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Critical wind speed at which trees break
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Data from storms suggest that the critical wind speed at which trees break is constant (�42 m/s), regardless
of tree characteristics. We question the physical origin of this observation both experimentally and theoretically.
By combining Hooke’s law, Griffith’s criterion, and tree allometry, we show that the critical wind speed indeed
hardly depends on the height, diameter, and elastic properties of trees.
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I. INTRODUCTION

Since the occurrence and severity of storms will probably
increase in the coming decades [1–3], the modeling of wind
impact on trees deserves special attention [4–11]. The resis-
tance of wood has been a concern for a long time, mainly for
human constructions [12]. Seminal works on this subject are
briefly presented in Fig. 1. Leonardo first studied the resistance
of human constructions and did some preliminary rupture tests
on wood beams [13,14] [Fig. 1(a)]. His conclusions made for
square beams can be applied to cylinders of diameter D and
characteristic length L. For Leonardo, the critical mass mc

required for breaking the beam scales as D2/L. Two centuries
later, Galileo demonstrated [15] that the scaling relationship
might rather be mc ∼ D3/L [Fig. 1(b)]. In 1740, Buffon was
lead to doubt the “Galilean rule” [16] when his experiments on
oaks [Fig. 1(c)] suggested an intermediate scaling relationship
mc ∼ D2.6/L1.1 (Ref. [17], pp. 141–142). We comment this
divergence of views and focus on the resistance of wood with
a specific attention to the characteristic wind speed required
for breaking a tree.

In a broader context, the loss of verticality in plants is called
lodging, and it may be considered as part of the regeneration
cycle of forests [18] as well as the cause of disasters [19].
Many external factors can cause lodging, among which are
fungi [20], snow [21,22], and wind [23–25].

The storm Klaus in France (January 24th, 2009) gives
precious data on the vulnerability of trees in a large territory
hosting many types of forest [26]. The map of maximal wind
speed [Fig. 2(a)] and the map of trees broken after the storm
[Fig. 2(b)] suggest that strong winds fit with high percent-
ages of damage. This result seems independent of the tree
characteristics, as shown in areas A and B [Fig. 2(b)], where
trees are respectively pines (softwood) and oaks (hardwood).
As pointed out recently [25], all forests are damaged when
the maximal wind speed is above a characteristic wind speed
40 m/s (see also [27]). In the inset of Fig. 2(b), we plot the
percentage of broken trees as a function of wind speed, and
we observe the existence of a critical wind speed (�42 m/s),
above which more than half of the trees are broken.

In this paper, we aim at understanding the existence of
a well-defined critical speed of damage, and its independence
towards the tree characteristics. In a strong wind, a tree can fall
either because it uproots (root lodging), or because the trunk
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breaks [stem lodging, as shown in the inset of Fig. 2(a)] [28].
Both the trunk and the root system are under stress, and failure
occurs at the weakest part of the tree. During storm Klaus,
both kinds of lodging were reported [26], with six million
cubic meters of wood due to trunk breakage. Our study focuses
on the limit of strong roots, so that the vulnerability of trees
arises from the breakage of the trunk. Our objective will be to
exhibit the minimal ingredients to describe the critical wind
speed causing trunk breakage.

II. EXPERIMENTAL SETUP

We start by discussing the critical loading tolerated by a
trunk. We work with cylindrical rods made of dry beech wood,
thus reducing the geometry of a tree to its height L and diameter
at breast height D. The rods are clamped at one end in a
horizontal position [Fig. 3(a)]. A container attached to the free
end is progressively filled with water. The time of filling is
long enough (typically one minute) to assume that loading is
quasistatic. At a critical value mc of the container mass, the
rod breaks close to its clamped extremity [Figs. 3(d)], where
its curvature is maximal.

We also observed the critical mass of rupture for another
classical brittle carbon material: HB pencil leads [Figs. 3(e)–
3(h)]. The relevant parameters for both materials are displayed
in Table I. The ability to deform is characterized by the
elastic modulus E, which is deduced from the natural vibration
frequency of the rod f � 0.56 × √

EI/ρsS/L2 (in Hz), where
ρs is the density of the material, I = πD4/64 is the moment
of inertia of the rod cross section, and S = πD2/4 is the
cross-section surface area [29].

III. FROM MASS TO CURVATURE

As a mass is loaded at the free end of the rod, the cylinder
bends, as described by Galileo or Euler [15,30]. Let R(s) be
the radius of curvature of the neutral fiber at a curvilinear
location s, and R = R(0) the radius of curvature at the clamped
extremity.

To find an exact solution of the problem, we write the local
balance of forces F′ = −K and the local balance of torques
�′ = F × t. In these expressions, primes denote derivatives
with respect to the curvilinear coordinate s, F represents the
internal force, Kds being the external one, and � is the internal
torque satisfying � = EIθ ′t × n (Ref. [29]). Classically, t and
n stand for the tangential and normal unit vectors [Fig. 4(a)].
In our problem, the rod weight is negligible compared to the
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FIG. 1. Early studies on the resistance of wood. (a) Sketch in
Leonardo’s notes (in mirror writing); “ab” and “ef” are, respectively,
three times thicker and nine times smaller than “cd”. We can read
“27”, “3”, and “27” for the dimensionless resistance, which suggests
a power law (adapted from Ref. [13]). (b) Wooden beam illustrating
the Galileo’s Discorsi (adapted from Ref. [15]). (c) Engraving from
Buffon’s Natural History where the man at the bottom loads an oak
beam (adapted from Ref. [17], p. 1).

container weight and thus K = 0, as observed in Figs. 3(a)
and 3(e). The container weight at the free end imposes F(L) =
mg. Ultimately, this leads to the elastica equation governing
the angle of the rod θ (s):

θ ′′ = −mg

EI
cos θ. (1)

This equation can be solved numerically with the boundary
conditions θ (0) = 0 (the rod is clamped) and θ ′(L) = 0 (no

external torque at the free end of the rod). An analytical
approximation can also be proposed by considering the limits
of small and large deformation. If the rod is weakly bent
(R � L) as in Fig. 4(a), the balance of bending moment
with the torque applied by the container gives EI/R ∼ mgL.
If the rod is strongly bent (R � L) as in Fig. 4(b), the
characteristic lever arm becomes R and the torque balance
becomes EI/R ∼ mgR.

This leads to two regimes of bending, depending on the
mass of the container m compared to the characteristic mass
mel = EI/gL2. We report in Fig. 4(c) the variation of the
normalized radius of curvature R/L as a function of the
normalized mass m/mel . We expect from our arguments that
R/L scales as (m/mel)−1 at small deformation (R/L � 1) and
as (m/mel)−1/2 in the opposite limit [dotted lines in Fig. 4(c)].
A function accounting for both limits is

(R/L)4 = (mel/m)4 + (mel/2m)2. (2)

Equation (2) is drawn with a red thick line in Fig. 4(c), and
found to differ by less than 2% from the exact resolution of
Eq. (1). Consequently, we can use this approximation to deduce
the critical radius of curvature Rc corresponding to the critical
mass mc.

IV. EXPERIMENTAL RESULTS

We report in Fig. 5 the variations of the critical radius
of curvature Rc as a function of the rod length [Fig. 5(a)]
and diameter [Fig. 5(b)]. For a fixed diameter, Rc does not
depend on the rod length [Fig. 5(a)]. For a fixed length, the
larger the diameter, the larger the radius of curvature needed
to break the rod [Fig. 5(b)]. Data are fairly aligned in a log-log
representation, indicating a power-law relationship between
the critical radius of curvature and the rod diameter. The slope
drawn with a solid line suggests that Rc approximately scales
as D3/2.

FIG. 2. Storm Klaus (South-West of France, January 24th, 2009). (a) Maximal wind speed recorded during the storm Klaus. (Data: Météo
France [19]; calculated from an average over 1 s). (Inset) A trunk breakage in a pine forest [in the area A of Fig. 2(b)], attributed to storm
Klaus. (Photograph: Saint Julien en Born City Hall). (b) Percentage of broken trees attributed to the storm Klaus. (Data: Inventaire Forestier
National [26]). Area A is a forest of pines, whereas area B is mainly a forest of oaks. The highest wind speeds were recorded in these areas,
leading to extreme damage regardless of tree species. (Inset) Correlation between wind speed and tree damage. There is no statement of damage
below 20 m/s, whereas a majority of trees gets broken for wind speeds exceeding 42 m/s.
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TABLE I. Rod characteristics. D and L are respectively the diameter and the length of the rod, E is its longitudinal elastic modulus, ρs is
its density, and KIc and δ are respectively the fracture toughness of the rod and an adjusted numerical parameter defined in the text.

D (mm) L (mm) E (GPa) ρs (kg/m−3) KIc (MPa m1/2) δ

Beech wood 4–30 150–950 12 710 1.0 0.039
Pencil lead 0.38–3 6–56 67 1800 0.50 0.053

V. LAW FOR THE CRITICAL CURVATURE

The famous Hooke’s law “Ut tensio, sic vis” [31] foretold
linearity between stress σ and strain ε, leading to the
introduction of a proportionality factor E known as the elastic
modulus [12]. The breakage of a material occurs when the
stress σ reaches a critical value σc (the so-called ultimate
strength), usually 1% of E (Ref. [32]). Let Rc be the critical
radius of curvature of the neutral fiber at the clamped extremity
of the rod. From Hooke’s law and ε = D/2R, we obtain

Rc = 1

2

E

σc

D. (3)

For experiments with wood rods E ∼ 104 MPa, σc ∼ 102 MPa,
and D ∼ 10−2 m, so that we have Rc ∼ 1 m. This order
of magnitude is consistent with measurements in Figs. 5(a)
and 5(b). The independence of the critical radius of curvature
with rod length is also in good agreement with our results
[Fig. 5(a)]. However, Eq. (3) predicts a linear dependence on
the rod diameter, whereas we observe a power closer to 3/2
[Fig. 5(b)].

As recalled in the Introduction, this puzzling difference
of scaling relationship was detected long ago. The reasoning
conducted when combining Eq. (2) in the small deformation
limit and Eq. (3) Rc ∼ D leads to the “Galilean rule” [15] and
thus to the difference of scaling highlighted [17] by Buffon,
who reported Rc ∼ D1.4L0.1, a scaling compatible with our
results [Figs. 5(a) and 5(b)]. Buffon had the intuition that flaws
can explain the discrepancy, and he deliberately perforated the
beams for simulating flaws (Ref. [17], p. 128).

Indeed, we neglected stress concentration effects at the
scale of flaws in the material [12,33]. Wood rods contain
knurls and pencil leads have cracks that lower the resistance

to breakage. In this context, when the body size is very large
compared to molecular scales, the product σc

√
a is constant,

where a is the typical size of flaws in the material [34]. As
proposed by Griffith in 1921 for thin glass fibers whose finite
diameter bring “additional restriction on the size of the flaws”
(Ref. [34], pp. 180 and 181), we assume that the flaw size a

scales as the rod diameter, D. Consequently, σc scales as D−1/2

and we write σc

√
D = KIc/2δ with two new parameters [33]:

(i) the fracture toughness KIc measures the ability to resist the
propagation of cracks in the worst scenario. For beech wood,
we have KIc � 1.0 MPa m1/2 (Ref. [35]). Since pencil leads
have a composition similar to sandstone, we assume that their
fracture toughness is approximately KIc � 0.50 MPa m1/2;
(ii) the nondimensional parameter δ ∼ 10−2 can be seen as
the ratio between the characteristic size of flaws and the rod
diameter. Its value is estimated from the best fit between
observed and published fracture toughness, so that it can be
considered as an adjustable parameter in our model. Within
this paradigm, Eq. (3) becomes

Rc = δE

KIc

D3/2. (4)

The power 3/2 is in good agreement with the observations done
in Fig. 5(b). We compare in Fig. 5(c) the radius Rc normalized
by the rod length with the value expected from Eq. (4)
for the whole collection of data. The log-log representation
highlights the spectrum of curvatures explored. Whatever the
brittle material, the data collapse on a straight line of slope
1. In other words, the critical radius of curvature below
which the rod breaks is found to be correctly predicted by
Eq. (4).

FIG. 3. Deformation of a rod induced by a point mass m suspended at the free end. (a)–(d) Wood rod. (e)–(h) Pencil lead. While the length
scales are roughly divided by ten, the mass scale is lowered by a factor one thousand.
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FIG. 4. Two regimes for the curvature of the rod. (a) Small de-
formation (R � L). (b) Large deformation (R � L). (c) Normalized
radius of curvature R/L as a function of the normalized mass m/mel ,
where mel is EI/gL2: (- - -) small and large deformation limits,
( ) Eq. (2), and (•) numerical resolution of Eq. (1).

VI. LAW FOR THE CRITICAL WIND SPEED

After studying the curvature induced by a mass hung at the
free end of a rod, we now discuss the curvature induced by an

homogeneous steady wind. In our range of parameters—i.e.,
wind speed U ∼ 10 m/s, kinematic viscosity of the air ν ∼
10−5 m2/s, and transversal size of trees D ∼ 10−1 m—the
Reynolds number ReD = UD/ν ∼ 105 is large compared to
1, so that we are in the inertial domain of fluid forces. The
effects of branches and leaves can be first neglected: branches
are broken by natural pruning during storm [10]. As a first
approximation, we thus focus on the wind force applied on
trunks. As trees bend, the wind direction is not perpendicular to
the trunk. However, the wind force is applied perpendicularly
to the trunk if the trunk deviation θ in Fig. 6(a) is smaller than
60◦ (Ref. [36]) and the wind force per unit length of the trunk
can then be written K = 1

2ρaircdDU (U · n)n, where n is the
unit vector normal to the trunk (Ref. [37]). In this expression
ρair and cd respectively stand for the density of air (ρair �
1.2 kg/m3) and for the drag coefficient of the cylindrical rod
(cd � 1.0). The elastica, Eq. (1), becomes a balance between
the bending and the wind loading. If the rod is weakly bent
[Fig. 6(a)], the bending moment EI/R balances the wind force
1
2ρaircdU

2 LD along the rod of length L, so that we get R/L ∼
(U/Uel)−2, where Uel =

√
2EI/ρaircdDL3. The normalized

curvature L/R increases quadratically with the wind speed.
In the case of a typical tree, E � 10 GPa, D � 50 cm, and
L � 20 m, we have Uel � 100 m/s, a large quantity compared
to wind speeds reached during storms. If the rod is strongly
bent [Fig. 6(b)], the radius of curvature plays the role of a
lever arm; the wind force being now 1

2ρaircdU
2 RD, we get a

weaker dependency R/L ∼ (U/Uel)−2/3: the flexibility of the
rod protects it from the wind when the radius of curvature is

FIG. 5. Critical radius of curvature Rc at breakage. (a) The rod diameter is kept constant (D = 5 mm) and its length L is varied. The error
bars are standard deviations observed for ten successive measurements. (b) The rod length is kept constant (L = 950 mm) and its diameter D is
varied. The error bars are standard deviations observed for ten successive measurements. (c) Critical radius of curvature measured as a function
of Eq. (4). All the data collapse on a straight line of slope 1 in logarithmic scale, with an adjusted numerical parameter δ in the prefactor (see
Table I).
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FIG. 6. Curvature induced by wind loading. (a) Small deforma-
tion (R � L). (b) Large deformation (R � L). (c) The curvature
of a straw placed in a wind tunnel increases with the wind speed.
(d) Radius of curvature observed for wood rods, normalized by the
rod length L = 960 mm. The solid line is given by Eq. (5). Error bars
correspond to estimations of error due to the method of measurement.

lower than the length of the rod. Since most of the trees bend
in the small deformation regime (U � Uel), we focus on this
limit. By integrating the linearized elastica equation, we obtain
a simple analytical expression for the radius of curvature at the
clamped extremity:

R = 4EI

ρaircdL2D

1

U 2
. (5)

Experiments conducted in a wind tunnel on commercial
straws of length L = 260 mm, outer diameter D = 3.1 mm,
and thickness 0.13 mm [illustrated in Fig. 6(c)] and on wood
rods of length L = 960 mm and diameter D = 4–8 mm
[reported in Fig. 6(d)] lead to R/L � 3 × (U/Uel)−1.9, close
to Eq. (5) which can be also written R/L = 2 × (U/Uel)−2.

A tree breaks when its wind-induced curvature reaches
the critical curvature 1/Rc, which is a local property. Con-
sequently, we obtain an expression for the critical wind speed
by combining Eq. (4) with Eq. (5):

Uc =
√

π

16

KIc

δ

1

ρaircd

D3/4

L
. (6)

This expression does not depend on the elastic modulus of
the tree. At first sight, it also suggests that the larger the
tree diameter or the smaller the tree, the higher the critical
wind speed. This means that high and slender trees are more
vulnerable to wind damage.

VII. TREE ALLOMETRY

However, trees are not high and slender at the same time.
It has been shown that a tree limits its height at about 1/4
the critical buckling height under their own weight [38–40],
thus leading to the allometry D ∼ √

ρsg/EL3/2: the trunk
diameter increases as the 3/2 power of the tree height. This
simple analysis explains why young trees are slender and
why old trees are disproportionately thicker. Moreover, the
ratio ρs/E is approximately constant in trees, even though
both ρs and E may vary from species to species [41], so that
allometry hardly depends on species. The 3/2 power law fails
for trees smaller than 1 m, for which a growth-hydraulic model
is required [42]. For trees higher than 1 m, measurements show
that D = βL1.5 with β � 0.005 m−1/2 regardless of the tree
characteristics [42]. Hence we can rewrite the critical wind
speed as a function of the tree height only:

Uc =
√

π

16

KIc

δ

β3/2

ρaircd

L1/8. (7)

Equation (7) shows that the critical wind speed is related
to wood properties (K1/2

Ic , δ−1/2), air density (ρ−1/2
air ), tree

shape (c−1/2
d ), and tree size (L1/8 or D1/12). Remarkably, the

critical wind speed has a very weak dependency on the tree
size. Doubling the trunk height increases the critical wind
speed by 9% only: high trees are (slightly) more resistant.
Furthermore, since the increase of fracture toughness KIc

between pine (softwood) and oak (hardwood) is less than
20% (Ref. [35]), the difference between their respective
critical wind speed is less than 10%. This is consistent with
the observations made in areas A and B of France after
the storm Klaus [Fig. 2(b)], where pines and oaks were
found to break at approximately the same wind speed. With
KIc � 1.0 MPa m1/2, β � 0.005 m−1/2, δ � 0.039, ρair �
1.2 kg/m3, cd � 1.0, and L � 20 m, Eq. (7) yields Uc �
56 m/s. Equation (5) gives L/R � 0.1 at breakage (U = Uc),
which justifies the small deformation assumption. The speed
we have determined well describes the weak dependence
towards tree characteristics. The absolute value is close to the
observed one (�42 m/s for the storm Klaus). The overestima-
tion in our model might be attributed to simplifying the shape
of trees in rods and restricting to steady winds. Unsteady winds
may be modeled with an elementary spring-mass analogy: this
simply leads to a factor 1/2 between the critical “unsteady”
curvature and the critical “steady” curvature. Thus a factor
1/

√
2 is expected for critical unsteady winds, leading to

Uc � 40 m/s, in close agreement with storm Klaus data.
Breakage induced by bending is not the only possible

scenario. The breakage induced by a trunk torsion can also
be addressed, and we show in the Appendix that the critical
angle of torsion is roughly inversely proportional to the tree
height, which might explain the vulnerability of high trees to
this type of breakage.
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FIG. 7. Breakage induced by torsion. (a) A tree broken after a
trunk torsion. (Photograph: Keraunos, Fontainebleau forest, France,
June 2010). (b)–(e) Snapshots from experiments. Wood rod of length
L = 900 mm and diameter D = 4 mm. Snapshots are stretched
vertically to emphasize the deformation out of its axis (note the two
scale bars).

VIII. CONCLUSION

We have modeled trees as fragile rods to understand
tree trunk breakage. By combining Hooke’s law, Griffith’s
criterion, and tree allometry, we deduced a critical wind speed
which weakly depends on tree characteristics. This result is
consistent with field measurements performed after storms.
A closer look at the shape of tree trunks, foliages, and wind
unsteadiness leads to a more precise estimation of the absolute

value of critical wind speed, found to be on the order of the
maximal wind speeds expected on the Earth (�50 m/s) [43].
Hence our results might contribute to understanding why trees
are such old living systems.

More generally, the model could be applied to the breakage
of corals or gorgonians in water currents, a case where the
speeds are smaller but the fluid density much larger. It would
also be interesting to consider in future works how humidity
can affect the elasticity of the trees and their mode of breaking.
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APPENDIX: BREAKAGE INDUCED BY TORSION

The axisymmetry of a tree is not perfect and the wind
loading also induces a torsion of the trunk. This torsion may be
as critical as bending [44], and trees may thus twist and break
by this mechanism [Fig. 7(a)]. Contrasting with stem lodging,
this mode of breakage may be initiated anywhere along the
tree. In Fig. 7(a), it happens at 75% of the tree height. To
study torsion of rods, we placed dry beech rods between two
mandrels. One mandrel is fixed and the other one forced to
rotate until the rod breaks, as shown in Figs. 7(b)–7(e) for
a length L = 900 mm and diameter D = 4 mm. In the first
picture the rod is not twisted, and the increment of rotation
angle between two pictures is 2π . As θ increases, so do the

FIG. 8. Critical angle of rotation. (a) The rod diameter is kept constant (D = 5 mm) and its length L is varied. (b) The rod length is kept
constant (L = 900 mm) and its diameter D is varied. Error bars indicate the standard deviation observed on five successive experiments.
(c) Critical angle of rotation as a function of the predicted one, Eq. (A1). All the data collapse on a straight line of slope 1 in logarithmic scales.
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local stresses in the rod until it breaks for a critical angle
θc � 6π . We observed that breakage indeed occurs anywhere
along the rod. Interestingly, the rod has a tendency to leave
its axis as θ increases, suggesting the gradual formation of a
plectonemic region [45].

We analyze these results with the ingredients used for the
breakage induced by bending. When an angle of rotation θ is
imposed, the maximal stress of the rod deduced from Hooke’s
law is σ = ED2θ2/8L2. As θ gets larger, σ quickly increases
until it reaches the ultimate strength σc

√
D = KIc/2δ. The

critical angle θc at rupture is therefore

θc = 2

√
KIc

δE

L

D5/4
. (A1)

The predicted variations of θc are consistent with experi-
ments, which show that it scales almost linearly with the rod
length [Fig. 8(a)] and approximately as the −5/4 power of

the rod diameter [best fit �−1.35 in Fig. 8(b)]. These results
strengthen our confidence in the rupture criteria derived using
Griffith’s scheme. However, Eq. (A1) overestimates θc: there
is a factor 5 between theoretical and experimental absolute
values. This is probably due to the fact that critical flaws are
statistically more present than in a bending experiment, which
is the reference case for the evaluation of the parameter δ.
Using the tree allometry (D = βL3/2), we can rewrite θc as a
function of the tree height only:

θc = 2

√
KIc

δEβ5/2
L−7/8. (A2)

The critical torsion angle for a tree scales almost inversely
with its height. High trees should thus be more sensitive to the
breakage induced by torsion.
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