wave, but
we can analogously spread this theory to other types of surface
acoustic waves, for instance, to Stoneley and Love waves.

We investigate the processes of the formation of the
resonance vector solitons of the Rayleigh wave in dielectric
crystals with a small concentration of paramagnetic impurities
with electron and nuclear spins. Although the electron-nuclear
interaction in quantum dots is qualitatively different from
that in paramagnetic crystals, the approach which we have
presented here is of a rather general type and, after simple
modification, can be used also for the consideration of the
formation of acoustic vector solitons in coupled electron-
nuclear spin systems in quantum dots [17].

Using typical parameters for the pulse, the materials, and
the paramagnetic impurities [25], we can construct a plot of the
εxz component of the deformation tensor for a two-component
acoustic vector soliton of the Rayleigh wave (shown in Fig. 1
for a fixed value of the z coordinate).

The vector solitons and the scalar solitons and breathers
may arise, for instance, in dielectrics coated with thin layers
containing paramagnetic impurities or quantum dots. Methods
of excitation of the nonlinear wave Eq. (25) are typical methods
which are usually used for the excitation of soliton-like surface
acoustic waves (see, for instance, Ref. [8]). The simplest
way to excite a nonlinear surface wave Eq. (25) is to excite

FIG. 1. Plot of the εxx (in arbitrary units) component of the
deformation tensor at a fixed value of the z coordinate showing
the two-dimensional vector soliton of the Rayleigh wave and the
transverse structure of the pulse when the resonant “forbidden” tran-
sition monolayer containing the ensemble of resonance paramagnetic
atoms is present. Along the x axis, the vector soliton amplitude decays
exponentially as one moves away from the surface at x = 0. At x = 0,
the profile of the vector soliton corresponds to the solution of Eq. (25).

an initial wave at z = 0, the profile of which is as close as
possible to Eq. (25) with the sum ω + �+1 and difference
ω − �−1 oscillation frequencies.

These results are expected to stimulate new experiments.
Such work will be informative not only for the study of
the properties of acoustic surface resonance vector solitons,
but also for applications in paramagnetic crystals and doped
nanostructures to give us wider possibilities of applications of
nonlinear surface acoustic waves in different acoustic devices.
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