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Effect of viscosity on the shaking-induced fluidization in a liquid-immersed granular medium
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A liquid-immersed granular medium is shaken vertically under a wide range of accelerations (� in
dimensionless form) and frequencies (f ) and its fluidization process is studied. The granular medium is formed
by settling and consists of two size-graded layers (particle diameter d) such that the upper layer is fine grained
and is less permeable. When � > �c, a liquid-rich layer formed by the accumulated liquid at the two-layer
boundary causes a gravitational instability. The upwellings of the instability are separated horizontally by a
distance (wavelength) λ, and their amplitude grows exponentially with time [∝ exp (pt)] at a growth rate p. We
conduct experiments for two liquid viscosity cases such that the particle settling velocity (Vs) of the same particle
differs by a factor of 17. We find that for both cases, �c is at a minimum in an optimum frequency band centered
at f ∼ 100 Hz. However, the high-viscosity (HV) case has a smaller �c, a shorter λ, and a faster dimensionless
growth rate [p′ = p/(Vs/d)]. We also measure granular rheology under an oscillatory shear and find that (i)
interparticle friction decreases when the strain amplitude becomes large and (ii) friction is smaller for the HV
case. From (i), we infer that the shear strain of the shaking experiments becomes largest at around f ∼ 100 Hz.
We consider that (ii) is a consequence of liquid lubrication and is a reason for a smaller �c for the HV case. We
show that the low- and high-frequency limits of the optimum frequency band can be explained by introducing
critical values of dimensionless jerk (i.e., time derivative of acceleration) J and dimensionless shaking energy S.
The low-frequency limit corresponds to the requirement that in order to unjam the particles, the period of shaking
(1/f ) must be shorter than the time needed for the particles to rearrange by settling (d/Vs), which also explains
why the HV case is fluidized at a lower f compared to the LV case. We apply the results of the linear stability
analyses for Rayleigh-Taylor instability. Using the measured λ and p, we infer that (i) only a thin layer beneath
the two-layer boundary is mobile and the rest of the lower layer remains jammed and (ii) the effective viscosity
of the upper granular layer relative to the liquid is smaller for the HV case as a result of smaller friction.

DOI: 10.1103/PhysRevE.93.022901

I. INTRODUCTION

When a liquid-immersed granular medium is shaken
strongly enough, the interparticle contact is loosened and
the medium becomes fluidized (e.g., [1]). This situation is
commonly realized when earthquakes occur and is called
liquefaction. Consequences of liquefaction appear as eruption
of ground water which form mud volcanoes and water-
escape structures. Laboratory experiments show that such
structures form by a channelized upward flow in a layered
sediment in which the upper layer is less permeable (e.g., [2]).
Recently we similarly showed [3] that spectacular instabilities
occur when a water-immersed granular medium with a less
permeable upper layer is shaken vertically. Such a layered
medium is suited to quantifying the degree of fluidization
because the resulting instabilities are clearly visualized. From
measuring the amplitude of the instability, we showed that
there is an optimum frequency band of shaking centered at
∼100 Hz in which the instability grows under a smallest
acceleration.

Shaking-induced fluidization may even occur in a granular
medium in which the liquid is more viscous than water,
such as in crystal-bearing magma and oil sands and when
the liquid suspends fine particles such that the effective
viscosity of the liquid becomes larger. In the case of magma,
observations show that fluidization can even trigger volcanic
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eruptions [4]. Although there have been several shaking
experiments using water-immersed granular medium (e.g.,
[5–7]), little is understood about how the nature of fluidization
and the required shaking condition differ when the liquid
viscosity is changed.

Here we extend our previous study using a high-viscosity
liquid and clarify how the results change. We conduct
comprehensive image analyses by using not only the amplitude
of the instability but also its growth rate and the horizontal
spacing (wavelength) of the upwellings, as well as the
vertical compaction of the granular medium. These results
are compared with the estimates obtained from the linear
stability analysis of Rayleigh-Taylor instability and from
the compaction estimated using Darcy’s law for permeable
flow. Furthermore, to complement the shaking experiments
and to better understand their results, we conduct rheology
measurements of a liquid-immersed granular medium under
an oscillatory shear. Combining these results, we attempt to
explain the origin of the viscosity dependence.

II. EXPERIMENTAL METHOD

A. Shaking experiments

Figure 1(a) shows the experimental setup. A rectangular
cell with a width of 99.4 mm, a height of H = 107.6 mm, and
a thickness of 22.0 mm is filled with a mixture of spherical
glass beads and liquid. Glass beads with two diameters (d)
are used: coarse (d = 0.22 ± 0.04 mm) red particles and fine
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FIG. 1. (a) An experimental setup of the shaking experiments. The thicknesses of the layers are those at the start of shaking and are averages
of all experiments (125 runs). LV and HV indicate low- and high-viscosity cases, respectively. d is the particle diameter. (b) Setup for the
oscillatory shear rheology measurements.

(d = 0.05 ± 0.01 mm) white particles, both having a density
of ρp = 2500 kg/m3.

Two cells are prepared: a low-viscosity (LV) case which
is immersed in water with a viscosity of η = 1 mPas and a
density of ρl = 1000 kg/m3, and a high-viscosity (HV) case
which is immersed in a glycerine solution with η = 15 mPas
and ρl = 1170 kg/m3. The viscosity of the glycerine solution
is measured by a rheometer (Physica MCR 301, Anton Paar)
in a cone-plate geometry. We confirmed that the viscosity does
not depend on the shear rate, i.e., a Newtonian rheology. We
add 0.13 vol% of surfactant (Joy, Procter & Gamble) to the
liquid to eliminate air bubbles attached to the particles so that
particle clustering is avoided. The amount of surfactant added
is the minimum required for this purpose. This technique has
also been used in previous studies [5].

The initial conditions of the granular medium at the start of
shaking for the LV (HV) case are as follows. The lowermost
33.8 ± 0.5 (34.1 ± 0.6) mm of the cell consists of a glass
bead layer composed of two size-graded layers. The upper
layer with a thickness 9.8 ± 0.3 (9.6 ± 0.6) mm consists of
fine white particles and the lower layer with a thickness
24.0 ± 0.4 (24.5 ± 0.5) mm consists of coarse red particles.
The thicknesses of the upper and lower layers scaled by d

of each layer are Nupper ∼ 194 and Nlower ∼ 110, respectively.
The diameters are chosen so that they become size-graded
during settling and also to avoid smaller particles fitting into
the pore space of the larger particles [3]. The volumetric
packing fractions φ of the upper and lower layers at the
start of shaking are φ = 0.60 ± 0.02 (0.61 ± 0.04) and φ =
0.49 ± 0.01 (0.48 ± 0.01), respectively, and are smaller than
φ ∼ 0.64 for dense random packing of spheres [8], indicating
that the particles are initially loosely packed. The error of
the layer thicknesses and φ described above are calculated

from the standard deviation using the measurements of all
experiments. We note that the layer thicknesses and the
volumetric packing fractions of the two layers for the LV and
HV cases are the same within the error.

There are two characteristic velocity scales in our experi-
ments. One is the particle settling velocity in a liquid, which
is estimated by the Stokes velocity Vs,

Vs = �ρgd2

18η
, (1)

where �ρ = ρp − ρl is the particle-liquid density difference
and g is the gravitational acceleration. The other is the
volumetric flow rate of the liquid in a porous medium per
unit area (i.e., the discharge rate), which is estimated by the
Darcy velocity VD. VD in a fluidized granular medium is given
by [9]

VD = k

η
φ�ρg, (2)

where k is the permeability. k is evaluated from the Kozeny-
Carman formula (e.g., [10]) as

k = 1

180

(1 − φ)3

φ2
d2, (3)

where the prefactor corresponds to the case of spherical
particles. Using the d and φ values of the upper and lower
layers, we estimate that the k of the upper layer is smaller than
the k of the lower layer by a factor of �60, thus forming a
permeability barrier. This estimate shows that the discharge
rate can be reduced by more than an order of magnitude when
the liquid percolates from the lower to the upper granular layer.

Both Vs [Eq. (1)] and VD [Eq. (2)] scale as ∝�ρ/η. As a
result the velocity scales of the HV case are smaller than those
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of the LV case by a factor of 17. Accordingly, the time scales
of the experimental procedure for the HV case are chosen to
be a factor of 17 longer than those for the LV case. In what
follows, we call this scaling the Vs scaling. Similarly, when
we compare the experimental results of the LV and HV cases,
the timings of the HV case are chosen to be 17 times longer
than those of the LV case. This allows us to clarify how the
viscosity dependence deviate from the Vs scaling.

The experimental procedure is as follows. First the cell
is thoroughly shaken by hand, and then it is attached to a
shake table (Big Wave, Asahi Seisakusyo). The particles are
allowed to settle for 300 and 5100 s for the LV and HV
cases, respectively, which correspond to ∼5.7H/Vs and are
sufficiently long for all the particles to settle. Then the cell is
shaken vertically at a specified acceleration and frequency for
5 and 85 s, for the LV and HV cases, respectively. The vertical
displacement z of the shake table changes sinusoidally with
time t as

z = A sin 2πf t, (4)

where A is the amplitude and f is the frequency. An
accelerometer (352A24, PCB Piezotronics) is attached to
the top of the cell to measure the vertical shaking. The
output signal is sent through the signal conditioner (482C05,
PCB Piezotronics), and its voltage is recorded by a digital
oscilloscope (ZR-RX70, Omron).

We use a high-speed camera (EX-F1, Casio) at 300 fps to
record the images. An LED lamp is used to synchronize the
acceleration and image data. The recorded data are analyzed
using MATLAB. After the shaking starts, the profiles of the
granular layer surface and the two-layer boundary change with
time. We binarize the images and trace these boundaries, which
are then analyzed in detail. The characteristic length scales
of the profiles differ according to the shaking condition. We
define the length scales after the shaking stops, at t = 9.9 s
and t = 168 s for the LV and HV cases, respectively. These
timings are similarly chosen according to the Vs scaling and
we hereafter call these the reference times.

We also checked the extent to which the shaking is
vertical. We attached accelerometers at the center and the
two orthogonal sides of the shake table, and measured the
vertical acceleration (av) and the two nonvertical accelerations,
i.e., front-backward (afb) and sideways (as) components, at
all frequencies in the range of 10–5000 Hz used in our
shaking experiments. We calculate the ratio of nonvertical to
vertical components and find that for most frequencies both
afb/av and as/av are �0.05. Relatively higher ratios were
found as follows: 0.09 ± 0.02 at f = 100 Hz, 0.15 ± 0.12 at
f = 150 Hz, 0.07 ± 0.05 at f = 2000 Hz, and 0.08 ± 0.002
at 5000 Hz, where the values are the average and standard
deviation of afb/av and as/av. The existence of nonvertical
components implies that the total acceleration [atotal = (a2

v +
a2

fb + a2
s )1/2] is slightly larger than av by less than 3%.

B. Oscillatory shear rheology measurements

In order to complement the shaking experiments, the
fluidization process is also studied using a rheometer to which
a six-bladed vane spindle is attached [Fig. 1(b)]. We impose an
oscillatory shear to the sample and incrementally increase its

stress amplitude (e.g., [11]). Although the sample is sheared
horizontally, which differs from our shaking experiments, the
rheometer can accurately measure the strain and its phase lag
relative to the imposed stress and how they change with the
stress amplitude.

The details of the measurements are as follows. A beaker is
filled with 80.0 g of glass beads (d = 0.05 and 0.21 mm) and
30 cm3 of water (η = 1 mPas, LV case) or a glycerine solution
(η = 18 mPas, HV case). Same as the shaking experiments,
we add ∼0.10 vol% of a surfactant to the liquid to eliminate
the bubbles attached to the particles. Adding more surfactant
(0.15 vol%) does not affect the rheology. We thoroughly mix
the sample and allow the particles to settle for 2.5 and 50 min
for the LV and HV cases, respectively. As a result, the lower
�44 mm becomes a liquid-immersed granular medium and
the upper �7 mm becomes a clear liquid layer. The packing
fraction φ of the granular medium is φ � 0.58 for both cases.
We insert a vane spindle vertically into the beaker such that
the upper end of the spindle coincides with the surface of the
granular layer. The spindle rotates around its axis. We impose
a shear stress which changes sinusoidally with time σ (t) =
σp sin 2πfRt at fR = 100 Hz and incrementally increase its
peak stress amplitude σp. We measure the spindle deflection
angle �ω and its phase angle δ, and from �ω, we calculate
the bulk strain γbulk at the surface of the spindle, assuming that
the whole sample in the annular region, defined by the spindle
and the beaker, deforms.

Storage modulus G′ is the elastic component of the modulus
(e.g., [12]) and is calculated from

G′ =
(

σp

γbulk

)
cos δ. (5)

The loss modulus G′′ is the viscous component and is
calculated from

G′′ =
(

σp

γbulk

)
sin δ. (6)

Loss tangent (tan δ) characterizes the viscoelasticity and is the
ratio of these two modulii:

tan δ = G′′

G′ . (7)

tan δ � 1 indicates a solidlike (elastic) rheology, whereas
tan δ � 1 indicates a fluidlike (viscous) rheology.

III. DIMENSIONLESS NUMBERS
AND THE PARAMETER SPACE

There are three dimensionless numbers which characterize
our experimental conditions. The first is the Stokes number St
[1],

St = t fall
micro

tvisc
micro

= Vs

Vf
. (8)

St compares the microscopic time scale for a particle to settle
a distance d by free fall t fall

micro to the microscopic time scale for
a particle to settle d by Stokes settling tvisc

micro and is expressed
by the ratio of the Stokes velocity Vs [Eq. (1)] to the free-
fall velocity Vf = √

2(�ρ/ρ)gd . St � 1 indicates that viscous
drag dominates over particle inertia when the particle settles a
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distance ∼d. Using the particle diameter of the upper granular
layer (d = 0.05 mm), we find that St of the LV and HV case
experiments are St = 8×10−2 and St = 5×10−3, respectively,
and thus St � 1 for both cases. This is a combined result
of small d and large η in our experiments. In contrast for
the same d, when the granular medium is air immersed, St
is St ∼ 6 > 1 and the particle inertia becomes important. The
resulting granular dynamics are strikingly different [3].

The second is the dimensionless acceleration �, which
compares the peak acceleration z̈peak to the reduced gravity
in the fluid g′ = �ρg/ρp,

� = z̈peak

g′ = A(2πf )2

�ρg/ρp
. (9)

Here we used g′ for nondimensionalization to account for
the fluid buoyancy. This differs from the commonly used
definition for �, where g is used (e.g., [13]). Our definition of �

reduces to the conventional definition of � for the air-immersed
experiments (�ρ � ρp).

The third is the viscous number Iv (or a dimensionless
frequency),

Iv = tvisc
micro

tmacro
= f

Vs/d
, (10)

which compares the microscopic time scale for the particles to
rearrange by particle settling tvisc

micro = d/Vs to the macroscopic
time scale of deformation which is the period of shaking
tmacro = 1/f [1,14]. Here we use the Stokes velocity Vs to
evaluate the microscopic time scale because the experiments
are at St � 1.

We conducted a total of 73 and 52 experiments for the
LV and HV cases respectively, under the following shaking
conditions: acceleration of 1.4–78.3 m/s2 (0.24 � � � 13.3)
for the LV case and 0.43–40.9 m/s2 (0.08 � � � 7.8) for
the HV case. Frequency of f = 10–5000 Hz for both cases,
corresponding to 0.3 � Iv � 123 for the LV case and 4 � Iv �
2083 for the HV case, where we similarly used the particle
diameter of the upper granular layer (d = 0.05 mm) to evaluate
Iv. Thus, our experiments cover � ∼ O(1) and Iv ∼ O(1).

There are many other parameters in our experiments. The
effects of the cell width and the granular layer thicknesses
were briefly studied previously [3]. Effects of cell height H is
briefly described in Sec. V B. Effects of horizontal shaking are
not studied. We restrict to vertical shaking and focus on the
liquid viscosity dependence under different � and f .

IV. RESULTS

Results are described in three sections. First we study
the liquid viscosity dependence by comparing the LV and
HV cases results at the same shaking acceleration (�) and
frequency (f ). Next we proceed to vary � and f and study
how � and f dependencies differ with viscosity. Finally we
describe the results of granular rheology measurements under
an oscillatory shear and clarify their viscosity dependencies.

A. Liquid viscosity effect under the same shaking condition

1. Instability growth and compaction

Figure 2 and Movie 1 in the Supplemental Material [15]
compare the time evolution of the LV case in the left column
(a) and the HV case in the right column (b), under the
same acceleration of 40.7 ± 0.3 m/s2 (� = 7.4 ± 0.7) and a
frequency of 40 Hz. Here the timing of each image of the HV
case is �17 times those of the adjacent image of the LV case
following the Vs scaling. The shaking starts at t = 0 s for both
cases and stops at t = 5 s for the LV case and t = 85 s for the
HV case.

First we describe the LV case [Fig. 2(a)]. Here small
undulations develop at the two-layer boundary (t = 1.1 s),
after which about five localized eruptions occur at the surface
of the granular medium, a phenomena which we call sand boils.
Sand boils are observed above the crests of the instability
(t ∼ 1.6 s; see Movie 1 in the Supplemental Material [15]).
The amplitude of the instability at the two-layer boundary
increases with time. Figure 2(c) shows a close-up of the
image at t = 5 s, indicating that the crests of the instability
form upward pointed spikes. We call this a flame structure
[3], a term that has been used to describe a similar structure
preserved in sedimentary rocks and was suggested to have
formed in a similar way. Rooted at the tip of the upward pointed
spikes, narrow upwellings are observed. We call these plumes
because we consider that they result from a buoyancy-driven
Rayleigh-Taylor instability (Sec. V C). In Fig. 2(a), we also
indicate stages I–III, which are defined using the amplitude of
the instability at the two-layer boundary (see the end of this
section for details).

We note that the instability has two characteristic horizontal
length scales: the wider plume spacing which we call the
wavelength λ and the narrow plume widths w. These scales
are indicated in Fig. 2(c) and are λ ∼ 15 mm and w � 1 mm.
The plumes eventually detach from their stems and remain as
red patches in the white upper layer. After the shaking stops at
t = 5 s, the flame structure remains preserved in the granular
medium [t = 9.9 s of Fig. 2(a)].

Next we describe the HV case [Fig. 2(b)]. Compared to
the LV case, the instability of the HV case is characterized
by a shorter wavelength of λ ∼ 10 mm and plumes with a
larger head that penetrate further into the upper layer without
being detached from their stems [Fig. 2(d)]. On the other hand,
we find that the sand boils are suppressed compared to those
of the LV case (see Movie 1 in the Supplemental Material
[15]). Comparing a pair of images at t = 2.2 s for the LV case
[Fig. 2(a)] and t = 37.2 s for the HV case [Fig. 2(b)], we find
that although the real time growth rate is faster for the LV case,
when it is Vs scaled, the growth rate becomes faster for the HV
case.

We binarize these images to trace the surface and the
two-layer boundary of the granular medium and obtain their
horizontal profiles. Examples of these profiles are indicated by
the yellow (light) lines in the reference time (t = 9.9 s, 168 s)
images of Figs. 2(a) and 2(b), respectively. Superimposed are
the profiles at t = 0 s, which are indicated by the blue (dark)
lines. Comparing the profiles at t = 0 s with those at t = 9.9
and 168 s, we find that, as a result of shaking, compaction δh of
the granular medium occurred, indicated by the white arrows.
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FIG. 2. Comparison of LV (water) and HV (glycerine solution) cases at a shaking condition of 40.7 ± 0.3 m/s2 (� = 7.4 ± 0.7) and 40 Hz
(see also Movie 1 in the Supplemental Material [15]). The timings of the two cases are scaled by a factor of �17 (Vs scaling). (a) LV case at
40.5 m/s2 (� = 6.9). (b) HV case at 40.9 m/s2 (� = 7.8). (c) Close-up of a rectangular section at t = 5 s in (a). λ is the instability wavelength,
and w is the plume width. (d) Same as (c) but at t = 85.2 s in (b). Yellow (light) lines at the reference times t = 9.9, 168 s trace the surface
of the granular layer and the two-layer boundary. Superimposed blue (dark) horizontal lines are these heights at t = 0 s, and vertical arrows
indicate the displacements. δh is the compaction of the whole granular layer. I, II, and III indicate the three stages defined using the relative
amplitude [Eq. (13)].

Next we calculate the horizontal average of the profile to
obtain the average height. We then define the displacement as
the height relative to the height at t = 0 s. The time evolution of
the displacements of the surface and the two-layer boundary
are shown in Figs. 3(a) and 3(b) for the LV and HV cases,
respectively. The absolute value of the surface displacement
corresponds to the compaction (δh) of the whole granular
medium.

We point out three features which are evident from
Figs. 3(a) and 3(b). First, these figures show that compaction
increases with time. As a result of compaction, the packing

fraction φ of the granular medium increases. From the
measured δh at the reference time, which is indicated by a
circle in Fig. 3(a), we find that the average φ of the whole
granular medium increased during this time interval from
φ = 0.51 at t = 0 s to φ = 0.55 at t = 9.9 s. Similarly in
Fig. 3(b), φ increased from φ = 0.51 at t = 0 s to φ = 0.55
at t = 168 s. We note that in Fig. 3(a), there is a peak in
the surface displacement data indicated by an arrow. This
corresponds to the eruption resulting from sand boil. On the
other hand, such a peak does not exist in Fig. 3(b), indicating a
suppression of sand boil for a HV case. Second, these figures
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FIG. 3. (a) Displacements (five point running averaged) of the surface (blue) and the two-layer boundary (red) of the granular medium, as
a function of time for the LV case shown in Fig. 2(a). A black arrow indicates compaction (δh). (b) Same as (a) but for the HV case shown in
Fig. 2(b). (c) Amplitude (δz) of the two-layer boundary for the experiment shown in (a). A triangle indicates the maximum amplitude. Colored
stars correspond to the same timing as shown in Fig. 2(a). A black line indicates the exponential fit to the instability growth. I, II, and III
indicate the three stages defined using the relative amplitude [Eq. (13)]. (d) Same as (c) but for the experiment shown in (b).

show that when the shaking stops, compaction of the lower
layer also stops within a short time, whereas that of the upper
layer continues for quite a long time. This indicates that the
liquid percolation through the lower layer ends earlier than
that of the less permeable upper layer. Third, the two-layer
boundary displacements fluctuate up and down and gradually
compact. Fluctuation is a combined result of the instability
growth, which tends to increase this height, and compaction,
which tends to decrease this height. In total the displacement is
negative, indicating that the effect of compaction overwhelmed
the instability growth. Note also that the peak of the two-layer
boundary in Fig. 3(a), indicated by an arrow, is delayed relative
to the peak resulting from eruption at the surface.

We next calculate the amplitude of the instability at the two-
layer boundary as follows [3]. First we subtract the two-layer
boundary profile at t = 0 s from each height profile. Next we
subtract the linear fit to the profile and define the amplitude
δz by its standard deviation. Figures 3(c) and 3(d) show the
growth of δz with time. These figures indicate that δz initially
increases exponentially with time, but then the amplitude
attains a maximum and the growth stops and remains at a
constant value after the shaking stops. The instability growth

is also evident from an increase of the two-layer boundary
heights in Figs. 3(a) and 3(b). The growth ceases from the
detachment of the plume heads from their stems.

We fit the initial growth of δz to an exponential function,

δz = a exp (pt), (11)

to obtain the growth rate p. For the fit we use the time span
of longer than 2 and 34 s from the start of shaking for the LV
and HV cases, respectively, and choose the time span in which
the variance between the data and the fit is minimized. For the
data shown in Figs. 3(c) and 3(d), we obtain p = 1.16 and 0.11
(1/s) (growth times 1/p = 0.87 and 9.12 s), respectively, and
the fits are indicated by the black lines. In order to clarify the
deviation from the Vs scaling, we nondimensionalize p and
define a dimensionless growth rate p′,

p′ = p

Vs/d
. (12)

When we use the particle diameter of the upper layer (d =
0.05 mm), p′ becomes p′ = 0.028 and 0.046, respectively, for
the LV and HV case data shown here. Note that p′ is larger for
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FIG. 4. (a) Evolution of the two-layer boundary profile of the LV case shown in Fig. 2(a) at 1 s intervals between t = 0 s and t = 5 s. The
profiles are incrementally shifted upward by 2 mm. (b) Amplitude spectra of the profiles shown in (a). Triangles indicate the peaks. The spectra
are incrementally shifted upward by 0.2 mm. At t = 5 s the peak spectral amplitude is 1.6 mm, and its wavelength is λ � 20 mm. (c),(d) Same
as (a),(b) but for the HV case at 16.8-s intervals between t = 0 s and t = 84 s. The profiles are incrementally shifted upward by 5 and 0.5 mm
for (c) and (d), respectively. At t = 84 s the peak spectral amplitude is 2.6 mm and its wavelength is λ � 13 mm.

the HV case, which we recognized from comparing the pairs
of Vs scaled images in Fig. 2.

Here we define the relative amplitude δz′,

δz′ = δz − δz0, (13)

where δz0 is the amplitude at t = 0.1 s and t = 1.8 s for the
LV and HV cases, respectively [3]. Using δz′, we define the
following three stages of the instability growth: stage I for
δz′ < 0.1 mm, stage II for 0.1 � δz′ < 0.6 mm, and stage
III for δz′ � 0.6 mm. These threshold values were originally
defined based on the LV case experiments [3]. We consider
that flame structures are fully developed in stage III because
for most of the LV case experiments which transition to stage
III, a peak amplitude can be identified in the amplitude vs time
plot [3]. These stage transitions are indicated in Figs. 2(a) and
2(b) and Figs. 3(c) and 3(d).

2. Spectral analyses of the two-layer boundary profiles

We next conduct spectral analyses of the two-layer bound-
ary profiles obtained above. Similar analyses for the instability
occurring in a granular medium have been done previously
[16,17]. Figures 4(a) and 4(c) show the time evolution of
the two-layer boundary profiles of the LV and HV case
experiments shown in Figs. 2(a) and 2(b). From these profiles

we subtract their linear fits and then calculate their spectral
amplitudes using a fast Fourier transform. The results are
shown in Figs. 4(b) and 4(d), respectively.

Here we indicate the peak spectral amplitudes by the
triangles. For both the LV and the HV cases, at t = 0 s the
wave number of the peak amplitude is at �0.016 1/mm
(wavelength λ � 63 mm), indicating a small wave number
(long wavelength) undulation arising from the initial condition.
As shaking proceeds, the wave number of the peak spectral
amplitude increases with time. The amplitude spectra for the
LV case have a well-defined single peak, whereas those of the
HV case have multiple peaks. Multiple peaks of the HV case
represent the coexistence of the two horizontal scales, i.e., a
broad plume spacing and a narrow plume width. Such multiple
peaks are absent in the LV case because plumes detach from
their stems and the spectral amplitude of the broad plume
spacing dominates throughout the experiment. Comparing the
LV case spectrum at t = 5 s and the HV case spectrum at
t = 84 s, we find that the peak spectral amplitude and its wave
number are larger for the HV case compared to the LV case (see
Fig. 4 caption for details), which was evident from comparing
Figs. 2(a) and 2(b).

Figure 5 compares the time evolution of the total power (i.e.,
sum of the power of the whole wave-number range) for the LV
and HV cases. Here we scaled the time t using the characteristic

022901-7



NAO YASUDA AND IKURO SUMITA PHYSICAL REVIEW E 93, 022901 (2016)

0 50 100 150 200 250
100

101

10
2

103

104

Dimensionless time (t / (d/V ) )s

HV 
LV

stop shaking
To

ta
l p

ow
er

 (m
m

  )2

FIG. 5. Time evolution of the total power (power spectrum
summed for the whole wave-number range) of the two-layer boundary
for the LV and HV cases shown in Fig. 4. Circles correspond to the
timing of each amplitude spectrum shown in Fig. 4. Vertical broken
lines indicate the timing when the shaking stops.

time d/Vs. The figure confirms a faster Vs scaled growth rate
and a larger final total power for the HV case compared to the
LV case. The total power is equivalent to the sum of the square
of the two-layer boundary profile (Parseval’s theorem), which
we confirmed for this data set.

3. Comparison from an oblique view

Figure 6 and Movie 2 in the Supplemental Material [15]
show the oblique view images of the LV and HV cases at
the shaking condition of 41.1 ± 1.4 m/s2 (� = 7.5 ± 0.9) and
50 Hz (see Fig. 6 caption for details). Comparing the images
we find that several differences are evident. First we note that
the eruption from sand boil is suppressed for the HV case,

which we noted in Fig. 2 and Movie 1 in the Supplemental
Material [15]. Second, there are more red patches at the surface
of the granular medium for the HV case compared to the LV
case, corresponding to the shorter wavelength of the instability.
These red patches appear at the surface of the granular medium
soon after the instability appears at the two-layer boundary.
Third, for the HV case, a planform of the instability with an
upwelling at the center and a downwelling at the rim becomes
evident at t = 27 s. Such downwellings cannot be discerned
for the LV case.

B. Effect of liquid viscosity on acceleration and frequency
dependence

1. Amplitude growth and compaction

We now vary the shaking condition and study its effects.
First we consider the acceleration dependence. Figures 7(a)
and 7(b) show the time evolution of the amplitude δz and the
surface displacement (compaction δh indicated by an arrow),
respectively, for the HV case. Here the results for different
accelerations at a fixed frequency of 40 Hz are shown (see
also Movie 3 in the Supplemental Material [15]). Figure 7(a)
shows that the initial slope, which corresponds to the growth
rate, and the amplitude δz at the reference time (t = 168 s)
increase with acceleration. Similar to the stages defined in
Sec. IVA1, we use the relative amplitude δz′ [Eq. (13)] at
the reference time and classify each experiment into different
regimes (see next section for details). Here the 2.0 m/s2 case
is classified as regime II and 5.3–40.9 m/s2 cases as regime
III. Figure 7(b) shows that δh increases with acceleration and
that compaction continues even after the shaking stops.

Next we consider the frequency dependence. Figures 8(a)
and 8(b) show the time evolution of the amplitude δz and
surface displacement for the HV case for different frequencies
at a fixed acceleration of 8.01 ± 0.49 m/s2 (� = 1.54 ± 0.09).

(a) Low viscosity case (b) High viscosity case

0 s

17 s

20 s

27 s

34 s

0 s

1.6 s

2.2 s

2.8 s

3.2 s

eruption

upwelling

FIG. 6. Oblique view images of the LV and HV cases at 41.4 ± 1.4 m/s2 (� = 7.5 ± 0.9) and 50 Hz (see also Movie 2 in the Supplemental
Material [15]). The width of the cell is 99.4 mm. (a) LV case at 40.1 m/s2 (� = 6.8). At t = 1.6 s, eruption occurs by sand boil. At t = 2.2 s,
about seven red patches emerge at the surface which correspond to the upwellings. (b) Same as (a) but for the HV case at 42.1 m/s2 (� = 8.1).
At t = 27 s, about 11 upwellings appear. Planforms of the cellular structures are evident, with upwellings (red patches) at the centers and
downwellings at the rims.
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FIG. 7. Acceleration dependence of the (a) amplitude δz at
the two-layer boundary and (b) surface displacement (compaction
δh indicated by an arrow) of the granular medium for the HV
case. Acceleration range is 2.0–40.9 m/s2 (0.4 � � � 7.8) and the
frequency is fixed at 40 Hz (see also Movie 3 in the Supplemental
Material [15]). Shaking stops at t = 85 s. Reference time is t = 168 s.
Data for 2.0 m/s2 is in regime IIa (transition with sand boil) and other
data are in regime III (flame). Regimes are defined using δz′ [Eq. (13)]
(see Sec. IV B 2 for details).

An important result evident from these figures is that δz and
δh at the reference time are largest at the frequency band of
40–300 Hz. This indicates that there is an optimum frequency
band for instability growth, or, in other words, the instability
growth is frequency selective. Here the 1000–2000-Hz cases
are classified as regime I, 10–20-Hz cases as regime II, and
30–300-Hz cases as regime III.

Similar acceleration and frequency dependencies of δz for
the LV case were shown previously [3] and are qualitatively
the same as the HV case results shown here.

2. Regime diagrams

We now summarize all of our shaking experiments in the
form of regime diagrams as shown in Fig. 9. The diagrams
are plotted in the parameter space of frequency f and
dimensionless acceleration � [Eq. (9)]. Here the left column
shows the LV case and the right column shows the HV case.
The experiments are classified into regimes I–III, using the
criteria which we describe below, and these are indicated by
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FIG. 8. Frequency dependence of (a) amplitude δz at the two-
layer boundary and (b) surface displacement (compaction δh in-
dicated by an arrow) of the granular medium for the HV case.
Frequency range is 10–2000 Hz and the acceleration is fixed at
8.01 ± 0.49 m/s2 (� = 1.54 ± 0.09). The 1000–2000-Hz data are in
regime Ib (percolation), 10–20-Hz data are in regime IIa (transition
with sand boil), and 30–300-Hz data are in regime III (flame).
Regimes are defined using δz′ [Eq. (13)] (see Sec. IV B 2 for details).

the different marker shapes. The marker colors (sizes) indicate
the magnitude of the relative amplitude δz′ [Eq. (13)] (top
row), dimensionless growth rate p′ [Eq. (12)] (middle row),
and compaction δh (bottom row). δz′ and δh are defined at the
reference times of t = 9.9 s and t = 168 s for the LV and HV
cases, respectively. p′ is calculated from the exponential fit to
the amplitude vs time data (Sec. IVA1).

Here we classify the experiments into regimes I–III using
the relative amplitude δz′ [Eq. (13)]. For the threshold values,
we use the same values which we used to classify stages
I–III (Sec. IVA1) [3]. We further use compaction δh and
visual observations to subdivide the regimes. The details are
as follows: regime I for δz′ < 0.1 mm, which is subdivided
into regime Ia (no change) when δh < 0.1 mm and regime Ib
(percolation) when δh � 0.1 mm; regime II for 0.1 � δz′ <

0.6 mm, which is subdivided into regime IIa (transition with
sand boil), and IIb (transition without sand boil); and regime III
(flame) for δz′ � 0.6 mm. The threshold of 0.1 mm is close to
the pixel size of the images used for the analyses [3]. For all of
the experiments in regimes II and III, we find that δh � 0.1 mm
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FIG. 9. Regime diagrams of the experiments plotted in the parameter space of shaking frequency and dimensionless acceleration � for the LV
case (left column, 73 runs) and HV case (right column, 52 runs). Marker shapes indicate the regimes. (a) Relative amplitude (δz′) of the LV case
at the reference time t = 9.9 s indicated by the different marker colors (sizes). The ranges of δz′ (mm) are as follows (in the order of increasing
marker size): black, δz′ < 0.01; blue, 0.01 � δz′ < 0.05; purple, 0.05 � δz′ < 0.1; light blue, 0.1 � δz′ < 0.15; green, 0.15 � δz′ < 0.6;
orange, 0.6 � δz′ < 1.3; pink, 1.3 � δz′ < 2.0; red, δz′ � 2.0. The black, blue, and red broken lines indicate �c:min = 0.58, Sc = 0.01, and
Jc = 4, respectively, and the domain defined by � > �c:min, S > Sc, and J > Jc, bounded by these three lines, is indicated in blue. (b) Same as
(a) but for the HV case at the reference time t = 168 s. The black, blue, and red broken lines indicate �c:min = 0.13, Sc = 0.003, and Jc = 20,
respectively, and the domain bounded by these three lines is indicated in pink. The three boundaries in thin broken lines are those of the
LV case indicated in (a) and are shown for comparison. (c) Dimensionless growth rate (p′) of the LV case indicated by the different marker
colors (sizes). The ranges of p′ are as follows (in the order of increasing marker size): black, p′ < 0.004; blue, 0.004 � p′ < 0.006; light blue,
0.006 � p′ < 0.008; orange, 0.008 � p′ < 0.02; pink, 0.02 � p′ < 0.03; red, p′ � 0.03. (d) Same as (c) but for the HV case at t = 168 s. (e)
Compaction δh (mm) of the LV case at the reference time t = 9.9 s indicated by the different marker colors (sizes). The ranges of δh (mm) are
as follows (in the order of increasing marker size): black, δh < 0.5; blue, 0.5 � δh < 1.0; light blue, 1.0 � δh < 1.5; orange, 1.5 � δh < 2.0;
pink, 2.0 � δh < 2.5; and red, δh � 2.5. (f) Same as (e) but for the HV case at t = 168 s.
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and we do not use δh to classify these regimes. We examined
the movies of all experiments and visually checked whether
sand boil and flame structure formation occurred or not, both
of which are indications of instability. We confirmed that for
all experiments in regime III, flame structures formed which
are preceded by sand boils.

Here we define a developed instability when the relative
amplitude is δz′ � 0.1 mm and sand boils are observed, which
corresponds to regimes IIa (upward pointed triangles in Fig. 9)
and III (circles in Fig. 9). The three broken lines in Fig. 9 with
the slopes of −1 (red), 0 (black), and 1 (blue) are theoretical
lines which we derive in Sec. V B, and the domains bounded by
these three lines are indicated in blue (LV case) and in pink (HV
case). These domains indicate the shaking condition needed for
the instability to become developed. On the other hand, outside
these domains, regime Ib (squares in Fig. 9) dominates.

We emphasize four important features which are evident
from the regime diagrams shown in Fig. 9. First, from Figs. 9(a)
and 9(b), we find that the critical � (hereafter �c) for the

instability to become developed, is minimum at a frequency
of ∼100 Hz, indicating an optimum frequency band for the
instability to develop (see also Movie 4 in the Supplemental
Material [15]). Second, from comparing Figs. 9(a) and 9(b),
we find that the domain boundary is shifted toward a lower �

for the HV case compared to the LV case. Third, the above
two features are also evident in the plots of the growth rate
p′ [Figs. 9(c) and 9(d)] and compaction δh [Figs. 9(e) and
9(f)]. Fourth, even when � < �c, detectable (δh � 0.1 mm)
compaction occurs.

The third point suggests that the three characteristic scales
δz′, p′, and δh are positively correlated with each other.
Accordingly, we plot p′ vs δz′ in Figs. 10(a) and 10(b)
and δh vs δz′ in Figs. 10(c) and 10(d) for the LV and HV
cases, respectively. We confirm that good correlations indeed
exist among δz′, p′, and δh. The fourth point indicates that
liquid percolation is occurring even when the instability is not
apparent. We discuss the mechanism of upward liquid transport
by permeable flow in Sec. V D.
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FIG. 10. (a) Dimensionless growth rate p′ vs relative amplitude δz′ (at the reference time t = 9.9 s) for the LV case. The marker shapes
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as (c) but for the HV case at the reference time t = 168 s. A broken horizontal line was similarly calculated at t = 168 s using the parameters
for the HV case.
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3. Comparison of � dependence for different viscosities

We next compare the � dependence of the LV and HV cases
in a narrow frequency band of 40 ± 10 Hz. This frequency
band is also indicated by arrows in the regime diagrams
(Fig. 9). Figures 11(a)–11(c) show the � dependence of the
relative amplitude δz′ [Eq. (13)], dimensionless growth rate
p′ [Eq. (12)], and compaction δh. As in the previous figures,
δz′ and δh are defined at the reference times, following the Vs

scaling. A compilation of several HV case experiments under
different accelerations at 40 Hz are also shown in Movie 3
in the Supplemental Material [15]. Figure 11(d) shows the
� dependence of the wave number of the maximum spectral
amplitude. Here the spectral amplitude was calculated from
the two-layer boundary profiles using the method described
in Sec. IVA2. These figures indicate that at a similar shaking
condition, the four characteristic scales of the HV case are
larger than or comparable to those of the LV case.

In Figs. 11(a)–11(c) we also indicate the power-law fits. The
power-law exponents are larger for the LV case (see caption
of Fig. 11), indicating that the differences between the LV
and HV cases diminish when � becomes large. On the other
hand Fig. 11(d) shows that when � < 1, the dominant wave
number is small for both cases. This is because the power of the
long wavelength depression arising from the initial condition
dominates over the short wavelength instability. At � > 1
as the power of the short wavelength instability increases,
the wave number of the maximum spectral amplitude also
increases. This increase toward a higher wave number occurs
at a smaller � for the HV case, which is a combined result of
a smaller �c [Fig. 11(a)] and a larger wave number [Fig. 4(d)]
of the instability for the HV case compared to the LV case.

C. Liquid viscosity effect on granular rheology

Here we describe the results of the oscillatory shear
rheology measurements which complement the shaking ex-
periments. The measurements were conducted at a shear
frequency of fR = 100 Hz, and the peak shear stress σp was
incrementally increased as indicated by the rightward pointing
arrows in Fig. 12.

Figure 12(a) shows the storage modulus G′ [Eq. (5)] as a
function of σp. Here four samples have similar combinations of
particle diameters d and liquid viscosities η as those used in the
shaking experiments. The figure shows that G′ decreases with
σp, indicating a shear-thinning rheology. In addition comparing
G′ under the same σp, we find that G′ is smaller when d

is small and η is large. In particular, we note a precipitous
drop of G′ for the HV case with d = 0.05 mm. Since the
particles in these samples are initially jammed, G′ depends
on the interparticle friction. These results indicate that friction
depends systematically on d and η.

In these measurements, the rheometer was programed to
impose a stress of up to σp = 238 Pa. However, the actual
maximum stresses that can be imposed on these samples
indicated by the upward pointing arrows in Fig. 12(a) are
in the range of 125–237 Pa and are < 238 Pa. This indicates
that these maximum stresses correspond to the yield stress σy,
above which the granular medium cannot support. Similar to
G′, σy is smaller when d is small and η is large. For comparison
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FIG. 11. Comparison of the � dependence of instability and
compaction for LV (blue) and HV (red) cases at a frequency of
40 ± 10 Hz (see Movie 3 in the Supplemental Material [15] for
selected examples from the HV case). Marker shapes correspond
to the three regimes indicated in Fig. 9. Broken lines indicate the
power-law fits. (a) Relative amplitude δz′ at the reference times
(t = 9.9 and 168 s for LV and HV cases, respectively). Broken
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(triangles) and regime III (circles), respectively. Power-law exponents
of the fits are 1.65 (LV) and 0.87 (HV). (b) Dimensionless growth rate
p′. Power-law exponents of the fits are 1.01 (LV) and 0.21 (HV). (c)
Compaction δh at reference times. Power-law exponents of the fits
are 0.53 (LV) and 0.28 (HV). (d) Wave number at which the spectral
amplitude attains a peak value.
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FIG. 12. (a) Storage modulii (G′) [Eq. (5)] of the liquid-immersed
granular medium as a function of peak stress σp measured using the
setup shown in Fig. 1(b). Rightward pointing arrows indicate the
incremental increase of σp during the measurements. σy (upward
pointing arrow) is the yield stress. σf is the frictional stress calculated
using Eq. (14) for LV and HV cases. (b) G′ plotted as a function
of the particle diameter scaled strain γp [Eq. (15)]. (c) Loss tangent
(tan δ) [Eq. (7)] plotted as a function of γp. A horizontal broken line
indicates tan δ = 1. (d) A schematic Stribeck curve and the three
regimes (modified from [19]), as a function of So [Eq. (16)]. (e), (b),
and (c) rescaled using So.

in Fig. 12(a), we indicate the estimated frictional stress

σf = μφ�ρgz (14)

by the vertical broken lines. Here μ = 0.5 is the friction
coefficient estimated from the angle of repose [18] and z is
the inserted depth of the spindle. σy and σf agree within a
factor of 3.

In Fig. 12(b) we replot the data in Fig. 12(a) as a function
of particle diameter (d) scaled strain γp,

γp = R�ω

d
. (15)

Here R is the spindle radius and �ω is the spindle deflection
angle. Since γp assumes that the radial extent of deformation is
d, it gives an upper bound estimate of strain because the actual
shear band thickness is thicker than d, i.e., around ∼20d [18].
Figure 12(b) shows that G′ for different d (0.05 and 0.21 mm)
are scaled better in terms of strain γp than by stress σp. This
indicates that, apart from the effect of viscosity, the geometrical
configuration of the particles determines G′, which was noted
previously [11].

In Fig. 12(c), we plot the loss tangent (tan δ) [Eq. (7)] as
a function of γp. The figure shows that under a small γp, the
granular medium is solidlike (tan δ � 1), but as γp increases,
it becomes more fluidlike (tan δ ∼ 1). The figure shows that at
the same γp the HV case is more fluidlike. Similar to Fig. 12(b),
tan δ for different d are scaled better by strain γp, rather than
by stress σp.

Particles used in the measurements of Fig. 12 are all white
glass beads. We measured the same rheology for the HV case
using red glass beads (d = 0.22 mm, φ � 0.52), the same as
those used in the shaking experiments. We find that under a
shear stress of σp ∼ 10 Pa, G′ of the red glass beads is the same
as that of the white glass beads (d = 0.21 mm) within 3%.

V. DISCUSSION

A. Lubrication by a viscous liquid

Fluidization observed in our shaking experiments and
rheology measurements can be considered to be a result of
lubrication by a viscous liquid between the particles which
reduces interparticle friction. Lubrication is well studied in
tribology (e.g., [19]). Here we apply these results to our
experiments and measurements.

A dimensionless Sommerfeld number (So) is commonly
used to evaluate the effect of lubrication [19]. A modified
form of So for a granular medium (diameter d) is expressed as

So = 6ηv

P0d
, (16)

where v is the sliding velocity [18] and P0 is the pressure from
the load. It is well known that the friction changes with So,
as shown schematically in Fig. 12(d) [19]. This is a result of
the thickness of the liquid film between the two sliding solids
increasing with So. This curve is known as a Stribeck curve
and is characterized by three regimes: a boundary lubrication
at So � 1 where friction does not depend on So because
it is mainly determined by the particle contact; a mixed
lubrication at So < 1 where friction decreases with So because
of a reduced particle contact; and a hydrodynamic lubrication
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at So > 1 where friction increases with So because particle
contact becomes small and viscous drag (∝ ηv/d) dominates.
As a result the friction becomes smallest at So ∼ 1. So has
been applied to granular rheology under unidirectional shear,
and it was confirmed that friction indeed becomes smallest at
So ∼ 1 [18].

Similarly, in our shaking experiments and rheology mea-
surements the particles are initially in strong contact (jammed)
because they are denser than the liquid. However, when shaken
or sheared, the particle contact is loosened and the liquid
film thickness between the particles increases (unjammed).
Here we evaluate So in our rheology measurements using
the peak shearing velocity for v and P0 = σf [Eq. (14)]. We
rescale the horizontal axis of Figs. 12(b) and 12(c) using
So and the results are shown in Fig. 12(e). These figures
show that the data for different viscosities collapse fairly
well using So. They also show that these measurements were
conducted in the range of 10−7 < So < 10−1, suggesting that
they are in the mixed lubrication regime. We note that our
measurements are conducted under oscillatory shear, and
therefore the two figures in Fig. 12(e) are different from the
conventional Stribeck curve constructed under unidirectional
shear [Fig. 12(d)]. Nevertheless, the reduction of friction in
the range of So < 1 suggests a common origin. We note that
for dense suspensions (φ = 0.5) but with neutrally buoyant
particles, such that the particle contact is small compared to
the samples used here, when φ is the same, G′ is larger for
a higher viscosity liquid [11], which is opposite to the result
described here [Fig. 12(e)].

Next we estimate So in our shaking experiments. As an
upper bound estimate for v, we use the peak velocity of the
shake table V which approximates the particle takeoff velocity.
The maximum velocity of the shake table is V ∼ 0.3 m/s.
Using η = 15 mPas, P0 ∼ 32 Pa, which is the frictional stress
at the depth of the two-layer boundary from the surface of
the granular medium, and the particle diameter of the upper
granular layer d = 0.05 mm, we obtain So ∼ 0.2. Since this is
an upper bound estimate for So, it indicates that our shaking
experiments are also in the mixed lubrication regime (So < 1),
possibly including the boundary lubrication regime (So � 1)
at the smallest shaking accelerations. This suggests that in
our shaking experiments, particle friction is important but is
reduced by lubrication, similar to the rheology measurements
shown in Fig. 12.

B. Shaking condition for the instability to grow

We now discuss the origin of the critical acceleration �c for
the instability to grow and its frequency dependence. First we
summarize our findings. From the shaking experiments, we
found that �c is at a minimum at f ∼ 100 Hz and is smaller
for the HV case [Figs. 9(a) and 9(b)]. From the rheology
measurements we found that the interparticle friction decreases
when the shear strain [Eq. (15)] [or Sommerfeld number So,
Eq. (16)] becomes large [Figs. 12(b) and 12(e)] and that the
friction decreases with liquid viscosity [Fig. 12(b)].

Combining these results, we infer that the shear strain of the
granular medium (equivalently So) becomes largest when it is
shaken at an optimum frequency band centered at f ∼ 100 Hz
and that the lubrication by the viscous liquid is a reason for a

smaller �c for the HV case. We have previously showed that
the frequency dependence for the LV case can be explained
by critical values of jerk (time derivative of acceleration) and
energy in addition to critical acceleration [3]. In what follows
we apply this to both the LV and the HV cases and draw
theoretical lines shown in Fig. 9, which approximate the regime
boundaries.

First, we consider the minimum critical acceleration �c:min

at ∼100 Hz. The black broken lines in Figs. 9(a) and 9(b)
indicate �c:min = 0.58 (LV case) and �c:min = 0.13 (HV case),
respectively. Our experiments indicate that � � �c:min is a
necessary condition for the instability to develop. Since the
ratio of inertial stress to the frictional stress is ∼ �/μ [3], the
above necessary condition can be interpreted as the inertial
stress needed to overcome friction. A smaller �c:min for the
HV case is consistent with the smaller friction obtained from
the rheology measurements [Fig. 12(a)].

Second, we consider the low-frequency limit of the shaking
condition needed for the instability to develop. Here we
show that this limit is empirically explained by a critical
value of jerk, a time derivative of acceleration, which can
be nondimensionalized using the characteristic stress and
time scales as follows. The frictional stress between the
particles scales as ∝ g′ = �ρg/ρ. On the other hand, the
time scale of particle rearrangement scales as ∼d/Vs. It
follows that the granular medium can balance a jerk of up to
∼ (�ρg/ρ)/(d/Vs) by microscopic readjustment. Using these
scales we define a dimensionless jerk J as

J =
(

d3z

dt3

)
peak

/(
�ρg

ρ

Vs

d

)
=

[
2πf

(�ρg/ρ)(Vs/d)

]
z̈peak

=
(

2πf

Vs/d

)
� = 2πIv�, (17)

where Iv is the dimensionless viscous number (or a dimen-
sionless frequency) [Eq. (10)]. In Figs. 9(a) and 9(b) we show
the critical lines for the low-frequency limits (red broken
lines) using Jc = 4 and Jc = 20 for the LV and HV cases,
respectively. The scaling used to nondimensionalize jerk is
revised from our previous work [3]. J is now expressed using
Iv and �, and Jc becomes Jc ∼ O(1–10).

The necessary condition J = 2πIv� > Jc [Eq. (17)],
which approximates the low–frequency limit, implies that
for a given � there is a lower bound value of Iv. This
can be interpreted as follows. We recall that Iv compares
the microscopic time scale of particle settling tvisc

micro to the
macroscopic time scale of shaking tmacro = 1/f [Eq. (10)].
At very low frequencies (Iv � 1), particles respond to the
change of external forcing by microscopic adjustment, and
as a result particles remain close to a jammed state [1]. In
our experimental parameter range, the low-frequency limit
corresponds to Iv ∼ O(0.1–10) and is in fair agreement with
this interpretation. We also note that at a given f and �, J

is larger for the HV case, which explains why fluidization
is possible at lower frequencies compared to the LV case
[compare the two red broken lines for Jc in Fig. 9(b)].

Third, we consider the high-frequency limit of the shaking
condition needed for the instability to develop. We define
the shaking strength S (e.g., [20]), which corresponds to the
shaking energy nondimensionalized by the energy needed to
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lift a particle by a height d,

S = Az̈peak

�ρgd/ρ
=

(
1

�ρgd/ρ

)(
z̈peak

2πf

)2

=
(

�ρg/ρ

d

)(
�

2πf

)2

∝ V 2. (18)

Here V = 2πf A is the peak shaking velocity. In Figs. 9(a)
and 9(b), we show the critical lines for the high-frequency
limit (blue broken lines) using Sc = 0.01 and 0.003 for the LV
and HV cases, respectively. Since S = 1 is the shaking energy
needed to lift a particle by d, these small (Sc � 1) values
may indicate that particles need only be lifted by ∼10−3d for
fluidization to occur. Here we recall our G′ data plotted as
a function of strain γp [Fig. 12(b)]. The figure showed that
friction starts to decrease when the shear displacement is as
small as ∼10−4d. This is consistent with the small Sc value
obtained above.

The imposed shaking in our experiments has nonvertical
acceleration components, i.e., front-backward component afb

and sideways component as, in addition to the vertical
acceleration component av (Sec. II A). Here we discuss their
effects. It is possible that the additional shaking originating
from the nonvertical components decreased the value of �c

compared to the ideal case in which they are zero. However,
we show below that it is unlikely that they affected the observed
frequency dependence of the low- and high-frequency limits
in the range of f � 50 Hz and f � 200 Hz, respectively. At
f � 50 Hz, both afb/av and as/av are small (�0.05) regardless
of frequency. Since the low-frequency limit which scales as
�c ∝ 1/f is observed at f � 40 Hz, we conclude that the
imposed nonvertical components did not affect the observed
frequency dependence. At f � 200 Hz, afb/av and/or as/av

are relatively large (∼0.08) at f = 2000 and 5000 Hz.
However, the high-frequency limit scales as �c ∝ f , which
is of the opposite sense to what we expect if the additional
nonvertical components at 2000 and 5000 Hz decreases �c. We
again conclude that they did not affect the observed frequency
dependence. We remark that the same argument also applies
to the observed frequency dependence of the growth rate and
compaction at f � 50 Hz and f � 200 Hz [Figs. 8 and 9(c)–
9(f)]. We also note that if there is a nonzero as, it may break
the left-right symmetry of the resulting instability. However, in
our experiments, sand boils and flame structures are distributed
evenly and we do not observe preferential tilting of the plumes
toward the left or the right (see Figs. 2 and 6), indicating that
such symmetry breaking is apparently absent. We consider
that this is a result of the small value of as/av, and the growth
rate [p < 2 (1/s)] being smaller than the shaking frequency
(10–5000 Hz). The latter implies that because the time scale
of the instability growth is long compared to the period of
shaking, any symmetry-breaking effect originating from the
horizontal shaking is mostly canceled by time averaging.

The nonvertical imposed shaking may be amplified by the
resonance of the cell. We attached accelerometers at the front
and side walls of the cell and similarly measured afb and
as, in addition to av. We find that afb is comparable to or
larger than as throughout the frequency range of 10–5000 Hz
and hereafter consider afb only. Measurements show that
afb/av increases with frequency: � 0.3 at f � 50 Hz, which

increases to ∼0.5–1 at f = 100 Hz and ∼3–6 at f = 5000 Hz.
Superimposed on this trend, we find a local maximum of
afb/av ∼ 6 ± 2 at f = 150 Hz. It seems that this frequency-
dependent afb/av arises from a combined effect of nonvertical
components of the imposed shaking and the resonance of the
cell. We conducted additional LV case experiments at � =
0.84 ± 0.05, using a taller cell (H = 189 mm) with a similar
cross section (99×23 mm) and containing the same amount of
glass beads with two diameters. We confirmed the existence
of the optimum frequency band for instability growth, but its
band was shifted toward a lower frequency centered around
f ∼ 40 Hz. afb/av also increased with frequency with a local
maximum (afb/av = 1.7) at ∼40 Hz.

Based on the above measurements, we consider that
the combined effect of nonvertical imposed shaking and
resonance for the H = 108 mm cell used in our experi-
ments differs depending on the frequency range. At low
frequencies (f � 50 Hz) this is unimportant (afb/av < 0.3).
Indeed, transition from regime I to regime II as frequency
increases from 10 to 40 Hz occurred without an increase of
afb/av. At middle frequencies (100–200 Hz), the nonvertical
component becomes comparable to or exceeds the vertical
component (afb/av ∼ 0.5–8). The additional nonvertical accel-
eration seems to have enhanced the instability growth which
lowered �c:min and shifted the optimum frequency band to
include 150 Hz. At high frequencies (f � 300 Hz), although
afb/av remains large (afb/av = 0.6–6), instability growth is
suppressed. We interpret that this is a consequence of the
effect of sharply decreasing shaking strength with frequency
(S ∝ 1/f 2) which suppresses fluidization, overwhelming the
effect of nonvertical components, which enhances fluidization.
To summarize, it is probable that the nonvertical components
lowered �c, but otherwise the general features of the frequency
dependent �c can be understood by J ∝ f [Eq. (17)] and
S ∝ 1/f 2 [Eq. (18)].

C. Application of linear stability analyses
for Rayleigh-Taylor instability

The instability observed in our experiments always occurs
at the two-layer boundary, and accordingly we consider that
it is a Rayleigh-Taylor instability, which occurred due to the
accumulation of liquid beneath the less permeable layer. Here
we apply the results of the linear stability analyses [21,22]
to our experiments. Since the theory was formulated for
Newtonian fluids, some modifications and assumptions are
needed which we describe below.

Figure 13(a) shows the situation considered. A thin (thick-
ness h), low-density (smaller packing fraction φ) lower layer
underlies a thick (thickness D), high-density (larger φ) upper
layer. A thin low-density layer models a fluidized granular
layer formed by the accumulation of interstitial liquid beneath
the less permeable layer. Such layer has also been called
a water film [23]. Since the effective viscosity (ηeff) of the
granular medium increases with φ [Eq. (20)], the low-density
layer is less viscous. A thick high-density layer models the
upper layer consisting of finer particles.

The density difference between the two layers �ρ2layers is
expressed as

�ρ2layers = �φ�ρ, (19)
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FIG. 13. (a) Schematic diagram (not to scale) showing a situation
in which a low-density (small packing fraction φ) thin layer (thickness
h) underlies a high-density thick layer (thickness D). The lower layer
has a smaller viscosity (η) because of a smaller φ. A Rayleigh-Taylor
instability with a wavelength λ and a permeable flow (arrows) occur
at the same time. (b) Wavelength λ and (c) dimensionless growth rate
p′ as a function of h for LV (blue) and HV (red) cases, calculated
using Eqs. (22) and (23). Here the upper to lower layer viscosity ratio
ε = ηeff:upper/ηeff:lower [Eq. (21)] of the LV and HV cases are 117 and
45, respectively. λ and p′ values of the experiments shown in Fig. 2
are indicated by the horizontal broken lines. Large triangles at the
intersections of the solid and broken lines indicate the solutions for h.
(d) Relative viscosity ηr as a function of packing fraction φ calculated
using Eq. (20) for three values of maximum packing fraction φmax. The
three broken vertical lines indicate different values of φmax. Triangles
indicate ηr at φ = 0.60 and 0.49, which are the initial values of φ of
the upper and lower layers, respectively.

where �φ is the packing fraction deficit of the low-density
layer relative to that of the high-density layer. Fluidized
granular medium behaves as a viscous fluid with an effective
viscosity ηeff . The relative viscosity ηr of the granular medium
can be estimated from the Krieger-Dougherty equation
(e.g., [12]),

ηr = ηeff

η
=

(
1 − φ

φmax

)−2.5φmax

, (20)

where η is the liquid viscosity and φmax is the maximum
packing fraction. In Fig. 13(d) we show examples of ηr as a
function of φ for three values of φmax. We define the effective
viscosity ratio ε of the two layers as

ε = ηeff:upper

ηeff:lower
, (21)

where the subscripts indicate upper and lower layers.
Approximate solutions of the wavelength λ and the growth

rate p have been obtained under ε � 1 and a no-slip boundary
beneath the thin low-density layer [21,22] as

λ = 2.92ε1/3h, (22)

and

p = 0.153ε−2/3

(
�ρ2layergh

ηeff:lower

)
. (23)

The dimensionless growth rate p′ [Eq. (12)] then scales as
p′ = p(d/Vs) ∝ pη ∝ ε−2/3h. Here we assumed that �φ and
ηr of the lower layer are the same for the LV and HV cases
because the initial φ for each case is the same, within the
error (Sec. II A). Our experiments show that under a similar
shaking condition, λ is smaller [Fig. 11(a)], whereas p′ is
larger [Fig. 11(b)] for the HV case. Here we remark that the
scalings λ ∝ ε1/3h [Eq. (22)] and p′ ∝ ε−2/3h [Eq. (23)] also
indicate an opposite sense of ε dependence. Comparing with
the experiments, we infer that ε is smaller for the HV case.

Here we simultaneously solve Eqs. (22) and (23) by
substituting the measured λ and p′ to obtain ε and h for the LV
and HV cases. We note that several assumptions are needed for
the calculation, and the obtained ε values should be regarded
as one possible solution. First, we use Eq. (20) to evaluate
ηeff:lower in Eq. (23). For the packing fraction φ, we use the
measured initial values of φ = 0.60 for the upper layer and
φ = 0.49 for the lower layer (Sec. II A). φmax of the lower
layer should be larger than φ = 0.49 because compaction
occurs after shaking. We use φmax = 0.600 for both LV and
HV cases, a value between the loose and dense random close
packing of spheres [1]. We then solve ε and h using λ and p of
the experiments shown in Fig. 2 and obtain ε = 117, h = 1.4
mm for the LV case and ε = 45, h = 1.2 mm for the HV case.
These large ε values are consistent with the assumption ε � 1.
Figures 13(b) and 13(c) show λ vs h and p′ vs h, calculated
using Eqs. (22) and (23), Eq. (12), and above ε values. The
solutions for h are indicated by large triangles.

An important result is that h ∼ 1 mm, which corresponds
to ∼5d (lower-layer particle diameter d = 0.22 mm). Since
the total thickness of the lower granular layer is ∼24.3 mm,
this implies that only a thin layer just beneath the two-layer
boundary is mobile. Flow localized in a thickness of ∼10d or
less is a common feature of dense granular flows [1,13,24,25],
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and it seems that this is another such example. We also remark
that h is comparable to or larger than the measured plume
widths of w � 1 mm [see Figs. 2(c) and 2(d)].

Next, using ε we solve φmax of the upper granular layer from
Eq. (20) and obtain φmax = 0.605 and 0.609 for the LV and HV
cases, respectively. Figure 13(d) shows ηr as a function of φ

using φmax = 0.605 and 0.609 for the high-density upper layer
and φmax = 0.600 for the low-density lower layer. The figure
shows that the difference between these three cases becomes
apparent as φ approaches φmax. Among the three cases, φmax =
0.609, which models the HV case, has the smallest ηr at a given
φ and models the most shear thinning rheology [26].

When a jammed granular medium is shaken and fluidized,
the particle configuration changes toward a more closely
packed state and compaction occurs. This corresponds to a
change of rheology in which φmax increases when a shear is
applied. It seems that a smaller interparticle friction for the
HV case [Fig. 12(b)] allows more compaction and is at the
origin of a larger φmax. We note that previous measurements
of suspension rheology using neutrally buoyant particles have
also shown that shear thinning becomes significant when the
suspending liquid is more viscous [27].

Finally, using the above estimates of ε, we calculate
the Reynolds number (Re = ρ̄vλ/ηeff:upper) of the instability
growing in the upper layer. Here ρ̄ is the mean density of the
granular medium, v is the flow velocity, λ is the wavelength of
the instability, and ηeff:upper is the effective viscosity. Here we
evaluate for the LV case, which gives an upper bound estimate
of Re. Using the measured values v ∼ 3×10−4 m/s and
λ ∼ 2×10−2 m and the estimated values ρ̄ ∼ 1.9×103 kg/m2

and ηeff:upper ∼ 1.5 Pas, we obtain Re ∼ 0.01. A small Re value
(Re � 1) is consistent with the creeping flow assumption used
when deriving Eqs. (22) and (23).

D. Comparison of two liquid ascent mechanisms

In our experiments, there are two mechanisms of liq-
uid ascent which occur simultaneously, the Rayleigh-Taylor
instability and permeable flow, as shown schematically in
Fig. 13(a). These two mechanisms have different character-
istic time scales. Accordingly, we infer that Rayleigh-Taylor
instability results only if its time scale is shorter than that of
the permeable flow. Here we evaluate these two time scales to
constrain the conditions under which either dominates.

First we calculate the dimensionless growth time (τ ′
grow) of

the Rayleigh-Taylor instability. From Eq. (23) we obtain

τ ′
grow = 1

p′ = 6.54ε2/3

(
ηeff:lower

�ρ2layergh

)/(
d

Vs

)
∝ 1

h
. (24)

In Fig. 14 we show τ ′
grow decreasing with h. Here we used the

same ε values which we obtained in the previous section for
the LV and HV cases.

Next we calculate the dimensionless percolation time
(τ ′

perc) needed for the liquid in the low-density layer to
be transported upward by permeable flow until the density
difference between the two layers �ρ2layer [Eq. (19)] becomes
zero. From Eqs. (A3) and (A4), we obtain

τ ′
perc ∼

(
η

kφupper�ρg

)(
�φ

φlower

)
h

/(
d

Vs

)
∝ h. (25)
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FIG. 14. Dimensionless growth time [Eq. (24)] and percolation
time [Eq. (25)] as a function of the low-density layer thickness h.
Solid lines indicate growth time for the LV (HV) case using ε = 117
(ε = 45). These ε values are the same as those used in Fig. 13. The
broken line indicates percolation time. The measured growth time
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grow � 161) is indicated
by an arrow. Schematic diagram shows the inferred regime transitions
with the increase of h.

In Fig. 14 we show τ ′
perc increasing with h. Here we used

�φ = 0.11 and φlower = 0.49 (Sec. V C), the same values used
to calculate τ ′

grow in Fig. 14.
Figure 14 shows that the two time scales, τ ′

grow and τ ′
perc,

cross over at h ∼ 0.3 mm, indicating that when h > 0.3 mm,
Rayleigh-Taylor instability becomes faster than the permeable
flow. This thickness is comparable to particle diameter (d =
0.22 mm) of the lower layer. In Fig. 14 we also indicate the
range of measured dimensionless growth times when the flame
structure forms (regime III). We find that the measured time
scales overlaps with the estimated time scale, which satisfies
τ ′

grow < τ ′
perc, indicating that they are consistent. We propose

the following scenario as shown schematically in Fig. 14.
The thickness h of the fluidized layer beneath the two-layer
boundary increases with acceleration (�). When h exceeds the
critical thickness h ∼ 0.3 mm, the condition τ ′

grow < τ ′
perc is

satisfied, and flame structure develops.
We can further evaluate the contributions from these two

mechanisms by comparing the measured compaction with that
estimated from permeable flow alone. When the liquid from
the low-density layer percolates upward, the upper granular
layer will compact. From Eq. (A3) we obtain an expression of
compaction δh as a function of time t ,

δh ∼
(

kφupper�ρg

η

)
t. (26)

From Eq. (26), we calculate δh at the reference times of t = 9.9
and 168 s for the LV and HV cases and obtain δh = 0.22
mm, which we indicate in Figs. 10(c) and 10(d), respectively.
We find that the measured δh is comparable to or larger
than the calculated δh. In particular, when flame structures
form (regime III cases indicated by circles), δh exceeds this
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estimate by about an order of magnitude. This indicates that
the discharge rate of a channelized flow resulting from the
Rayleigh-Taylor instability is an order of magnitude larger
than that by permeable flow alone.

After the shaking stops we may approximate that the liquid
transport occurs only by permeable flow through the upper
layer. We apply Eq. (A3) to the upper layer to estimate the
time scale �t for the compaction of the upper layer to continue
after the shaking stops as

�t ∼
(

η

kφupper�ρg

)(
δφupper

φupper

)
D. (27)

Here δφupper is the increase of packing fraction of the upper
layer by compaction. As an upper bound estimate for δφupper,
we may estimate as δφupper = φmax − φ0 where φmax = 0.64
is the maximum packing fraction for dense random close
packing, φ0 is the packing fraction at t = 0 s. Substituting
the values for the LV and HV cases described in Sec. II A, we
obtain upper bound estimates of �t = 29 s for the LV case and
�t = 404 s for the HV case. Experiments indicate �t ∼ 20 s
for the LV case [Fig. 3(a)] and �t > 300 s for the HV case
[Figs. 3(b), 7(b), and 8(b)]. The above estimate explains why
compaction continues for some time after the shaking stops.

E. Comparison with previous experiments

First, we compare our results with those of several previous
water-immersed experiments [5,6] that used denser or larger
particles compared to those used in our experiments, and,
accordingly, the Stokes number St [Eq. (8)] was larger. Leaper
et al. (2005) [5] studied the shaking condition needed for a
mixture of particles with different densities to separate through
convection and tilting. They found that as St becomes smaller,
the acceleration � [Eq. (9)] needed for the separation becomes
larger. For the smallest St of St ∼ 1.0 in their experiments,
� becomes � ∼ 11. Milburn et al. [6] conducted shaking
experiments at St ∼ 17 and observed that convection and tilting
occur when � exceeds � = 1–3. Both of these experiments
therefore indicate that granular convection and tilting occur
at St � 1 [1], provided that � � O(1). In contrast, both the
LV and the HV cases of our experiments were conducted
at St � 1 (Sec. III). This suggests that in our experiments,
particle inertia was damped by viscosity. Indeed, we confirmed
that granular convection and tilting occur in our experi-
mental setup when the particles are air immersed such that
St ∼ 6 > 1 [3].

Second, we compare the frequency dependence. The ex-
periments mentioned above also showed that the critical � for
the onset of convection and tilting increases approximately in
proportion to frequency, which is similar to our high-frequency
limit. Recent experiments using dry granular matter (St ∼ 600)
have also shown that the onset of convection scales better with
shaking velocity V rather than with � [28]. Since V ∝ S1/2,
where S is the shaking strength [Eq. (18)], critical V is
equivalent to critical S and is also similar to our high-frequency
limit. On the other hand, there have been experiments [29] at
St ∼ 420 which showed a suppression of granular motions
at frequencies <12 Hz, which may be similar to our low-
frequency limit. However, all of these experiments are at
St � 1, which differs from the St of our experiments. How

the frequency dependence is affected by St deserves further
study.

F. Geophysical implications

Based on our experiments, several implications can be
drawn with regard to earthquake-induced liquefaction.

First, an optimum frequency band for fluidization to occur
implies that apart from acceleration, the frequency spectrum
of shaking, which differs among earthquakes, is also important
for evaluating the susceptibility to liquefaction. It is well
known that there is a minimum earthquake magnitude for
earthquake-triggered liquefaction and volcanic eruptions to
occur and that this magnitude increases with the distance
from the hypocenter [30]. However, the relationship between
liquefaction and shaking frequency is still unclear [31]. Both
peak ground acceleration, which corresponds to �, and peak
ground velocity, which scales as ∝S1/2 [Eq. (18)], have been
conventionally used as indices to estimate the liquefaction
risk [31]. Our experiments indicate that both � and S need
to be considered, and neither one alone is sufficient. In
addition, our regime diagram in the parameter space of
frequency and � (Fig. 9) indicates that instability resulting
from liquefaction does not occur at low frequencies, although
both � and S are large. This indicates that the liquefaction risk
is not a simple increasing function of shaking acceleration or
velocity.

Second, our experiments indicate that when the interstitial
liquid is more viscous, it can lower the critical shaking
acceleration for liquefaction to occur by lubrication. This
implies that the liquefaction risk becomes higher, provided
that the shaking is long enough. This effect may need to be
considered when assessing the possibility of liquefaction of
particles immersed in viscous liquids such as magma [4].

Third, our experiments showed that a channelized flow re-
sulting from Rayleigh-Taylor instability can result in an order
of magnitude increase of compaction of the granular medium
[Figs. 10(c) and 10(d)]. This is equivalent to an increase
of effective permeability. An order of magnitude increase
of permeability has been estimated from field observations
[32]. Our experiments provide one plausible mechanism for
its origin whenever a less permeable layer exists.

VI. CONCLUSIONS

Vertical shaking experiments using a liquid-immersed,
two-layered, size-graded granular medium are conducted in
a regime in which the viscous drag is large compared to the
particle inertia. Experiments under a wide range of shaking
conditions indicate that the critical acceleration needed for
fluidization and subsequent instability to grow is at a minimum
at a frequency of ∼100 Hz. When the liquid viscosity is high,
the critical acceleration is smaller, the instability wavelength λ

is shorter, and the Vs scaled growth rate is faster. Granular
rheology measurements indicate that interparticle friction
decreases with shear strain, suggesting that the optimum
frequency band for fluidization in our shaking experiments is
a consequence of shear strain becoming largest at around 100
Hz. In addition, we find that when the liquid viscosity is high,
lubrication reduces friction, which we consider to be a reason

022901-18



EFFECT OF VISCOSITY ON THE SHAKING-INDUCED . . . PHYSICAL REVIEW E 93, 022901 (2016)

for smaller critical acceleration for the HV case. We showed
that this frequency dependence can be explained if we consider
that for fluidization to occur, both the jerk (time derivative of
acceleration) and the energy of shaking need to exceed their
respective critical values. Applying the results of the linear
stability analyses for Rayleigh-Taylor instability suggests that
only a thin layer beneath the two-layer boundary is mobile,
and the viscosity dependence described above originates from
the enhanced lubrication and shear thinning when the liquid is
more viscous. These are both non-Newtonian features peculiar
to a liquid-immersed granular medium.
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APPENDIX: SIMPLE MODEL OF PERMEABLE
FLOW AND COMPACTION

We consider a situation shown in Fig. 13(a) and model the
ascent of liquid from a thin low-density layer (thickness h)
by permeable flow (arrows). The low-density layer models the
fluidized granular layer beneath the two-layer boundary with
a packing fraction deficit of �φ relative to the upper high-
density layer. When the low- and high-density layers become
fluidized, the overpressure �P of the liquid in the low-density
layer can be approximated as

�P ∼ φupper�ρg(D + h) ∼ φupper�ρgD. (A1)

Here we assumed h � D since we estimated h ∼ 1 mm when
flame structures form [see Figs. 13(b) and 13(c)] and D ∼ 9.7
mm. The liquid content of the low-density layer decreases with
time as the liquid percolates upward, which can be expressed
as

d

dt
h(1 − φlower) = −VD = −k

η

�P

D
∼ −kφupper�ρg

η
, (A2)

where VD is the Darcy velocity [Eq. (2)] and k is the
permeability [Eq. (3)] of the upper layer. Since the particle
content hφlower is conserved, Eq. (A2) reduces to

dh

dt
∼ −kφupper�ρg

η
. (A3)

As the liquid percolates upward, compaction occurs and φlower

increases with time. Compaction δh needed for the density
difference between the low- and the high-density layers to
become zero is

δh = −dh =
(

�φ

φlower

)
h. (A4)

Substituting Eq. (A4) into Eq. (A3) and rearranging, we obtain
Eq. (25), which is an expression for the time needed for the
liquid to be transported upward by permeable flow until the
density difference vanishes. We also obtain an expression for
compaction at an arbitrary elapsed time [Eq. (26)] and by
similarly applying to the upper layer to obtain an expression
for the time for the compaction to continue after the shaking
stops [Eq. (27)].
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