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Declustering in a granular gas as a finite-size effect
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The existence of dense clusters has been shown to be a transient phenomenon for realistic models of granular
collisions, where the coefficient of restitution depends on the impact velocity. We report direct numerical
simulations that elucidate the conditions for the disappearance of structures. We find that upon cluster formation
the granular temperature and the convective kinetic energy couple and both follow Haff’s law. Furthermore, we
show that clusters will eventually dissolve in all finite-size systems. We find the strong power law t ′ ∝ L12 for
the dependency of the declustering time on system size. Our results imply that only in systems close to the initial
critical system size both clustering and declustering transitions are observable.
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Clustering transitions in granular systems are ubiquitous
processes in astrophysical [1–4] and geophysical settings
[5–7]. Additionally, granular gases have become a paradig-
matic example of nonequilibrium statistical physics [8].

In granular collisions, the component of the relative velocity
of the colliding particles along the line joining the two centers
of mass, |�u|, decreases in absolute value by a factor 0 < ε < 1,
called the coefficient of restitution. Thus, in the absence of
convective fluxes, the average kinetic energy of the system
(granular temperature) steadily decreases. The temperature
of a homogeneous granular gas, with initial temperature T0,
follows Haff’s law:

T (t) = T0

(
1 + t

τ

)−α

, (1)

where t is the time, τ the characteristic cooling time [9], and
α = 2 if ε = const. This cooling process is well understood in
theory [10], simulations [11–15], and experiments [16–20]. If
the system size L is larger than a critical size

Lcrit ∝ (1 − ε2)−1/2, (2)

a transition from the homogeneous cooling state (HCS)
into an inhomogeneous cooling state (ICS) [21,22] appears,
which is characterized by the formation of dense clusters
[11–15,23–25]. However, in reality ε depends on the impact
velocity u [3]. In a more realistic model particles are treated
as viscoelastic spheres [26–28] and

ε(u) = 1 − γ |u|1/5 + 3
5γ 2|u|2/5 ∓ · · · , (3)

where γ is a constant depending on material properties. The
enormous decrease of granular temperature during the cooling
process leads to a drastic decrease of the energy dissipation
(1 − ε2), which makes the assumption ε = const unrealistic.
For a realistic granular gas [ε = ε(u)] the slope of Haff’s law
is α = 5/3 [27] and it has been shown that the clustering
is a transient phenomenon [29,30]. Here we show that the
disappearance of clusters in granular gases is in principle a
finite-size effect. As the granular temperature decreases, the
critical system size increases until it reaches the size of the
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system, upon which the density inhomogeneities dissolve and
the system returns to a homogeneous state. However, the steep
dependence of the time of homogenization on system size
implies that for any amount of dissipation a system size can be
found where the gas will remain heterogeneous at any realistic
time scale.

To study large system sizes and characterize fluctuations
in regions of sharp gradients in temperature and density,
which develop into supersonic flow, without ambiguities,
we employ the continuous hydrodynamic equations beyond
perturbative schemes. Hydrodynamic fields can be rigorously
defined in a manner similar to molecular fluids by means of
a granular Boltzmann transport equation [31–33]. From the
moments of the one-particle distribution function f (�r, �w,t) the
number density ρ(�r,t), convective velocity �v, and temperature
T (�r,t) fields can be derived for each space-time point (�r,t).
Physically, T (�r,t) represents the fluctuations (second moment)
of the microscopic velocities �w. The resulting Navier-Stokes
equations for granular gases for ε = const [34] and for
viscoelastic particles [35] have the same functional form.

In two dimensions, the Navier-Stokes equations for a
granular gas made of particles with diameter σ , mass m,
and coefficient of restitution ε = ε(u) can be written in the
following form [29]:

∂tρ + ∇ · (ρ�v) = 0

D

Dt
�v + 1

ρm
∇ · {p1 − η[∇�v + (∇�v)T − (∇ · �v)1]} = 0

D

Dt
T − 1

ρ
η{[∇�v + (∇�v)T − (∇ · �v)1] : ∇�v}

+ 1

ρ
p∇ · �v + 1

ρ
∇ · �q + ξT = 0, (4)

where D/Dt ≡ ∂t + (�v · ∇) is the material derivative and 1 is
the unit tensor; the hydrostatic pressure p and the heat flux �q
are given by

p = ρT

[
1 + 1 + ε

4
ρπσ 2gQ(φ)

]
,

�q = −κ∇T − μ∇ρ. (5)

The transport coefficients are viscosity η = η(T ,gQ),
thermal conductivity κ = κ(T ,gQ), the coefficient
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μ = μ(T ,ρ,gQ), and the cooling factor ξ = ξ (T ,ρ,gQ) [34],
and gQ = gQ(φ) is the pair correlation function which
depends on the filling fraction φ ≡ 1

4ρπσ 2; further details
to these equations can be found in [29]. We employ the
transport coefficients for the ε = const model [34]. We
discuss below the validity of this assumption. The heat flux
for granular materials contains a “pycnothermal” term, that
is, a density-thermal-flux coupling, in addition to thermal
gradients [36]. The term proportional to the density gradient
is in principle present also in molecular fluids but the Onsager
theorem protects against it [37], yielding μ = 0. In contrast,
for granular gases the coarse-graining of particles’ degrees
of freedom that generates hydrodynamic fields produces a
nonvanishing μ [38].

We perform direct numerical simulation (DNS) of the
hydrodynamic equations in two dimensions with periodic
boundary conditions on a 128 × 128 grid. We choose the linear
system size L in units of σ , and the initial thermal velocity
vT,0 as reference velocity, which means that the temperature
is measured in units of 1

2mv2
T ,0. We employ Luding’s global,

two-dimensional (2D) pair correlation function gQ [39]:

gQ = g4 + n(φ)(gdense − g4), (6)

where

g4 = 1 − 7/16φ

(1 − φ)2
− φ3

128(1 − φ)4
,

n(φ) =
[

1 + exp

(
φc − φ

αφ

)]−1

,

gdense = φm

φ

(
(φm − φ)−1 + c1 + c3(φm − φ)2 − 1

2φm

)
,

with the maximum packing fraction φm ≡ π

2
√

3
, the transition

point φc = 0.6990, and fitting parameters c1 = −0.04, c3 =
3.25, and αφ = 0.0111. The pair correlation function gQ is
valid for all densities in two dimensions and leads to a global
equation of state which diverges not more than 1% from results
of molecular dynamics (MD) simulations [39,40]. The maxi-
mum deviation appears during the transition regime at φ ≈ φc;
apart from this transient regime the error margin is smaller than
0.1%. Finally, we assume that the thermal velocity vT = T 1/2

defines the local ε. To calculate the variable coefficient of
restitution, ε(u), we truncate Eq. (3) after the linear term and
assume that the impact velocity is equal to the thermal velocity
T 1/2. This is a mean-field-like approximation. This implies that
we use a quasi-two-dimensional model because Eq. (3) was
strictly derived for spheres and not hard disks [26–28]. We
use an integration time step δt small enough so that even in
the viscoelastic model ε ≈ const during a δt . For reasons of
self-consistency we then use the transport coefficients in [34],
where, however, ε = ε(T (�r,t)). We have compared our results
with the full viscoelastic model [35] and do not observe any
qualitative or significantly quantitative difference. We solve
Eqs. (4) and (5) by using a finite-volume discretization. We use
an operator splitting method for the convective and diffusive
flux, and for the temperature sink [41]. The Riemann problem,
which appears during the calculation of the convective flux,
is solved with a multistage ansatz (MUSTA) [42] and the
diffusive flux is calculated via an implicit Euler scheme. For all
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FIG. 1. Temporal evolution of density fluctuations in 2D granular
gases with an average filling fraction φ̄ = 0.05. The black circles
correspond to calculations at constant ε = 0.99. All other symbols
correspond to calculations for viscoelastic particles where ε0 = ε(t =
0) = 0.99. The critical system size for this ε0 is Lcrit ≈ 500. If the
system is large enough, the fluctuations grow until the clustering
becomes visible. For a constant ε the fluctuations reach a plateau.
When ε = ε(T ) the fluctuations first grow to a size-dependent
maximum but eventually vanish after a certain time. This time grows
with system size.

necessary integrations we use a two-point Gaussian-Legendre
integration in each dimension, and for the interpolation of
the hydrodynamic variables and their derivatives we use the
weighted essentially non-oscillatory (WENO) reconstruction
of seventh and sixth order, respectively [43].

We quantify the degree of clustering by calculating the
density fluctuations 〈(δρ)2〉 = 1

φ
2 〈(δφ)2〉 across the system,

where φ is the average filling fraction. Figure 1 shows the
evolution of the density fluctuations for systems having the
same initial ε but differing in size. For constant ε = 0.99 the
density fluctuations reach a plateau value of about 5 × 10−3.
The density fluctuations for ε = ε(T ) also reach typical values,
but only as intermediate states. They always decay to vanishing
values, but with a characteristic time t∗ that depends on the
system size. To avoid natural fluctuations in the degree of
clustering we define t∗ as the time when 〈(δφ)2(t∗)〉 = 10−20.
Figure 2 shows the dependence of t∗ on the linear size of
the system. Except for the smallest size investigated, the
calculations are well fit by a power law with the rather large
exponent of 12.

It is useful for our discussion below to also consider
the temporal evolution of the average kinetic energy of the
system, Ekin ≡ �iρi �vi

2
/�iρi , and the average temperature

T ≡ �iρiTi/�iρi , where i is the index of the finite volume.
Figure 3(a) shows the evolution of Ekin and T for a gas with ε =
const, and Fig. 3(b) the same quantities for a gas of viscoelastic
particles [ε = ε(T )]. Haff’s law with the appropriate α is
recovered for both models. We observe two temporal regimes
when ε = const: a HCS when T follows Haff’s law and Ekin

follows a power law with a very small exponent, and an ICS
when the two curves meet and Ekin displays a dynamical
transition to a Haff-like dependence. The transition from HCS
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FIG. 2. The time t∗ characterizing the disappearance of clusters
grows with the size of the system. Results from DNS calculations are
shown as circles. The solid line represents a power law with exponent
12. The value of t∗ for the smallest L does not fall on the power law
because the ICS is not fully developed (compare with Fig. 1).

to ICS occurs when convective and thermal velocities are of
the same order of magnitude [44]. The Mach number has been
shown to capture the dynamical evolution of the HCS [44].
These two quantities remain coupled for the entire remaining
evolution of the gas. The beginning of the second regime
marks also the transition from the HCS to the ICS with the
clustering of the gas. For the model of viscoelastic particles,
three temporal regimes can be recognized. Similarly to the
previous case the gas starts from a HCS and transitions into an
ICS which is also characterized by the coupling of Ekin and T .
In the third regime, Ekin and T decouple and this coincides with
the moment when the system becomes homogeneous again.

We are now in a position to rationalize the finite-size
dependence of t∗ with a heuristic argument in the following
way. For short time intervals, the typical impact velocities will
not change significantly. Hence, one can use the present value
of ε to define a time-dependent Lcrit as in Eq. (2). It is useful
to introduce the dimensionless quantity l ≡ L

Lcrit
. Because Lcrit

diverges as ε → 1, l vanishes. We are interested in the time
t ′ when l ≈ 1, which corresponds to the onset of declustering
[see the transition to regime III in Fig. 3(b)]. We can then
write l = 1 = L(1 − ε2)1/2. To first order, the coefficient of
restitution for viscoelastic particles depends on temperature as
ε = 1 − (1 − ε0)T 1/10, where ε0 = ε(t = 0) and γ = 1 − ε0.
Keeping only terms of first order in T 1/10, the condition l ≈ 1
leads to the relation L−2 ≈ (1 − ε0)T 1/10. We know from
Fig. 3 that Haff’s law holds also in the ICS. We can then
use its large time approximation for the case of viscoelastic
particles, T ≈ t−5/3. Putting all together we find the power law

t ′ ∝ L12. (7)

Because the late-time evolution of 〈(δφ)2〉 is well approxi-
mated by a power law (see Fig. 1) we can safely conclude
that t∗ ∝ t ′, which then matches our DNS calculation in
Fig. 2. Equation (7) implies that the declustering transition for
viscoelastic particles has no typical time scale but is instead a
finite-size effect.
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FIG. 3. Temporal evolution of the average kinetic energy Ekin and
the average granular temperature T for a granular gas with average
filling fraction φ̄ = 0.05. (a) Granular system with fixed coefficient
of restitution, ε = 0.99, and L = 1920. (b) Granular system with
variable coefficient of restitution and initial value ε0 = ε(t = 0) =
0.99 and L = 5120. The clustering appears at the crossover of thermal
energy and kinetic energy of convective velocities. In both cases
thermal and kinetic energy couple at the transition point and undergo
a Haff’s cooling afterwards. In the case of viscoelastic particles, we
can observe a decoupling of thermal and kinetic energy, which sets
the onset point of declustering.

To study more closely this transition due to finite-size
effects we focus on systems with ε = const close to the
l ≈ 1 point. Figure 4 shows the density fluctuations at long
times at ε = 0.9 and ε = 0.999 for different values of the
dimensionless parameter l. We find a sharp transition at
l ≈ 1 from a homogeneous gas with no clusters to a system
which exhibits clusters, as expected from linear stability
analysis [22]. However, linear stability analysis cannot predict
the asymptotic density and size of the clusters. We find
that the asymptotic cluster densities are smaller than the
maximum packing fraction and their fluctuations exhibits
system-size-dependent, characteristic values. The inset of
Fig. 4 shows that the growth of the clusters is not unbounded
but instead scales approximately linearly with the system size.
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FIG. 4. Asymptotic value of the fluctuations in the ICS as a
function of relative system size to the critical size l ≡ L/Lcrit. For
a fixed coefficient of restitution the fluctuations reach values that
depend on the system size. The plot shows simulations for ε = 0.9
and ε = 0.999 and φ̄ = 0.05. The inset shows the same data on a
linear scale.

We report here that systems close enough to the critical system
size cluster to an asymptotic packing fraction φA < φm; that
is, the system does not undergo a density collapse to the
maximum packing fraction.

To characterize the clusters we show their typical length
scale λ in Fig. 5. The question if the declustering can appear
before the size of the clusters reaches the order of the system
size is of fundamental importance to the question if the
declustering is a finite-size effect. Comparison of Fig. 5 and
Fig. 1 reveals that the disappearance of clusters occurs not
before the characteristic fluctuation size reaches 0.5. That
means that declustering does not occur before the size of
the clusters reaches the order of the system size. From MD
simulations and linear stability analysis of the hydrodynamic
equations it is known that in a granular gas with ε = const
the clusters grow in size until they reach the size of the
system [13,14]. For variable ε the same behavior has been
observed in MD simulation, if Eq. (3) holds for any u [30].
In a simplified model where ε = 1 for impact velocities
below a threshold value the clusters dissolve before reaching
the system size [45–47]. However, hydrodynamic simulation
in [30] showed a cluster growth until the system size was
reached for variable ε as well.
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FIG. 5. Typical length of the clusters during the inhomogeneous
cooling process for ε(t = 0) = 0.99 and L = 5120 and L = 10 240.
The values fluctuate and grow until they reach values above 0.5. The
time at which this value is reached corresponds to the disappearing of
clusters in the system (see Fig. 1). We calculate the length scale λ from
the first moment of the Fourier transform of the density correlation
function.

In summary, we have shown the finite-size character of
the decaying of clusters in a freely cooling granular gas of
viscoelastic particles. We clarified that the disappearing of
density fluctuations does depend only on the size of the system.
The decay time follows such a strong power law, t ′ ∼ L12,
that only in systems close to the initial critical system size
is it realistically possible to observe both the clustering and
declustering transitions. Thus, for any amount of dissipation
(1 − ε2) in the system, one can find a system size at which
the clusters will appear as stable for an exceedingly long time.
On the other hand, our results show that close to l � 1 the
degree of clustering is extremely weak (see Fig. 4), which
poses the challenge to find a system size that is large enough
to observe the transition from HCS to ICS, but also small
enough to observe the second transition (from ICS back to
HCS) on a realistic time scale. Finally, these results indicate
that an infinitely large system will not decluster.
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[29] N. V. Brilliantov and T. Pöschel, Kinetic Theory of Granular

Gases (Oxford University Press, New York, 2004).

[30] N. Brilliantov, C. Salueña, T. Schwager, and T. Pöschel, Phys.
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