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Scaling of alloy interfacial properties under compositional strain
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Complex morphologies and microstructures that emerge during materials growth and solidification are
often determined by both equilibrium and kinetic properties of the interface and their crystalline anisotropies.
However, limited knowledge is available on alloying and, particularly, compositionally generated elastic effects
on these interface characteristics. Here we systematically investigate such compositional effects on the interfacial
properties of an alloy model system based on a phase-field-crystal analysis, including the solid-liquid interfacial
free energy, kinetic coefficient, and lattice pinning strength. Scaling relations for these interfacial quantities over
various ranges of material parameters are identified and predicted. Our results indicate the important effects of
couplings among mesoscopic and microscopic length scales of alloy structure and concentration, and the influence
of compressive and tensile interface stresses induced by composition variations. The approach developed here
provides an efficient way to systematically identify these key material properties beyond the traditional atomistic
and continuum methods.
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I. INTRODUCTION

Properties of surfaces and interfaces are among the vital
factors controlling material crystallization and microstructural
dynamics. Typical examples include the crucial effects of the
liquid-solid interfacial free energy on dendritic solidification
[1], eutectic or peritectic growth [2,3], and the evolution
of film surface nanostructures such as quantum dots [4]
or nanowires [5]. Properties governing system kinetics, in
particular, the interface mobility or kinetic coefficient (de-
fined as the ratio between the interface velocity and the
undercooling or supersaturation), also significantly affect the
material microstructures and morphologies during, e.g., crystal
nucleation, ordering, and dendrite formation [2,6,7].

Despite both the fundamental and the technological im-
portance of these interfacial properties in the characteriza-
tion, understanding, and modeling of materials growth, it
remains a great challenge to experimentally or computationally
determine their accurate values, anisotropies, and, particu-
larly, their variations with material parameters and growth
or processing conditions. Significant difficulty exists in the
corresponding experimental measurements, with limited data
available for the interfacial energy anisotropy of alloys [8,9]
and the interface kinetic coefficient of only a few pure metals
[10,11]. Most calculations rely on atomistic simulations via
molecular dynamics (MD) and Monte Carlo (MC) methods
[2,6,12–16] or continuum approaches based on phase-field
[17], Ginzburg-Landau [18,19], or classical density functional
[20,21] theory. However, it is computationally challenging to
conduct any systematic studies across a reasonable range of
material parameters, particularly for alloy systems, for which
very limited results are available to date. For example, the
alloying effect on the kinetic coefficient is not yet understood,
with only a few data obtained from recent MD simulations
of binary ordered phases which estimated the value of the
kinetic coefficient at the melting temperature [6,15,16]. Most
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MD and MC studies of the alloy solid-liquid interfacial
energy have been focused on either zero [13] or a specific
finite value of [14] atomic size difference between alloy
components, while a systematic understanding of the effects of
the associated compositional strain [22,23], which is known to
play an important role in determining material microstructures,
properties, and growth morphologies, is still lacking.

The focus of this work is on identifying the key factors
governing alloy crystal-melt interfacial properties, particularly
the effects generated by compositional stresses and by the
couplings among mesoscopic structural amplitudes and alloy
concentration and the underlying microscopic crystalline
lattice. This leads to new scaling behaviors of the alloy
interfacial free energy γ and kinetic coefficient μk , a reversal of
γ anisotropy caused by compositional strain, and an interface
lattice pinning effect that is crucial in determining the system
growth mechanisms and dynamics. Our findings reveal that
these results depend not only on the interface orientation as
expected, but also on the impacts of interface preferential
segregation and the corresponding compositionally induced
interface stresses.

To obtain a generic understanding of such effects, here we
adopt a model alloy system which incorporates the crystalline
symmetry from a simple but fundamental aspect. It also
enables us to systematically examine the varying conditions
of compositional strain. More specifically, we develop a new
nonadiabatic complex amplitude approach for binary alloys
based on the phase-field crystal (PFC) method [24–26]. In
PFC models lattice symmetry is built into the system free
energy functional via the selection and competition between
different modes of characteristic microscopic length scales
(e.g., minimum one mode for two-dimensional (2D) triangular
and three-dimensional (3D) bcc structures [24], two modes for
fcc and hcp [27,28], and three modes for simple cubic [28] and
also some complex 2D phases and superlattices [29]). In this
work we focus on the 2D triangular system, to emphasize the
fundamental aspects of the alloying effects and the essential
features of our approach, which can be readily generalized to
other systems. In addition, the properties identified here can
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be used for the study of various 2D crystallization phenomena
such as the epitaxial growth of submonolayer islands for
metallic alloy overlayers [30] or novel 2D materials [31].

This paper is organized as follows. In Sec. II the complex
amplitude formulation for a binary alloy system is derived
and presented, showing new results of nonadiabatic correc-
tions that originate from the coupling between microscopic
and mesoscopic spatial scales. The corresponding interface
equations of motion and the analytic expressions of interfacial
quantities derived are given in Sec. III. In Sec. IV detailed
numerical calculations of liquid-solid interfacial properties are
conducted, with new scaling behaviors and effects of compo-
sitionally generated stresses being identified and discussed. A
brief summary of our results is given in Sec. V.

II. NONADIABATIC AMPLITUDE EQUATIONS
FOR THE BINARY PFC

We start from the PFC model equations governing the
dynamics of a dimensionless atomic density variation field n =
(ρ − ρl)/ρl and an alloy concentration field ψ = (ρA − ρB)/ρ
for a binary alloy system, where ρ = ρA + ρB is the total
atomic number density, ρA(B) is the density of A(B) atoms,
and ρl is a reference-state density. These dynamic equations
can be written in a rescaled form [32],

∂n/∂t = ∇2 δF

δn
+ m∇2 δF

δψ
+ ∇ · ηn, (1)

∂ψ/∂t = m∇2 δF

δn
+ ∇2 δF

δψ
+ ∇ · ηψ, (2)

where the mobility contrast m = (MA − MB)/(MA + MB),
with MA (MB) the atomic mobility of alloy component A
(B), ηn and ηψ are noise fields, and for the one-mode PFC the
free energy functional is given by

F =
∫

d r
{

− 1

2
εn2 + 1

2
n
(∇2 + q2

0

)2
n + 1

3
g2n

3 + 1

4
n4

+ 1

2
K0|∇ψ |2 + 1

2
(w0 + 2v1n + gn2)ψ2 + 1

4
u0ψ

4

+ 2αn(∇2 + ∇4)(nψ)

}
. (3)

Here ε is proportional to the temperature distance from
the melting point, q0 = 1 after rescaling over a length
scale of lattice spacing, and g2, K0, w0, v1, g, and u0

are phenomenological model parameters determining system
properties including elastic moduli and the phase diagram
(e.g., eutectic or isomorphous; see Ref. [32] for a more detailed
description). Also, α is the solute expansion coefficient [22],
defined as α = ∂ ln a/∂ψ (with a the alloy lattice constant),
which characterizes the atomic size mismatch between alloy
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FIG. 1. Schematic of a triangular lattice for a binary A-B system.
The directions of qj = (1 + δ0)q0

j and q ij = q i − qj (with i,j =
1,2,3) and lattice spacings ax , ay = √

3ax are indicated.

components. It gives rise to the compositional strain αψ

generated by local composition variations [22,23].
In the standard amplitude formulation of a crystalline

system [32–34], the density field n is expanded as n = n0 +∑
j Aje

iq0
j ·r + c.c., where n0 is the average density variation

[i.e., n0 = (ρ0 − ρl)/ρl , with ρ0 the average number density]
and q0

j are the basic wave vectors of the crystalline lattice [j =
3 for a triangular structure with q0

1 = −q0(
√

3x̂/2 + ŷ/2),
q0

2 = q0ŷ, and q0
3 = q0(

√
3x̂/2 − ŷ/2)]. Both the complex

amplitudes Aj and the alloy concentration field ψ are assumed
to vary on “slow” scales, which can be separated from the
underlying “fast” scales of crystalline lattice. However, for thin
enough interfaces such an adiabatic approximation of the scale
separation is no longer valid, and nonadiabatic corrections [35]
are needed to account for the coupling between mesoscopic
(amplitudes and concentration) and microscopic (lattice)
length scales.

To derive the corresponding nonadiabatic amplitude equa-
tions, we follow the procedure of multiple-scale analysis
outlined in Refs. [32] and [35], including: (i) separate “slow”
vs “fast” scales of (X = ε1/2x, Y = ε1/2y, T = εt) vs (x,y,t),
and assume that concentration field ψ = ψ(X,Y,T ), complex
amplitudes Aj = Aj (X,Y,T ), and n0 = n0(X,Y,T ) in the
expansion of n; (ii) conduct a multiple-scale expansion on the
binary PFC equations, (1) and (2), and apply the solvability
conditions; (iii) keep the nonadiabatic coupling between slow
and fast spatial scales across interfaces of various orientations
(e.g., six directions for the triangular structure shown in Fig. 1);
and (iv) given the bulk compositional elastic effect, rewrite
amplitudes Aj = A′

j e
iq0

j ·uc with displacement vector uc = δ0r
to address the compositional strain in alloy systems, where
δ0 = √

1 − 2αψs − 1 (with ψs the equilibrium composition
in the solid bulk) can be identified from the corresponding free
energy minimization [32]. In the case of triangular symmetry,
to the lowest order we obtain

∂A′
1/∂t = −q2

0 (1 − m2)
δF
δA′∗

1

− (1 − m2)
∫ x±ax

x

dx ′

ax

∫ y+ay

y

dy ′

ay

[fp11e
iq1·r ′ + fp1e

−iq2·r ′ + fp0e
−iq3·r ′ + fp12e

iq12·r ′

+ fp13e
iq13·r ′ + f ∗

p33
eiq23·r ′ + f ∗

p2
eiq32·r ′

] + η1, (4)

022803-2



SCALING OF ALLOY INTERFACIAL PROPERTIES UNDER . . . PHYSICAL REVIEW E 93, 022803 (2016)

∂A′
2/∂t = −q2

0 (1 − m2)
δF
δA′∗

2

− (1 − m2)
∫ x±ax

x

dx ′

ax

∫ y+ay

y

dy ′

ay

[f ∗
p1

e−iq1·r ′ + fp2e
iq2·r ′ + f ∗

p3
e−iq3·r ′ + fp21e

iq21·r ′ + f ∗
p33

eiq13·r ′

+ f ∗
p11

eiq31·r ′ + fp23e
iq23·r ′

] + η2, (5)

∂A′
3/∂t = −q2

0 (1 − m2)
δF
δA′∗

3

− (1 − m2)
∫ x±ax

x

dx ′

ax

∫ y+ay

y

dy ′

ay

[f ∗
p0

e−iq1·r ′ + fp3e
−iq2·r ′ + fp33e

iq3·r ′ + fp31e
iq31·r ′ + f ∗

p2
eiq12·r ′

+ f ∗
p11

eiq21·r ′ + fp32e
iq32·r ′

] + η3, (6)

∂n0/∂t = ∇2 δF

δn0
+ m∇2 δF

δψ
−

∫ x±ax

x

dx ′

ax

∫ y+ay

y

dy ′

ay

[(fp0 + mfp′
0
)eiq13·r ′ + (fp1 + mfp′

1
)eiq12·r ′ + (fp3 + mfp′

3
)eiq32·r ′ + c.c.]

+∇ · η0, (7)

∂ψ/∂t = m∇2 δF

δn0
+ ∇2 δF

δψ
−

∫ x±ax

x

dx ′

ax

∫ y+ay

y

dy ′

ay

[(mfp0 + fp′
0
)eiq13·r ′ + (mfp1 + fp′

1
)eiq12·r ′ + (mfp3 + fp′

3
)eiq32·r ′ + c.c.]

+∇ · ηψ0
, (8)

where ax = 2π/qx and ay = 4π/qy are lattice spacings, qy = q0(1 + δ0), qx = √
3qy/2, qj = (1 + δ0)q0

j , qij = qi − qj , and
the integration terms are the nonadiabatic corrections representing the coupling between large and small length scales (i.e.,
meso-micro scale coupling), which is missing in previous amplitude analyses of alloy systems [32,34]. Coefficients fpij

, fpj
,

and fp′
j

are functions of the slowly varying amplitudes A′
j , n0, and concentration field ψ , i.e.,

fp0 = 3q2
0

[
(6n0 + 2g2)A′

1A
′∗
3 + 3

(
A′2

1 A′
2 + A′∗

2 A′∗
3

2)]
,

fp1 = 3q2
0

[
(6n0 + 2g2)A′

1A
′∗
2 + 3

(
A′2

1 A′
3 + A′∗

2
2
A′∗

3

)]
,

fp2 = 4q2
0

[
(3n0 + g2)A′2

2 + 6A′∗
1 A′

2A
′∗
3

]
,

fp3 = 3q2
0

[
(6n0 + 2g2)A′∗

2 A′
3 + 3

(
A′

1A
′2
3 + A′∗

1 A′∗
2

2)]
,

fp11 = 4q2
0

[
(3n0 + g2)A′2

1 + 6A′
1A

′∗
2 A′∗

3

]
,

(9)
fp33 = 4q2

0

[
(3n0 + g2)A′2

3 + 6A′∗
1 A′∗

2 A′
3

]
,

fpjk
= 21q2

0A′2
j A′∗

k (j �= k),

fp′
0
= 6q2

0

[
fψA′

1A
′∗
3 − q2

0α(A′
1G ′∗

3 A′∗
3 + A′∗

3 G ′
1A

′
1)

]
,

fp′
1
= 6q2

0

[
fψA′

1A
′∗
2 − q2

0α(A′
1G ′∗

2 A′∗
2 + A′∗

2 G ′
1A

′
1)

]
,

fp′
3
= 6q2

0

[
fψA′

3A
′∗
2 − q2

0α(A′
3G ′∗

2 A′∗
2 + A′∗

2 G ′
3A

′
3)

]
,

where

fψ = gψ + 2q2
0δ0

1α, δ0
1 = −2q2

0αψs, (10)

G ′
1,3 = ∇2 ∓ 2iqx∂x − iqy∂y, G ′

2 = ∇2 + 2iqy∂y. (11)

In the above amplitude equations the noise terms satisfy the conditions (with i,j = 1,2,3; μ,ν = x,y; ϑi = ϑ0 = ϑψ = ϑ = 1/7;
T the temperature; and  a rescaled constant [32])

〈ηj 〉 = 〈η0〉 = 〈ηψ0
〉 = 0,

〈ηiηj 〉 = 〈η0ηj 〉 = 〈η0η
∗
j 〉 = 〈ηψ0

ηj 〉 = 〈ηψ0
η∗

j 〉 = 0,

〈ηiη
∗
j 〉 = 2(1 − m2)ϑiq

2
0kBT δ(r − r ′)δ(t − t ′)δij ,

(12)〈
η

μ

0 ην
0

〉 = 2ϑ0kBT δ(r − r ′)δ(t − t ′)δμν,〈
η

μ
ψ0

ην
ψ0

〉 = 2ϑψkBT δ(r − r ′)δ(t − t ′)δμν,〈
η

μ
ψ0

ην
0

〉 = 2mϑψkBT δ(r − r ′)δ(t − t ′)δμν.

In Eqs. (4)–(8) the free energy functional F is given by

F =
∫

d r
[∑

j
|G ′

jA
′
j |2 + 1

2
K0|∇ψ |2 −

∑
j

(
2q2

0αψ + δ0
1

)
(A′∗

j G ′
jA

′
j + c.c.) + f (A′

j ,n0,ψ)

]
, (13)
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where f is the bulk free energy density, i.e.,

f =
∑

j

( − ε + 3n2
0 + 2g2n0 + δ0

1
2 + 4q2

0δ0
1αψ

)|A′
j |2 + 3

2

∑
j

|A′
j |4 + (6n0 + 2g2)

⎛
⎝∏

j

A′
j + c.c.

⎞
⎠ + 6

∑
j<k

|A′
j |2|A′

k|2

+ 1

2

( − ε + q4
0

)
n2

0 + 1

3
g2n

3
0 + 1

4
n4

0 +
(

1

2
w0 + 1

2
gn2

0 + v1n0 + g
∑

j
|A′

j |2
)

ψ2 + 1

4
u0ψ

4. (14)

Note that the free energy functional given in Eq. (13) [and also Eq. (3)] is invariant with respect to α → −α and ψ → −ψ . Also,
the free energy terms in Eqs. (13) and (14) incorporate the coupling between the composition profile and the system elasticity
and, also, between the mesoscopic structural amplitudes and the alloy concentration (i.e., meso-meso scale coupling).

To identify the elastic energy of this alloy system, we rewrite the amplitudes as A′
j = |Aj |eiq0

j ·us ≡ φeiq0
j ·us in the limit of

small deformations, where us = (us
x,u

s
y) is the displacement field and φ = |Aj |. Substituting it into Eq. (13) we obtain the system

elastic energy (to the leading order)

Felastic =
∫

d r
{

3q4
0

(
1 + δ2

0

)
φ2

[
3

2

(
u2

xx + u2
yy

) + uxxuyy + 2u2
xy

]
+ 3δ0

1

(
4q2

0αψ + δ0
1

)
φ2 − 12

(
q2

0αψ + δ0
1

)
φ∇2φ

+ 3q2
0

(
2q2

0αψ + δ0
1

)
φ2[2(1 + δ0)(uxx + uyy) + u2

xx + u2
yy + 2

(
u2

xy + �2
xy

)]}
, (15)

where uij = (∂iu
s
j + ∂ju

s
i )/2 is the linear strain tensor and

�ij = (∂iu
s
j − ∂ju

s
i )/2 is the rotation tensor [22]. The last two

terms of Eq. (15) incorporate the compositionally induced
interface elastic effects, given that both φ∇2φ and 2q2

0αψ +
δ0

1 = 2q2
0α(ψ − ψs) are nonzero only around the interface.

These terms drive the process of solute preferential segregation
towards the liquid-solid interface and determine whether the
local elastic deformation is compressive or tensile (noting that
around the interface ψ − ψs > 0 for ψs < 0 but ψ − ψs < 0
for ψs > 0), as further discussed in Sec. IV.

III. INTERFACE EQUATIONS OF MOTION WITH SCALE
COUPLING AND PINNING EFFECTS

The above nonadiabatic amplitude equations can be further
coarse-grained to derive the interface equations of motion. We
first apply the projection operator method [36] around a fixed
interface orientation θ = θ0 (the angle between the interface
normal n̂ and the vertical ŷ direction), so that different scales
of variations can be separated for local curvilinear coordinates
u (along n̂) and s. The results are then extended to the general
case of θ via a variation scheme [37,38] for the system

free energy. Detailed procedure and the resulting interface
equations are given in the Appendix. Here we focus on a
simplified case for which n0 is assumed to be a constant due to
the secondary effect of its variation in an alloy system. At the
liquid-solid interface the anisotropic form of the generalized
Gibbs-Thomson relation is then given by

μ−1
k (θ,m)vn =−� − (γ + γ ′′)κ − p0(θ ) sin(qhn + ϕ) + ηv,

(16)

where vn is the normal velocity of the interface, κ is the local
curvature, hn represents the interface height, q = |qj | or |qij |,
and ηv is a noise term. The interface supersaturation is given
by � = q2

0�ψ0δμψ (u = 0,s) (the same expression as that in
Ref. [39] for isothermal solidification), where the miscibility
gap �ψ0 = ψ0(+∞) − ψ0(−∞) ≡ ψl − ψs , the chemical
potential μψ (u,s) = δF/δψ , and δμψ = μψ − μ

eq
ψ , with μ

eq
ψ

the equilibrium value determined by one-dimensional (1D)
solutions ψ0(u) and A0

j (u) governing liquid-solid coexistence
[see Eqs. (A1)–(A3) in the Appendix]. The interface at
u = 0 is defined as a Gibbs surface satisfying the condition∫ +∞
−∞ du[ψ0(u) − ψ0(±∞)] = 0. In Eq. (16) the interfacial

free energy is expressed as

γ (θ ) = q2
0

∫ +∞

−∞
du

{
K0(∂uψ0)2 + 4

∑
j

[∣∣∂2
uA0

j

∣∣2 + (
β2

j /2 + 2q2
0αψ0 + δ0

1

)∣∣∂uA
0
j

∣∣2 + q2
0α

(
∂u

∣∣A0
j

∣∣2)
(∂uψ0)

]

+ 2
∑

j
(∂θβj )

[
i
(
∂2
uA0

j

)(
∂uA

0
j

∗) + c.c.
]}

, (17)

with β1,3 = ∓2qx cos θ + qy sin θ = 2qy sin(θ ∓ π/3) and β2 = −2qy sin θ , and the kinetic coefficient μk(θ,m) is determined
by

μ−1
k =

∫
du

1 − m2

{
2
∑

j

∣∣∂uA
0
j

∣∣2 + q2
0

[
ψ2

0 − ψ2
0 (±∞)

]}
. (18)

An important feature incorporated in Eq. (16) is the coupling to the underlying lattice structure, which results in a sine-
Gordon-type term p0 sin(qhn + ϕ) resembling a periodic pinning potential. The corresponding lattice pinning strength p0 and
phase ϕ are orientation dependent, i.e.,

p0e
iϕ = 2i[pA(θ ) + pψ (θ )], (19)
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where pA originates from the meso-micro scaling coupling for the amplitudes A′
j given in Eqs. (4)–(6), while pψ originates from

the scale coupling of the ψ field in Eq. (8), with pψ = 0 at θ = 0, ±π/3 (qj directions) and pψ �= 0 at θ = π/2, ±π/6 (qij

orientations). Specifically,

pψ = q2
0

{[∫ +∞

0
duψ0(u)

∫ +∞

u

du′ −
∫ 0

−∞
duψ0(u)

∫ u

−∞
du′

]
I (u′) −

(∫ +∞

0
du[ψ0 − ψ0(+∞)]

) ∫ +∞

−∞
duI (u)

}
, (20)

where I (u) = ∫ u+ax

u
du′eiqu′

f ∗
p′

k
(u′)/ax with k = 0,1,3 for orientations θ = π/2 (for q31), π/6 (for q21), and −π/6 (for q23),

respectively. Also,

pA(θ = 0) =
∫ +∞

−∞
dueiqu

(
A0

1∂uf
∗
p1

+ A0
2
∗
∂ufp2 + A0

3∂uf
∗
p3

)
(q = qy for direction q2), (21)

pA(θ = π/3) =
∫ +∞

−∞
dueiqu

(
A0

1∂uf
∗
p11

+ A0
2
∗
∂uf

∗
p1

+ A0
3
∗
∂uf

∗
p0

)
(q = qy for direction − q1), (22)

pA(θ = −π/3) =
∫ +∞

−∞
dueiqu

(
A0

1
∗
∂ufp0 + A0

2
∗
∂uf

∗
p3

+ A0
3∂uf

∗
p33

)
(q = qy for direction − q3) (23)

pA(θ = π/2) =
∫ +∞

−∞
dueiqu

(
A0

1∂uf
∗
p13

+ A0
2∂ufp33 + A0

2
∗
∂uf

∗
p11

+ A0
3
∗
∂ufp31

)
(q = 2qx for direction q31) (24)

pA(θ = π/6) =
∫ +∞

−∞
dueiqu

(
A0

1∂uf
∗
p12

+ A0
2
∗
∂ufp21 + A0

3∂ufp2 + A0
3
∗
∂uf

∗
p11

)
(q = 2qx for direction q21) (25)

pA(θ = −π/6) =
∫ +∞

−∞
dueiqu

(
A0

1∂ufp2 + A0
1
∗
∂uf

∗
p33

+ A0
2
∗
∂ufp23 + A0

3∂uf
∗
p32

)
(q = 2qx for direction q23) (26)

Given the condition qx = √
3qy/2, from Eqs. (17)–(26) and

Eqs. (A1)–(A5) it can be shown that these interfacial quantities
γ , μk , and p0 are periodic functions of the orientation angle
θ with a periodicity of π/3, consistent with the triangular
symmetry of the system. Thus results for directions q2 and
−q1,3 (with θ = 0, ± π/3) are equivalent; so are the results
for directions q31, q21, and q23 (with θ = π/2, ± π/6).

In addition, the continuity condition at the solid-liquid
interface (i.e., u = 0) is given by

vn�ψ0 = (1 − m2)[(∇δμψ )solid − (∇δμψ )liquid] · n̂. (27)

Here δμψ (u,s) is determined by the solutions of variations
δAj = A′

j − A0
j (±∞) and δψ = ψ − ψ0(±∞) that are gov-

erned by

∂f

∂A′∗
j

∣∣∣∣
1

= 0,
∂δψ

∂t
= (1 − m2)∇2δμψ = (1 − m2)∇2 ∂f

∂ψ

∣∣∣∣
1

,

(28)

where “|1” refers to the expansion of ∂f/∂A′∗
j or ∂f/∂ψ to

first order of δAj and δψ .
Note that three key features have been intrinsically incor-

porated in the above formulation of interfacial properties: (i)
meso-meso and meso-micro scale couplings, (ii) crystalline
anisotropy, and, importantly, (iii) compositionally generated
elastic effects. These are further illustrated in the numerical
results summarized in the next section.

IV. PROPERTIES OF THE ALLOY
SOLID-LIQUID INTERFACE

The analytic results given in Eqs. (17)–(26) allow us
to accurately and systematically determine the crystal-
melt interfacial properties for binary alloys. Here we fo-
cus on a sample eutectic system, with model parameters

(n0,w0,g,g2,u0,K0,v1) = (−0.2,0.1,−1.8,−0.6,4,1,0), and
numerically calculate the interfacial free energy γ , kinetic
coefficient μk , and lattice pinning strength p0 over various
ranges of parameters α (the solute expansion coefficient) and
ε (the effective reduced temperature) at different interface
orientations θ . The corresponding eutectic phase diagrams can
be constructed analytically based on the free energy density
determined by Eq. (14), with some sample results shown in
Fig. 2. Although in these phase diagrams the ψs(l) values for
positive and negative branches of solidus (liquidus) lines are

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
ψ0

0

0.1

0.2

0.3

0.4

0.5

ε

α=0

α=0.3

Liquid

Solid Solid

FIG. 2. Eutectic phase diagrams obtained from the complex
amplitude model with 2D triangular symmetry, for α = 0 and
0.3, and (n0,w0,g,g2,u0,K0,v1) = (−0.2,0.1, − 1.8, − 0.6,4,1,0).
Dashed lines are metastable extensions of the liquidus and solidus
curves. Symbols indicate some of the data points used in our
calculations of solid-liquid interfacial properties. Phase diagrams for
other values of α and the corresponding data points used are similar.
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FIG. 3. (a) The solid-liquid interfacial free energy γ as a function
of the reduced temperature ε, for α = 0.3 and α = 0 (inset). (b) γ

as a function of the miscibility gap �ψ0. Filled or open symbols
correspond to the x̂ (θ = π/2) or ŷ (θ = 0) interface orientation.
Results for both positive and negative solidus (liquidus) alloy
compositions ψs(l) are shown.

symmetric, the associated interfacial properties (i.e., γ , μk ,
and p0) are different due to the effect of compositional strain
at the interface. The corresponding numerical results are given
in Figs. 3–14.

A. Interfacial free energy

We have calculated the interfacial free energy γ from
Eq. (17) for various interface orientations, with θ values rang-
ing from 0 to π/3, which are determined from the directions
of kqi − lqj (with i,j = 1, 2, 3 and k,l integers). Our results,
shown in Fig. 3, indicate that γ increases with decreasing (or
increasing) system temperature (or ε value) and increasing
miscibility gap �ψ0, for all values of the α and ε parameters.
This is consistent with experimental measurements of, e.g.,
Zn-Sn, Zn-In, and Al-Sn eutectic systems [40] and also the
phase-field modeling of the Ni-Cu isomorphous alloy [17].
This can be attributed to the larger composition gradient
∂uψ

0
0 around the interface for larger �ψ0. It leads to the

increase in the compositional free energy [see Eq. (13)],
which is absent in the excess configurational entropy theory
for single-component systems [41]. Interestingly, at a given
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γ ∝ E2
γ ∝ E2

γ ∝ E2 γ ∝ E2

FIG. 4. Scaling of γ as a function of the Young’s modulus E.

interface orientation the results for γ for different ranges of
ε and α fall onto a scaling relation as a function of Young’s
modulus E, as illustrated in Fig. 4. Parameters of this scaling
curve depend on the selection of either the positive (ψs(l) > 0)
or the negative (ψs(l) < 0) branch of solidus-liquidus lines
due to the different effects of compositional strain caused by
nonzero α (see below for more discussion). Actually, a similar
type of data collapse vs E has been obtained from measurement
data of the surface free energy for some pure metals and alloys
(although with different scaling relations for those solid-vapor
results) [42], yielding the correlation between the solid surface
energy and the mechanical property of materials.

For triangular symmetry the anisotropy of the interfacial
energy can be represented by the expansion

γ = γ0(1 + ε1 cos 6θ + ε2 cos2 6θ + . . . ), (29)

where ε1 and ε2 are anisotropic parameters. In previous
studies usually only the first-order expansion (ε1) is kept.
The approach given in Eq. (17) can accurately determine
even very weak anisotropy of γ , and our numerical data
can be well fitted into this second-order form, as shown in

-1 -0.5 0 0.5 1
cos6θ

0.0122

0.0124

0.0126

γ

-1 -0.5 0 0.5 1
cos6θ
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γ
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0.0178
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0.0282

0.0284

0.0286

0.0288

(a) α=0.1, ε1<0

(c) α=0.25, ε1>0 (d) α=0.3, ε1>0

(b) α=0.23, ε1<0

FIG. 5. Sample plots of the interfacial free energy γ vs cos 6θ ,
for ψs(l) < 0, ε = 0.2, and α = 0.1, 0.23, 0.25, 0.3.
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FIG. 6. Sample plots of interfacial free energy γ vs cos 6θ , for
ψs(l) > 0, ε = 0.2, and α = 0.1, 0.23, 0.25, 0.3.

Figs. 5 and 6 for negative (ψs(l) < 0) and positive (ψs(l) > 0)
solidus/liquidus branches, respectively. The corresponding
results for the parameters γ0, ε1, and ε2 are given in Fig. 7. Note
that for ψs(l) > 0, ε2 is around an order of magnitude smaller
than ε1, but they can be of a similar order for large enough
α when ψs(l) < 0. Also, γ0 increases with the magnitude
of α due to the larger contribution of the compositional
strain.

The important role played by the alloy compositional strain
is further illustrated by its effect on the anisotropic parameter
ε1 [Fig. 7(b)]: For ψs(l) < 0 the increase in α leads to a
reversal in sign of ε1 (see also Fig. 5), and thus a shape
change (with a rotation of 30◦) in the polar plots of γ and
the interfacial stiffness γ + γ ′′ given in Fig. 8(a); however,
no such changes occur for ψs(l) > 0 [see Figs. 6, 7(b), and
8(b)], which instead gives a weak dependence of ε1 on α.
This difference indicates an asymmetric effect of compressive
vs tensile compositional stress at the interface. For α > 0
(corresponding to a larger size of atom A compared to atom
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ε 1
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(a)

(b)

(c)

FIG. 7. γ0 and anisotropy parameters ε1, ε2 vs α at ε = 0.2.
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FIG. 8. Polar plots of interfacial free energy γ (solid lines) and
stiffness γ + γ ′′ (dashed lines) for ε = 0.2, α = 0 and 0.3.

B), ψs(l) < 0 indicates the abundance of smaller B atoms in
the alloy. In the solid surface layer where ψ > ψs (given
ψs < ψl < 0), a surface enrichment of larger atoms A occurs,
resulting in a compressive solid surface layer with respect to
the bulk, and its contribution to the excess interface free energy
increases with α [see the interface elastic energy terms given in
Eq. (15)]. When the anisotropy of this interface elastic energy
contribution is opposite to that of the noncompositional ones,
the sign of ε1 will reverse at large enough α as shown in
Fig. 7(b). On the other hand, our results for ε1 for ψs(l) > 0
indicate that this anisotropy contrast does not exist (or is
too weak) for the tensile-stress interface characterized by the
enrichment of smaller B atoms (at least for the range of α

values examined in our numerical calculations).
To verify this compositionally induced interface stress, as in

Sec. II we rewrite A′
j = |Aj | exp(iq0

j · us), where q0
j · us ≡ ϕj

is the phase of the complex amplitude. Its gradient along
the interface normal, ∂uϕj , will then yield the local strain
of the system. In the equilibrium state this gradient always
vanishes in the bulk and will be nonzero around the solid-
liquid interface if the above scenario of surface preferential
segregation occurs. This has indeed been seen in our numerical
results for A0

j , as obtained from solving the 1D amplitude
equations, (A1)–(A3), at various interface orientations θ . A
sample result is presented in Fig. 9, showing equilibrium
interfacial profiles of amplitude and concentration for both
ψs(l) > 0 and ψs(l) < 0 of solid-liquid coexistence. As shown
in Fig. 9(c), the phase ϕj = 0 in the solid bulk and is nonzero
only around the interface, yielding an opposite sign of gradient
∂uϕj for positive vs negative ψs(l) when α �= 0. This gives rise
to different type of interface strain, i.e., tensile vs compressive,
which is attributed to the phenomenon of interface segregation
and deformation as discussed above. Similar results can be
found in our calculations with other choices of parameters
(e.g., ε, θ , and nonzero α). Note that the surface/interface
stress identified here is different from the single-component
case, for which the nonzero phase ϕj and its spatial gradient
around the interface have also been obtained in our solutions
of amplitude equations. However, in the alloy system studied
here we have additional surface/interface stress generated by
the compositional effect, giving the opposite type of strain
for positive vs negative solidus/liquidus branches, which
is absent in the single-component system and only occurs
when α �= 0.
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FIG. 9. Solid-liquid coexistent profiles of (a) ψ , (b) |A2|, and (c)
phase ϕ2, for both positive and negative solidus/liquidus branches
with ε = 0.2, α = 0.3, θ = 0, and (n0,w0,g,g2,u0,K0,v1) =
(−0.2,0.1, − 1.8, − 0.6,4,1,0).

B. Interface kinetic coefficient

For the kinetic coefficient μk , to the best of our knowledge,
results for eutectic or isomorphous systems are still lacking,
from either experiments or atomistic simulations, while only
limited MD data are available for B2 and B33 ordered phases
at the melting temperature (Cu50Zr50 B2, Ni50Al50 B2, and
Ni50Zr50 B33 [6,15,16]). For the eutectic system examined
here, our calculations indicate a change of sign of μk from
positive to negative at a large enough miscibility gap (with a
large enough ε, i.e., not close to the melting point, or large
α). This is shown in Fig. 10, which also shows the decrease
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FIG. 10. Inverse kinetic coefficient μ−1
k as a function of reduced

temperature ε, for α = 0 and 0.3. Inset: μ−1
k vs solute expansion

coefficient α at ε = 0.2.
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FIG. 11. Anisotropy of the kinetic coefficient as a function of the
solute expansion coefficient α at ε = 0.2.

in the inverse kinetic coefficient μ−1
k with the increase in

ε and α. This is consistent with the previous phase-field
study [36], which showed that for a growing interface with
μk < 0, the relaxation of the interface profile would lag
behind the advancing front. Note that these results are obtained
under isothermal conditions, with the thermodynamic driving
force � being the interface supersaturation of the alloy
concentration. It is different from many previous studies of
single-component systems based on interface undercooling,
although the basic mechanisms inside are similar [39].

A weak crystalline anisotropy of μk and its dependence on
the compositional strain (or α) are found in our calculations for
this alloy system of triangular structure. For the sample results
shown in Fig. 11, around 2%–8% anisotropy (varying for
different α values) is obtained at ε = 0.2, with the minimum
(maximum) magnitude of μk found at orientation [8 13]
with θ = 7.59◦ ([5 7] with θ = 13.90◦) for ψs(l) > 0 and at
orientation [11 13] with θ = 21.79◦ ([5 7] with θ = 13.90◦)
for ψs(l) < 0.

More interestingly, a scaling behavior can be identified for
μk when plotted against the miscibility gap �ψ0. As shown
in Fig. 12, data for various values of ε and α well converge
to a universal curve, μ−1

k = a − b�ψ2
0 , although the scaling

parameters a and b are different for positive and negative
solidus/liquidus branches. Similar to the case discussed above,
this difference can be attributed to the effect of compositional
strain. It causes the preferential segregation of larger (for
ψs(l) < 0) or smaller (for ψs(l) > 0) atomic species on the
solid surface and thus the compressive or tensile interface
compositional stress, leading to different interface kinetics
with smaller or larger values of μk , respectively. This further
demonstrates the important role played by the mesoscale
coupling between the variation of the alloy concentration field
and the kinetics of the interface structural profile.

Note that these results are for alloy constituents of equal
mobility, i.e., m = 0. For nonzero mobility contrast, values of
μk should be multiplied by a factor of 1 − m2 [see Eq. (18)].
This will then lead to |μk| � 1 in the limit of m → ±1 (with
MA � MB or MA � MB), consistent with the scenario of a
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FIG. 12. Scaling of μ−1
k as a function of the miscibility gap �ψ0,

for different ranges of ε and α.

frozen solid-liquid front due to the hindrance or pinning of one
of the atomic components that is immobile.

C. Lattice pinning strength

There exists a fundamentally different type of pinning effect
that originates from the micro-meso length scale coupling
between the microscopic lattice structure and the mesoscopic
interface amplitudes and concentration, as incorporated in
Eqs. (16) and (19)–(26). This lattice coupling effect leads
to two distinct modes of interface growth: As in the single-
component case [35], the solid front will advance in a contin-
uous mode when the magnitude of the thermodynamic driving
force (i.e., |�|) overcomes the lattice pinning strength p0;
otherwise, when |�| < p0 the interface growth is characterized
by a thermal activation and nucleation process, a scenario that
is consistent with the crystal growth theory of Cahn [43]. For
eutectic alloys our calculations show that p0 is anisotropic as
expected, as presented in Fig. 13, which shows the results for
p0 calculated from Eqs. (19)–(26) for two interface growth
directions, θ = 0 (ŷ direction with strength p0y) and θ = π/2
(x̂ direction with strength p0x). We obtain a large crystalline
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FIG. 13. Pinning strength p0 as a function of the solute expansion
coefficient α, for ε = 0.2 and two interface orientations θ = 0, π/2.
Inset: Anisotropy ratio of p0 as a function of α.
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FIG. 14. p0 as a function of the interface thickness ξ , for ε = 0.2,
α = 0 − 0.3, ψs(l) > 0 (squares), and ψs(l) < 0 (circles).

anisotropy of p0, with the ratio p0x/p0y ranging from 1.61
to 2.83 (see the inset in Fig. 13). Also, for a large enough
compositional strain, this lattice pinning strength increases
with the magnitude of α for both ψs(l) > 0 and < 0 and at both
interface orientations.

Since this pinning effect is attributed to the nonadiabatic
scale coupling at the interface, it is expected to increase
with a sharper interface and follow a universal relation,
p0 ∼ exp(−αpξ ) (with ξ the interface thickness and αp a
constant), for a given interface orientation as identified in
pure systems [35]. However, for alloying systems this relation
only holds within some limited ranges of ξ , while for wide
enough interfaces a hysteresis-type behavior of p0 vs ξ occurs,
as shown in Fig. 14. This behavior arises from the coupling
between structural and concentration profiles, causing another
asymmetric effect of nonzero compositional strain. For liquid-
solid interfaces of the same width ξ , larger (smaller) alloy
components are enriched in the solid surface layer for ψs(l) < 0
(ψs(l) > 0) and α > 0, leading to a higher (lower) pinning
strength of the underlying interface lattice as illustrated in
Fig. 14.

V. SUMMARY

We have systematically identified the effects of length-scale
coupling and compositional stresses on key interfacial proper-
ties and their scaling behaviors for binary alloys, based on a
complex PFC amplitude model and the corresponding coarse-
graining scheme and sharp/thin-interface analysis. The method
developed here can be directly applied to other 2D and 3D
systems of different crystalline symmetries (as incorporated in
the PFC models via mode selection and coupling). All of them
can be reduced to effective 1D interfacial systems for different
orientations as described above, making the calculation much
more efficient compared to previous atomistic computation ef-
forts conducted in full dimensions. Importantly, this approach
has incorporated system elasticity, crystalline symmetry and
anisotropy, and couplings between different length scales that
are missing in conventional continuum approaches.

It is also important to note that although what we study here
is a model system, it can be parameterized to match to specific
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materials (via fitting to MD results for the liquid-state direct
correlation function and solid-state density amplitude [44,45],
to first-principles calculations [46], or to thermodynamics
databases [47]). As such our method would provide a viable
route for quantitatively determining key interfacial properties
including the interfacial free energy, kinetic coefficient, and
lattice pinning that govern material growth and solidification
processes. Quantitative results for these interfacial properties
should then depend on the atomistic specifics of the material
examined. Nevertheless, the modeling scheme presented above
is based on general principles of symmetry and length scale
couplings (micro-meso and meso-meso). Thus some results
obtained here, in particular, the scaling behaviors identified,
are expected to be intrinsic and not sensitive to microscopic
details of alloy constituents and their interactions, a feature
that is important for gaining fundamental insights of material
properties.
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APPENDIX : DERIVATION OF INTERFACE EQUATIONS
OF MOTION WITH LATTICE PINNING

We conduct a coarse-graining analysis of the nonadiabatic
amplitude equations, (4)–(8), and derive the corresponding
anisotropic sharp/thin-interface equations of motion. Two
derivation steps are needed: (i) The projection operator method
[36] is used to obtain the interface equations in local curvilinear
coordinates around a certain interface orientation. (ii) A
variation method similar to that in Refs. [37] and [38] is applied
to the free energy of the system, to identify the anisotropic
form of the Gibbs-Thomson relation. Detailed results are
given below, including the general formulation of the interface
equations and the corresponding interfacial quantities (in the
case of varying n0), as well as the simplified case of n0 = const.
which leads to Eqs. (16)–(28) in Sec. III.

1. Interface equations for a fixed orientation θ = θ0

Using the standard procedure of the sharp/thin-interface
approach [35,36,38], we first examine separately the inner
region close to the interface and the outer region far from it, via
expansion of the variables in orders of a small parameter ε (the
interface Péclet number), and then match the inner and outer
solutions to determine the interfacial boundary conditions. For
a certain liquid-solid interface orientation θ0, we can assume
θ (s) = θ0 + εθ̃ , where θ is the angle between the local normal
direction n̂ of the interface and the ŷ axis. We also assume
different scalings along and perpendicular to the interface
normal in the inner region, i.e., u/ξ and εs/ξ (with ξ the
interface thickness) for local curvilinear coordinates u and s.
At O(1) we obtain the 1D equilibrium solutions A′

j = A0
j (u),

n0 = n0
0(u), and ψ = ψ0(u) for a planar interface oriented at

θ0 in the liquid-solid coexistence, i.e.,

δF
δA′∗

j

∣∣∣∣
0

= 0, ∂2
uμ0

ψ = 0, ∂2
uμ0

n0
= 0, (A1)

where

δF
δA′∗

j

∣∣∣∣
0

= ∂f

∂A′∗
j

∣∣∣∣
0

+ G0
j

(
G0

j − 2δ0
1

)
A0

j

− 2q2
0α

[
ψ0G0

j A
0
j + G0

j

(
ψ0A

0
j

)]
, (A2)

μ0
ψ = δF

δψ

∣∣∣∣
0

= μ
eq
ψ

= ∂f

∂ψ

∣∣∣∣
0

− K0∂
2
uψ0 − 2q2

0α
∑

j

(
A0

j

∗G0
j A

0
j + c.c.

)
, (A3)

μ0
n0

= ∂f

∂n0

∣∣∣∣
0

= μeq
n0

, (A4)

with

G0
1,3 = ∂2

u + i(∓2qx sin θ0 − qy cos θ0)∂u,
(A5)

G0
2 = ∂2

u + 2iqy cos θ0∂u.

These 1D zeroth-order solutions A0
j , n0

0, and ψ0 are used in
the calculations at O(ε), which lead to the following interface
equations after matching the inner and outer expansions. The
continuity conditions at the solid-liquid interface are written
as

vn

(
�n0

0 − m�ψ0
) = (1 − m2)[∂uδμn0 |0− − ∂uδμn0 |0+ ]

= (1 − m2)[(∇δμn0 )solid

− (∇δμn0 )liquid] · n̂, (A6)

vn

(
�ψ0 − m�n0

0

) = (1 − m2)[∂uδμψ |0− − ∂uδμψ |0+ ]

= (1 − m2)[(∇δμψ )solid

− (∇δμψ )liquid] · n̂, (A7)

where �n0
0 = n0

0(+∞) − n0
0(−∞), �ψ0 = ψ0(+∞) −

ψ0(−∞), δμn0 = μn0 − μ
eq
n0 , and δμψ = μψ − μ

eq
ψ . The

first-order outer equations governing the perturbations
δAj = A′

j − A0
j (±∞), δn0 = n0 − n0

0(±∞), and
δψ = ψ − ψ0(±∞) are given by

∂f

∂A′∗
j

∣∣∣∣
1

= 0,

∂δn0

∂t
= ∇2δμn0 + m∇2δμψ = ∇2 ∂f

∂n0

∣∣∣∣
1

+ m∇2 ∂f

∂ψ

∣∣∣∣
1

,

∂δψ

∂t
= m∇2δμn0 + ∇2δμψ = m∇2 ∂f

∂n0

∣∣∣∣
1

+ ∇2 ∂f

∂ψ

∣∣∣∣
1

.

(A8)

At a moving interface the boundary condition is given
by a generalized form of the Gibbs-Thomson relation that
incorporates the coupling and pinning of the underlying lattice
structure, i.e., for an interface orientation θ0,

μ−1
k vn = −� − γ κ − p0 sin(qhn + ϕ) + ηv, (A9)

where the thermodynamic driving force (interface super-
saturation) � = q2

0 [�ψ0δμψ (0,s) + �n0
0δμn0 (0,s)], γ is the

interfacial free energy expressed by Eq. (17) for a given θ = θ0,
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and the noise ηv is governed by

〈ηv〉 = 0, 〈ηv(s,t)ηv(s ′,t ′)〉 = 2Dvδ(s − s ′)δ(t − t ′), (A10)

with Dv = ϑq2
0kBT μ−1

k . The kinetic coefficient μk is deter-
mined by

μ−1
k = (1 − m2)−1

∫ +∞

−∞
du

⎧⎨
⎩2

∑
j

∣∣∂uA
0
j

∣∣2

+ q2
0

[
ψ2

0 − ψ2
0 (±∞) + n0

0
2 − n0

0
2
(±∞)

− 2m
(
n0

0ψ0 − n0
0(±∞)ψ0(±∞)

)]
⎫⎬
⎭. (A11)

The lattice pinning strength p0 and phase ϕ can be written in
a general form,

p0e
iϕ = 2i[pA(θ0) + pψ (θ0) + pn0 (θ0)], (A12)

where pψ and pA are given in Eqs. (20)–(26). Results
for pn0 are similar to those for pψ ; i.e., pn0 = 0 for qj

orientations (θ0 = 0, ± π/3), and pn0 �= 0 for qij orientations
(θ0 = π/2, ± π/6), with

pn0 = q2
0

{[∫ +∞

0
dun0

0(u)
∫ +∞

u

du′

−
∫ 0

−∞
dun0

0(u)
∫ u

−∞
du′

]
I0(u′)

−
(∫ +∞

0
du

[
n0

0 − n0
0(+∞)

]) ∫ +∞

−∞
duI0(u)

}
,

(A13)

where I0(u) = ∫ u+ax

u
du′eiqu′

f ∗
pk

(u′)/ax with k = 0,1,3 for
q31 (θ0 = π/2), q21 (θ0 = π/6), and q23 (θ0 = −π/6) ori-
entations.

2. Variation method and anisotropic formulation

For the case of varying local orientation θ , we can simply
replace θ0 with θ in the results given above, i.e., γ (θ0) →
γ (θ ), μk(θ0,m) → μk(θ,m), and p0(θ0) → p0(θ ). However,
the corresponding anisotropic form of the Gibbs-Thomson
relation is different, with additional terms associated with
gradients of the surface/interface tension [37]. Similarly to
the process of free energy variation used in Refs. [37] and
[38], for a system with a nonmoving (vn = 0) interface we
have

δ(F − F0) = 0, (A14)

given an infinitesimal perturbation of the interface with a
perturbed hump around a reference point (u = 0, s = s0). Here
the system free energy F = Fsurface + Fbulk, with Fsurface =∫

dsγ (θ ) and Fbulk = −PV + ∫
d r(μψψ + μn0n0) for a sys-

tem of pressure P and volume V , where μψ , ψ , μn0 , and n0

are determined from solutions of Eq. (A8) in the outer region.

F0 is the free energy of the equilibrium bulk state, i.e.,

F0 �
∫

ds

{∫ +∞

0
du

[
μ

eq
ψ ψ0(+∞) + μeq

n0
n0

0(+∞)
]

+
∫ 0

−∞
du

[
μ

eq
ψ ψ0(−∞) + μeq

n0
n0

0(−∞)
]} − PV,

where we have assumed d r = ∫
ds

∫
du(1 + uκ) �∫

ds
∫

du at the lowest order. Using the condition of the
Gibbs surface, we obtain

F − F0 �
∫

dsγ (θ ) +
∫

ds

∫ +∞

−∞
du(δμψψ + δμn0n0).

(A15)

It has been shown in Ref. [37] that

δ

(∫
dsγ (θ )

)
= (γ + d2γ /dθ2)κδV ≡ (γ + γ ′′)κδV,

(A16)

where δV = ∫
dsδu. Also, to first order of perturbations, the

variation of the second term in Eq. (A15) yields

δ

[∫
ds

∫
du(δμψψ + δμn0n0)

]

�
∫

ds

∫
duδ(δμψψ + δμn0n0)

� [
δμψ (0,s0)�ψ0 + δμn0 (0,s0)�n0

0

]
δV, (A17)

given δμψ,δμn0 �= 0 only around the interface u = 0
and δ(δμψψ + δμn0n0) = [∂u(δμψψ + δμn0n0)]δu +
[∂s(δμψψ + δμn0n0)]δs + O(δu2,δs2). Thus the variation of
free energy in Eq. (A14) becomes (for q2

0 = 1 after rescaling)

− (γ + γ ′′)κ = δμψ (0,s0)�ψ0 + δμn0 (0,s0)�n0
0 ≡ �.

(A18)

For the general case of a moving interface with nonzero vn

and the lattice pinning effect given in Eq. (A9), the above
relation can then be generalized to an anisotropic from of the
Gibbs-Thomson condition,

μ−1
k (θ,m)vn = −� − [γ (θ ) + γ ′′(θ )]κ

−p0(θ ) sin(qhn + ϕ(θ )) + ηv, (A19)

which leads to Eq. (16).

3. Simplified case of n0 = const.

Considering that for the liquid-solid interface of an alloy
system the miscibility gap is mostly determined by the
concentration field ψ and the variation of n0 is much smaller,
for simplicity we can approximate n0 as a constant. Applying
∂n0/∂t = 0 to Eq. (7) and combining it with Eq. (8), we then
reduce the dynamic equation of ψ to

∂ψ/∂t = (1 − m2)

{
∇2 δF

δψ
−

∫ x±ax

x

dx ′

ax

∫ y+ay

y

dy ′

ay

× [fp′
0
eiq13·r ′ + fp′

1
eiq12·r ′ + fp′

3
eiq32·r ′ + c.c.]

}

+∇ · ηψ0
,
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where the noise term ηψ0
is governed by

〈ηψ0
〉 = 〈ηψ0

ηj 〉 = 〈ηψ0
η∗

j 〉 = 0,〈
η

μ
ψ0

ην
ψ0

〉 = 2(1 − m2)ϑψkBT δ(r − r ′)δ(t − t ′)δμν.

Following the same procedure of sharp/thin-interface anal-
ysis described in Secs. A 1 and A 2 above, we can
simplify the results of interface equations to those of
Eqs. (16)–(28).
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I. Tóth, G. Tegze, and L. Gránásy, Adv. Phys. 61, 665
(2012).

[27] K.-A. Wu, A. Adland, and A. Karma, Phys. Rev. E 81, 061601
(2010).

[28] M. Greenwood, N. Provatas, and J. Rottler, Phys. Rev.
Lett. 105, 045702 (2010); M. Greenwood, N. Ofori-Opoku,
J. Rottler, and N. Provatas, Phys. Rev. B 84, 064104
(2011).

[29] S. K. Mkhonta, K. R. Elder, and Z.-F. Huang, Phys. Rev. Lett.
111, 035501 (2013).

[30] M. Einax, W. Dieterich, and P. Maass, Rev. Mod. Phys. 85, 921
(2013).

[31] A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C.
Berkelbach, Y. You, G.-H. Lee, T. F. Heinz, D. R. Reich-
man, D. A. Muller, and J. C. Hone, Nat. Mater. 12, 554
(2013).

[32] Z.-F. Huang, K. R. Elder, and N. Provatas, Phys. Rev. E 82,
021605 (2010).

[33] N. Goldenfeld, B. P. Athreya, and J. A. Dantzig, Phys. Rev. E
72, 020601(R) (2005); B. P. Athreya, N. Goldenfeld, and J. A.
Dantzig, ibid. 74, 011601 (2006).

[34] K. R. Elder, Z.-F. Huang, and N. Provatas, Phys. Rev. E 81,
011602 (2010).

[35] Z.-F. Huang, Phys. Rev. E 87, 012401 (2013).
[36] K. R. Elder, M. Grant, N. Provatas, and J. M. Kosterlitz, Phys.

Rev. E 64, 021604 (2001).
[37] C. Herring, in The Physics of Powder Metallurgy, edited by W.

E. Kingston (McGraw–Hill, New York, 1951), pp. 143–179.
[38] A. Karma and W.-J. Rappel, Phys. Rev. E 57, 4323 (1998).
[39] J. S. Langer, Rev. Mod. Phys. 52, 1 (1980).
[40] N. Eustathopoulos, Int. Metal. Rev. 28, 189 (1983).
[41] F. Spaepen, Acta Metal. 23, 729 (1975).
[42] L. E. Murr, Interfacial Phenomena in Metals and Alloys

(Addison-Wesley, London, 1975).
[43] J. W. Cahn, Acta Metal. 8, 554 (1960); J. W. Cahn, W. B. Hillig,

and G. W. Sears, Acta Metall. 12, 1421 (1964).
[44] K.-A. Wu and A. Karma, Phys. Rev. B 76, 184107 (2007).
[45] A. Jaatinen, C. V. Achim, K. R. Elder, and T. Ala-Nissila, Phys.

Rev. E 80, 031602 (2009).
[46] S. Muralidharan and M. Haataja, Phys. Rev. Lett. 105, 126101

(2010).
[47] N. Provatas and S. Majaniemi, Phys. Rev. E 82, 041601

(2010).

022803-12

http://dx.doi.org/10.1038/nmat1693
http://dx.doi.org/10.1038/nmat1693
http://dx.doi.org/10.1038/nmat1693
http://dx.doi.org/10.1038/nmat1693
http://dx.doi.org/10.1016/j.actamat.2008.10.020
http://dx.doi.org/10.1016/j.actamat.2008.10.020
http://dx.doi.org/10.1016/j.actamat.2008.10.020
http://dx.doi.org/10.1016/j.actamat.2008.10.020
http://dx.doi.org/10.1103/PhysRevE.91.022407
http://dx.doi.org/10.1103/PhysRevE.91.022407
http://dx.doi.org/10.1103/PhysRevE.91.022407
http://dx.doi.org/10.1103/PhysRevE.91.022407
http://dx.doi.org/10.1016/j.physrep.2012.09.006
http://dx.doi.org/10.1016/j.physrep.2012.09.006
http://dx.doi.org/10.1016/j.physrep.2012.09.006
http://dx.doi.org/10.1016/j.physrep.2012.09.006
http://dx.doi.org/10.1126/science.1208455
http://dx.doi.org/10.1126/science.1208455
http://dx.doi.org/10.1126/science.1208455
http://dx.doi.org/10.1126/science.1208455
http://dx.doi.org/10.1038/nmat3631
http://dx.doi.org/10.1038/nmat3631
http://dx.doi.org/10.1038/nmat3631
http://dx.doi.org/10.1038/nmat3631
http://dx.doi.org/10.1038/nmat1190
http://dx.doi.org/10.1038/nmat1190
http://dx.doi.org/10.1038/nmat1190
http://dx.doi.org/10.1038/nmat1190
http://dx.doi.org/10.1016/S1359-6454(01)00306-8
http://dx.doi.org/10.1016/S1359-6454(01)00306-8
http://dx.doi.org/10.1016/S1359-6454(01)00306-8
http://dx.doi.org/10.1016/S1359-6454(01)00306-8
http://dx.doi.org/10.1103/PhysRevB.70.214103
http://dx.doi.org/10.1103/PhysRevB.70.214103
http://dx.doi.org/10.1103/PhysRevB.70.214103
http://dx.doi.org/10.1103/PhysRevB.70.214103
http://dx.doi.org/10.1103/PhysRevE.74.021604
http://dx.doi.org/10.1103/PhysRevE.74.021604
http://dx.doi.org/10.1103/PhysRevE.74.021604
http://dx.doi.org/10.1103/PhysRevE.74.021604
http://dx.doi.org/10.1016/0022-0248(67)90037-1
http://dx.doi.org/10.1016/0022-0248(67)90037-1
http://dx.doi.org/10.1016/0022-0248(67)90037-1
http://dx.doi.org/10.1016/0022-0248(67)90037-1
http://dx.doi.org/10.1016/0022-0248(91)90334-2
http://dx.doi.org/10.1016/0022-0248(91)90334-2
http://dx.doi.org/10.1016/0022-0248(91)90334-2
http://dx.doi.org/10.1016/0022-0248(91)90334-2
http://dx.doi.org/10.1103/PhysRevLett.86.5530
http://dx.doi.org/10.1103/PhysRevLett.86.5530
http://dx.doi.org/10.1103/PhysRevLett.86.5530
http://dx.doi.org/10.1103/PhysRevLett.86.5530
http://dx.doi.org/10.1103/PhysRevLett.98.125701
http://dx.doi.org/10.1103/PhysRevLett.98.125701
http://dx.doi.org/10.1103/PhysRevLett.98.125701
http://dx.doi.org/10.1103/PhysRevLett.98.125701
http://dx.doi.org/10.1103/PhysRevB.78.144112
http://dx.doi.org/10.1103/PhysRevB.78.144112
http://dx.doi.org/10.1103/PhysRevB.78.144112
http://dx.doi.org/10.1103/PhysRevB.78.144112
http://dx.doi.org/10.1209/0295-5075/81/58001
http://dx.doi.org/10.1209/0295-5075/81/58001
http://dx.doi.org/10.1209/0295-5075/81/58001
http://dx.doi.org/10.1209/0295-5075/81/58001
http://dx.doi.org/10.1080/14786435.2014.995742
http://dx.doi.org/10.1080/14786435.2014.995742
http://dx.doi.org/10.1080/14786435.2014.995742
http://dx.doi.org/10.1080/14786435.2014.995742
http://dx.doi.org/10.1103/PhysRevE.47.1893
http://dx.doi.org/10.1103/PhysRevE.47.1893
http://dx.doi.org/10.1103/PhysRevE.47.1893
http://dx.doi.org/10.1103/PhysRevE.47.1893
http://dx.doi.org/10.1103/PhysRevA.35.2611
http://dx.doi.org/10.1103/PhysRevA.35.2611
http://dx.doi.org/10.1103/PhysRevA.35.2611
http://dx.doi.org/10.1103/PhysRevA.35.2611
http://dx.doi.org/10.1103/PhysRevB.91.014107
http://dx.doi.org/10.1103/PhysRevB.91.014107
http://dx.doi.org/10.1103/PhysRevB.91.014107
http://dx.doi.org/10.1103/PhysRevB.91.014107
http://dx.doi.org/10.1103/PhysRevB.33.6293
http://dx.doi.org/10.1103/PhysRevB.33.6293
http://dx.doi.org/10.1103/PhysRevB.33.6293
http://dx.doi.org/10.1103/PhysRevB.33.6293
http://dx.doi.org/10.1016/0022-0248(91)90340-B
http://dx.doi.org/10.1016/0022-0248(91)90340-B
http://dx.doi.org/10.1016/0022-0248(91)90340-B
http://dx.doi.org/10.1016/0022-0248(91)90340-B
http://dx.doi.org/10.1016/0001-6160(85)90077-X
http://dx.doi.org/10.1016/0001-6160(85)90077-X
http://dx.doi.org/10.1016/0001-6160(85)90077-X
http://dx.doi.org/10.1016/0001-6160(85)90077-X
http://dx.doi.org/10.1103/PhysRevLett.74.4031
http://dx.doi.org/10.1103/PhysRevLett.74.4031
http://dx.doi.org/10.1103/PhysRevLett.74.4031
http://dx.doi.org/10.1103/PhysRevLett.74.4031
http://dx.doi.org/10.1103/PhysRevLett.88.245701
http://dx.doi.org/10.1103/PhysRevLett.88.245701
http://dx.doi.org/10.1103/PhysRevLett.88.245701
http://dx.doi.org/10.1103/PhysRevLett.88.245701
http://dx.doi.org/10.1103/PhysRevB.75.064107
http://dx.doi.org/10.1103/PhysRevB.75.064107
http://dx.doi.org/10.1103/PhysRevB.75.064107
http://dx.doi.org/10.1103/PhysRevB.75.064107
http://dx.doi.org/10.1103/PhysRevLett.101.158701
http://dx.doi.org/10.1103/PhysRevLett.101.158701
http://dx.doi.org/10.1103/PhysRevLett.101.158701
http://dx.doi.org/10.1103/PhysRevLett.101.158701
http://dx.doi.org/10.1103/PhysRevB.81.165421
http://dx.doi.org/10.1103/PhysRevB.81.165421
http://dx.doi.org/10.1103/PhysRevB.81.165421
http://dx.doi.org/10.1103/PhysRevB.81.165421
http://dx.doi.org/10.1080/00018732.2012.737555
http://dx.doi.org/10.1080/00018732.2012.737555
http://dx.doi.org/10.1080/00018732.2012.737555
http://dx.doi.org/10.1080/00018732.2012.737555
http://dx.doi.org/10.1103/PhysRevE.81.061601
http://dx.doi.org/10.1103/PhysRevE.81.061601
http://dx.doi.org/10.1103/PhysRevE.81.061601
http://dx.doi.org/10.1103/PhysRevE.81.061601
http://dx.doi.org/10.1103/PhysRevLett.105.045702
http://dx.doi.org/10.1103/PhysRevLett.105.045702
http://dx.doi.org/10.1103/PhysRevLett.105.045702
http://dx.doi.org/10.1103/PhysRevLett.105.045702
http://dx.doi.org/10.1103/PhysRevB.84.064104
http://dx.doi.org/10.1103/PhysRevB.84.064104
http://dx.doi.org/10.1103/PhysRevB.84.064104
http://dx.doi.org/10.1103/PhysRevB.84.064104
http://dx.doi.org/10.1103/PhysRevLett.111.035501
http://dx.doi.org/10.1103/PhysRevLett.111.035501
http://dx.doi.org/10.1103/PhysRevLett.111.035501
http://dx.doi.org/10.1103/PhysRevLett.111.035501
http://dx.doi.org/10.1103/RevModPhys.85.921
http://dx.doi.org/10.1103/RevModPhys.85.921
http://dx.doi.org/10.1103/RevModPhys.85.921
http://dx.doi.org/10.1103/RevModPhys.85.921
http://dx.doi.org/10.1038/nmat3633
http://dx.doi.org/10.1038/nmat3633
http://dx.doi.org/10.1038/nmat3633
http://dx.doi.org/10.1038/nmat3633
http://dx.doi.org/10.1103/PhysRevE.82.021605
http://dx.doi.org/10.1103/PhysRevE.82.021605
http://dx.doi.org/10.1103/PhysRevE.82.021605
http://dx.doi.org/10.1103/PhysRevE.82.021605
http://dx.doi.org/10.1103/PhysRevE.72.020601
http://dx.doi.org/10.1103/PhysRevE.72.020601
http://dx.doi.org/10.1103/PhysRevE.72.020601
http://dx.doi.org/10.1103/PhysRevE.72.020601
http://dx.doi.org/10.1103/PhysRevE.74.011601
http://dx.doi.org/10.1103/PhysRevE.74.011601
http://dx.doi.org/10.1103/PhysRevE.74.011601
http://dx.doi.org/10.1103/PhysRevE.74.011601
http://dx.doi.org/10.1103/PhysRevE.81.011602
http://dx.doi.org/10.1103/PhysRevE.81.011602
http://dx.doi.org/10.1103/PhysRevE.81.011602
http://dx.doi.org/10.1103/PhysRevE.81.011602
http://dx.doi.org/10.1103/PhysRevE.87.012401
http://dx.doi.org/10.1103/PhysRevE.87.012401
http://dx.doi.org/10.1103/PhysRevE.87.012401
http://dx.doi.org/10.1103/PhysRevE.87.012401
http://dx.doi.org/10.1103/PhysRevE.64.021604
http://dx.doi.org/10.1103/PhysRevE.64.021604
http://dx.doi.org/10.1103/PhysRevE.64.021604
http://dx.doi.org/10.1103/PhysRevE.64.021604
http://dx.doi.org/10.1103/PhysRevE.57.4323
http://dx.doi.org/10.1103/PhysRevE.57.4323
http://dx.doi.org/10.1103/PhysRevE.57.4323
http://dx.doi.org/10.1103/PhysRevE.57.4323
http://dx.doi.org/10.1103/RevModPhys.52.1
http://dx.doi.org/10.1103/RevModPhys.52.1
http://dx.doi.org/10.1103/RevModPhys.52.1
http://dx.doi.org/10.1103/RevModPhys.52.1
http://dx.doi.org/10.1179/imr.1983.28.1.189
http://dx.doi.org/10.1179/imr.1983.28.1.189
http://dx.doi.org/10.1179/imr.1983.28.1.189
http://dx.doi.org/10.1179/imr.1983.28.1.189
http://dx.doi.org/10.1016/0001-6160(75)90056-5
http://dx.doi.org/10.1016/0001-6160(75)90056-5
http://dx.doi.org/10.1016/0001-6160(75)90056-5
http://dx.doi.org/10.1016/0001-6160(75)90056-5
http://dx.doi.org/10.1016/0001-6160(60)90110-3
http://dx.doi.org/10.1016/0001-6160(60)90110-3
http://dx.doi.org/10.1016/0001-6160(60)90110-3
http://dx.doi.org/10.1016/0001-6160(60)90110-3
http://dx.doi.org/10.1016/0001-6160(64)90130-0
http://dx.doi.org/10.1016/0001-6160(64)90130-0
http://dx.doi.org/10.1016/0001-6160(64)90130-0
http://dx.doi.org/10.1016/0001-6160(64)90130-0
http://dx.doi.org/10.1103/PhysRevB.76.184107
http://dx.doi.org/10.1103/PhysRevB.76.184107
http://dx.doi.org/10.1103/PhysRevB.76.184107
http://dx.doi.org/10.1103/PhysRevB.76.184107
http://dx.doi.org/10.1103/PhysRevE.80.031602
http://dx.doi.org/10.1103/PhysRevE.80.031602
http://dx.doi.org/10.1103/PhysRevE.80.031602
http://dx.doi.org/10.1103/PhysRevE.80.031602
http://dx.doi.org/10.1103/PhysRevLett.105.126101
http://dx.doi.org/10.1103/PhysRevLett.105.126101
http://dx.doi.org/10.1103/PhysRevLett.105.126101
http://dx.doi.org/10.1103/PhysRevLett.105.126101
http://dx.doi.org/10.1103/PhysRevE.82.041601
http://dx.doi.org/10.1103/PhysRevE.82.041601
http://dx.doi.org/10.1103/PhysRevE.82.041601
http://dx.doi.org/10.1103/PhysRevE.82.041601



